mirror of
				https://github.com/gsi-upm/soil
				synced 2025-10-30 23:28:17 +00:00 
			
		
		
		
	Notebook v2
This commit is contained in:
		| @@ -54,23 +54,11 @@ | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": 25, | ||||
|    "execution_count": 1, | ||||
|    "metadata": { | ||||
|     "collapsed": false | ||||
|    }, | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "ename": "ImportError", | ||||
|      "evalue": "No module named 'matplotlib'", | ||||
|      "output_type": "error", | ||||
|      "traceback": [ | ||||
|       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | ||||
|       "\u001b[0;31mImportError\u001b[0m                               Traceback (most recent call last)", | ||||
|       "\u001b[0;32m<ipython-input-25-7de2b31ae930>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mnxsim\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mNetworkSimulation\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnetworkx\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnx\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0msettings\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||||
|       "\u001b[0;31mImportError\u001b[0m: No module named 'matplotlib'" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "import matplotlib.pyplot as plt\n", | ||||
|     "from nxsim import NetworkSimulation\n", | ||||
| @@ -102,7 +90,7 @@ | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "execution_count": 2, | ||||
|    "metadata": { | ||||
|     "collapsed": true | ||||
|    }, | ||||
| @@ -133,11 +121,23 @@ | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "execution_count": 3, | ||||
|    "metadata": { | ||||
|     "collapsed": false | ||||
|    }, | ||||
|    "outputs": [], | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Starting simulations...\n", | ||||
|       "---Trial 0---\n", | ||||
|       "Setting up agents...\n", | ||||
|       "Written 50 items to pickled binary file: sim_01/log.0.state.pickled\n", | ||||
|       "Simulation completed.\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "sim = NetworkSimulation(topology=G, states=init_states, agent_type=ControlModelM2,\n", | ||||
|     "                        max_time=settings.max_time, num_trials=settings.num_trials, logging_interval=1.0)\n", | ||||
| @@ -164,11 +164,19 @@ | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "execution_count": 4, | ||||
|    "metadata": { | ||||
|     "collapsed": false | ||||
|    }, | ||||
|    "outputs": [], | ||||
|    "outputs": [ | ||||
|     { | ||||
|      "name": "stdout", | ||||
|      "output_type": "stream", | ||||
|      "text": [ | ||||
|       "Done!\n" | ||||
|      ] | ||||
|     } | ||||
|    ], | ||||
|    "source": [ | ||||
|     "for x in range(0, settings.number_of_nodes):\n", | ||||
|     "    for empresa in models.networkStatus[\"agente_%s\"%x]:\n", | ||||
| @@ -199,7 +207,7 @@ | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "execution_count": 5, | ||||
|    "metadata": { | ||||
|     "collapsed": false | ||||
|    }, | ||||
| @@ -251,6 +259,13 @@ | ||||
|     "plt.savefig('control_model.png')" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
| @@ -267,7 +282,7 @@ | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "execution_count": 6, | ||||
|    "metadata": { | ||||
|     "collapsed": true | ||||
|    }, | ||||
| @@ -310,7 +325,7 @@ | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "execution_count": 7, | ||||
|    "metadata": { | ||||
|     "collapsed": true | ||||
|    }, | ||||
| @@ -373,7 +388,7 @@ | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "execution_count": 8, | ||||
|    "metadata": { | ||||
|     "collapsed": true | ||||
|    }, | ||||
| @@ -514,87 +529,6 @@ | ||||
|    "source": [ | ||||
|     "This file contains all the variables that can be modified from the simulation. In case of implementing a new spread model, the new variables should be also included in this file." | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": { | ||||
|     "collapsed": true | ||||
|    }, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "# settings.py\n", | ||||
|     "def init():\n", | ||||
|     "\n", | ||||
|     "    network_type=1\n", | ||||
|     "    number_of_nodes=1000\n", | ||||
|     "    max_time=50\n", | ||||
|     "    num_trials=1\n", | ||||
|     "    timeout=2\n", | ||||
|     "\n", | ||||
|     "    #Zombie model\n", | ||||
|     "    bite_prob=0.01 # 0-1\n", | ||||
|     "    heal_prob=0.01 # 0-1\n", | ||||
|     "\n", | ||||
|     "    #Bass model\n", | ||||
|     "    innovation_prob=0.001\n", | ||||
|     "    imitation_prob=0.005\n", | ||||
|     "\n", | ||||
|     "    #Sentiment Correlation model\n", | ||||
|     "    outside_effects_prob = 0.2\n", | ||||
|     "    anger_prob = 0.06\n", | ||||
|     "    joy_prob = 0.05\n", | ||||
|     "    sadness_prob = 0.02\n", | ||||
|     "    disgust_prob = 0.02\n", | ||||
|     "\n", | ||||
|     "    #Big Market model\n", | ||||
|     "    ##Names\n", | ||||
|     "    enterprises = [\"BBVA\",\"Santander\", \"Bankia\"]\n", | ||||
|     "    ##Users\n", | ||||
|     "    tweet_probability_users = 0.44\n", | ||||
|     "    tweet_relevant_probability = 0.25\n", | ||||
|     "    tweet_probability_about = [0.15, 0.15, 0.15]\n", | ||||
|     "    sentiment_about = [0, 0, 0] #Valores por defecto\n", | ||||
|     "    ##Enterprises\n", | ||||
|     "    tweet_probability_enterprises = [0.3, 0.3, 0.3]\n", | ||||
|     "\n", | ||||
|     "    #SISa\n", | ||||
|     "    neutral_discontent_spon_prob = 0.04\n", | ||||
|     "    neutral_discontent_infected_prob = 0.04\n", | ||||
|     "    neutral_content_spon_prob = 0.18\n", | ||||
|     "    neutral_content_infected_prob = 0.02\n", | ||||
|     "\n", | ||||
|     "    discontent_neutral = 0.13\n", | ||||
|     "    discontent_content = 0.07\n", | ||||
|     "    variance_d_c = 0.02\n", | ||||
|     "\n", | ||||
|     "    content_discontent = 0.009\n", | ||||
|     "    variance_c_d = 0.003\n", | ||||
|     "    content_neutral = 0.088\n", | ||||
|     "\n", | ||||
|     "    standard_variance = 0.055\n", | ||||
|     "\n", | ||||
|     "    #Spread Model M2 and Control Model M2\n", | ||||
|     "    prob_neutral_making_denier = 0.035\n", | ||||
|     "\n", | ||||
|     "    prob_infect = 0.075\n", | ||||
|     "\n", | ||||
|     "    prob_cured_healing_infected = 0.035\n", | ||||
|     "    prob_cured_vaccinate_neutral = 0.035\n", | ||||
|     "\n", | ||||
|     "    prob_vaccinated_healing_infected = 0.035\n", | ||||
|     "    prob_vaccinated_vaccinate_neutral = 0.035\n", | ||||
|     "    prob_generate_anti_rumor = 0.035\n" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": { | ||||
|     "collapsed": true | ||||
|    }, | ||||
|    "outputs": [], | ||||
|    "source": [] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
|   | ||||
		Reference in New Issue
	
	Block a user