1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-22 03:02:28 +00:00
* Removed references to `set_state`
* Split some functionality from `agents` into separate files (`fsm` and
`network_agents`)
* Rename `neighboring_agents` to `neighbors`
* Delete some spurious functions
This commit is contained in:
J. Fernando Sánchez 2022-10-17 21:36:21 +02:00
parent 880a9f2a1c
commit 3776c4e5c5
16 changed files with 295 additions and 347 deletions

View File

@ -58,7 +58,7 @@ class SocialMoneyAgent(NetworkAgent, MoneyAgent):
def give_money(self): def give_money(self):
cellmates = set(self.model.grid.get_cell_list_contents([self.pos])) cellmates = set(self.model.grid.get_cell_list_contents([self.pos]))
friends = set(self.get_neighboring_agents()) friends = set(self.get_neighbors())
self.info("Trying to give money") self.info("Trying to give money")
self.info("Cellmates: ", cellmates) self.info("Cellmates: ", cellmates)
self.info("Friends: ", friends) self.info("Friends: ", friends)

View File

@ -8,10 +8,9 @@ class DumbViewer(FSM, NetworkAgent):
its neighbors once it's infected. its neighbors once it's infected.
""" """
defaults = { prob_neighbor_spread = 0.5
"prob_neighbor_spread": 0.5, prob_tv_spread = 0.1
"prob_tv_spread": 0.1, has_been_infected = False
}
@default_state @default_state
@state @state
@ -19,10 +18,12 @@ class DumbViewer(FSM, NetworkAgent):
if self["has_tv"]: if self["has_tv"]:
if self.prob(self.model["prob_tv_spread"]): if self.prob(self.model["prob_tv_spread"]):
return self.infected return self.infected
if self.has_been_infected:
return self.infected
@state @state
def infected(self): def infected(self):
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id): for neighbor in self.get_neighbors(state_id=self.neutral.id):
if self.prob(self.model["prob_neighbor_spread"]): if self.prob(self.model["prob_neighbor_spread"]):
neighbor.infect() neighbor.infect()
@ -33,7 +34,7 @@ class DumbViewer(FSM, NetworkAgent):
HerdViewer might not become infected right away HerdViewer might not become infected right away
""" """
self.set_state(self.infected) self.has_been_infected = True
class HerdViewer(DumbViewer): class HerdViewer(DumbViewer):
@ -43,12 +44,12 @@ class HerdViewer(DumbViewer):
def infect(self): def infect(self):
"""Notice again that this is NOT a state. See DumbViewer.infect for reference""" """Notice again that this is NOT a state. See DumbViewer.infect for reference"""
infected = self.count_neighboring_agents(state_id=self.infected.id) infected = self.count_neighbors(state_id=self.infected.id)
total = self.count_neighboring_agents() total = self.count_neighbors()
prob_infect = self.model["prob_neighbor_spread"] * infected / total prob_infect = self.model["prob_neighbor_spread"] * infected / total
self.debug("prob_infect", prob_infect) self.debug("prob_infect", prob_infect)
if self.prob(prob_infect): if self.prob(prob_infect):
self.set_state(self.infected) self.has_been_infected = True
class WiseViewer(HerdViewer): class WiseViewer(HerdViewer):
@ -65,7 +66,7 @@ class WiseViewer(HerdViewer):
@state @state
def cured(self): def cured(self):
prob_cure = self.model["prob_neighbor_cure"] prob_cure = self.model["prob_neighbor_cure"]
for neighbor in self.get_neighboring_agents(state_id=self.infected.id): for neighbor in self.get_neighbors(state_id=self.infected.id):
if self.prob(prob_cure): if self.prob(prob_cure):
try: try:
neighbor.cure() neighbor.cure()
@ -73,13 +74,14 @@ class WiseViewer(HerdViewer):
self.debug("Viewer {} cannot be cured".format(neighbor.id)) self.debug("Viewer {} cannot be cured".format(neighbor.id))
def cure(self): def cure(self):
self.set_state(self.cured.id) self.has_been_cured = True
@state @state
def infected(self): def infected(self):
cured = max(self.count_neighboring_agents(self.cured.id), 1.0) if self.has_been_cured:
infected = max(self.count_neighboring_agents(self.infected.id), 1.0) return self.cured
cured = max(self.count_neighbors(self.cured.id), 1.0)
infected = max(self.count_neighbors(self.infected.id), 1.0)
prob_cure = self.model["prob_neighbor_cure"] * (cured / infected) prob_cure = self.model["prob_neighbor_cure"] * (cured / infected)
if self.prob(prob_cure): if self.prob(prob_cure):
return self.cured return self.cured
return self.set_state(super().infected)

View File

@ -89,7 +89,7 @@ class Patron(FSM, NetworkAgent):
if self["pub"] != None: if self["pub"] != None:
return self.sober_in_pub return self.sober_in_pub
self.debug("I am looking for a pub") self.debug("I am looking for a pub")
group = list(self.get_neighboring_agents()) group = list(self.get_neighbors())
for pub in self.model.available_pubs(): for pub in self.model.available_pubs():
self.debug("We're trying to get into {}: total: {}".format(pub, len(group))) self.debug("We're trying to get into {}: total: {}".format(pub, len(group)))
if self.model.enter(pub, self, *group): if self.model.enter(pub, self, *group):

View File

@ -49,7 +49,7 @@ class TerroristSpreadModel(FSM, Geo):
@state @state
def civilian(self): def civilian(self):
neighbours = list(self.get_neighboring_agents(agent_class=TerroristSpreadModel)) neighbours = list(self.get_neighbors(agent_class=TerroristSpreadModel))
if len(neighbours) > 0: if len(neighbours) > 0:
# Only interact with some of the neighbors # Only interact with some of the neighbors
interactions = list( interactions = list(
@ -73,7 +73,7 @@ class TerroristSpreadModel(FSM, Geo):
@state @state
def leader(self): def leader(self):
self.mean_belief = self.mean_belief ** (1 - self.terrorist_additional_influence) self.mean_belief = self.mean_belief ** (1 - self.terrorist_additional_influence)
for neighbour in self.get_neighboring_agents( for neighbour in self.get_neighbors(
state_id=[self.terrorist.id, self.leader.id] state_id=[self.terrorist.id, self.leader.id]
): ):
if self.betweenness(neighbour) > self.betweenness(self): if self.betweenness(neighbour) > self.betweenness(self):
@ -158,7 +158,7 @@ class TrainingAreaModel(FSM, Geo):
@default_state @default_state
@state @state
def terrorist(self): def terrorist(self):
for neighbour in self.get_neighboring_agents(agent_class=TerroristSpreadModel): for neighbour in self.get_neighbors(agent_class=TerroristSpreadModel):
if neighbour.vulnerability > self.min_vulnerability: if neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( neighbour.vulnerability = neighbour.vulnerability ** (
1 - self.training_influence 1 - self.training_influence
@ -187,7 +187,7 @@ class HavenModel(FSM, Geo):
self.max_vulnerability = model.environment_params["max_vulnerability"] self.max_vulnerability = model.environment_params["max_vulnerability"]
def get_occupants(self, **kwargs): def get_occupants(self, **kwargs):
return self.get_neighboring_agents(agent_class=TerroristSpreadModel, **kwargs) return self.get_neighbors(agent_class=TerroristSpreadModel, **kwargs)
@state @state
def civilian(self): def civilian(self):
@ -243,7 +243,7 @@ class TerroristNetworkModel(TerroristSpreadModel):
return super().leader() return super().leader()
def update_relationships(self): def update_relationships(self):
if self.count_neighboring_agents(state_id=self.civilian.id) == 0: if self.count_neighbors(state_id=self.civilian.id) == 0:
close_ups = set( close_ups = set(
self.geo_search( self.geo_search(
radius=self.vision_range, agent_class=TerroristNetworkModel radius=self.vision_range, agent_class=TerroristNetworkModel
@ -258,7 +258,7 @@ class TerroristNetworkModel(TerroristSpreadModel):
) )
neighbours = set( neighbours = set(
agent.id agent.id
for agent in self.get_neighboring_agents( for agent in self.get_neighbors(
agent_class=TerroristNetworkModel agent_class=TerroristNetworkModel
) )
) )

View File

@ -20,7 +20,7 @@ class BassModel(FSM):
self.sentimentCorrelation = 1 self.sentimentCorrelation = 1
return self.aware return self.aware
else: else:
aware_neighbors = self.get_neighboring_agents(state_id=self.aware.id) aware_neighbors = self.get_neighbors(state_id=self.aware.id)
num_neighbors_aware = len(aware_neighbors) num_neighbors_aware = len(aware_neighbors)
if self.prob((self["imitation_prob"] * num_neighbors_aware)): if self.prob((self["imitation_prob"] * num_neighbors_aware)):
self.sentimentCorrelation = 1 self.sentimentCorrelation = 1

View File

@ -24,14 +24,14 @@ class BigMarketModel(FSM):
self.type = "" self.type = ""
if self.id < len(self.enterprises): # Enterprises if self.id < len(self.enterprises): # Enterprises
self.set_state(self.enterprise.id) self._set_state(self.enterprise.id)
self.type = "Enterprise" self.type = "Enterprise"
self.tweet_probability = environment.environment_params[ self.tweet_probability = environment.environment_params[
"tweet_probability_enterprises" "tweet_probability_enterprises"
][self.id] ][self.id]
else: # normal users else: # normal users
self.type = "User" self.type = "User"
self.set_state(self.user.id) self._set_state(self.user.id)
self.tweet_probability = environment.environment_params[ self.tweet_probability = environment.environment_params[
"tweet_probability_users" "tweet_probability_users"
] ]
@ -49,7 +49,7 @@ class BigMarketModel(FSM):
def enterprise(self): def enterprise(self):
if self.random.random() < self.tweet_probability: # Tweets if self.random.random() < self.tweet_probability: # Tweets
aware_neighbors = self.get_neighboring_agents( aware_neighbors = self.get_neighbors(
state_id=self.number_of_enterprises state_id=self.number_of_enterprises
) # Nodes neighbour users ) # Nodes neighbour users
for x in aware_neighbors: for x in aware_neighbors:
@ -96,7 +96,7 @@ class BigMarketModel(FSM):
] = self.sentiment_about[i] ] = self.sentiment_about[i]
def userTweets(self, sentiment, enterprise): def userTweets(self, sentiment, enterprise):
aware_neighbors = self.get_neighboring_agents( aware_neighbors = self.get_neighbors(
state_id=self.number_of_enterprises state_id=self.number_of_enterprises
) # Nodes neighbours users ) # Nodes neighbours users
for x in aware_neighbors: for x in aware_neighbors:

View File

@ -14,7 +14,7 @@ class CounterModel(NetworkAgent):
def step(self): def step(self):
# Outside effects # Outside effects
total = len(list(self.model.schedule._agents)) total = len(list(self.model.schedule._agents))
neighbors = len(list(self.get_neighboring_agents())) neighbors = len(list(self.get_neighbors()))
self["times"] = self.get("times", 0) + 1 self["times"] = self.get("times", 0) + 1
self["neighbors"] = neighbors self["neighbors"] = neighbors
self["total"] = total self["total"] = total
@ -33,7 +33,7 @@ class AggregatedCounter(NetworkAgent):
def step(self): def step(self):
# Outside effects # Outside effects
self["times"] += 1 self["times"] += 1
neighbors = len(list(self.get_neighboring_agents())) neighbors = len(list(self.get_neighbors()))
self["neighbors"] += neighbors self["neighbors"] += neighbors
total = len(list(self.model.schedule.agents)) total = len(list(self.model.schedule.agents))
self["total"] += total self["total"] += total

View File

@ -36,7 +36,7 @@ class IndependentCascadeModel(BaseAgent):
# Imitation effects # Imitation effects
if self.state["id"] == 0: if self.state["id"] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1) aware_neighbors = self.get_neighbors(state_id=1)
for x in aware_neighbors: for x in aware_neighbors:
if x.state["time_awareness"] == (self.env.now - 1): if x.state["time_awareness"] == (self.env.now - 1):
aware_neighbors_1_time_step.append(x) aware_neighbors_1_time_step.append(x)

View File

@ -71,7 +71,7 @@ class SpreadModelM2(BaseAgent):
def neutral_behaviour(self): def neutral_behaviour(self):
# Infected # Infected
infected_neighbors = self.get_neighboring_agents(state_id=1) infected_neighbors = self.get_neighbors(state_id=1)
if len(infected_neighbors) > 0: if len(infected_neighbors) > 0:
if self.prob(self.prob_neutral_making_denier): if self.prob(self.prob_neutral_making_denier):
self.state["id"] = 3 # Vaccinated making denier self.state["id"] = 3 # Vaccinated making denier
@ -79,7 +79,7 @@ class SpreadModelM2(BaseAgent):
def infected_behaviour(self): def infected_behaviour(self):
# Neutral # Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0) neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors: for neighbor in neutral_neighbors:
if self.prob(self.prob_infect): if self.prob(self.prob_infect):
neighbor.state["id"] = 1 # Infected neighbor.state["id"] = 1 # Infected
@ -87,13 +87,13 @@ class SpreadModelM2(BaseAgent):
def cured_behaviour(self): def cured_behaviour(self):
# Vaccinate # Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0) neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors: for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral): if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state["id"] = 3 # Vaccinated neighbor.state["id"] = 3 # Vaccinated
# Cure # Cure
infected_neighbors = self.get_neighboring_agents(state_id=1) infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors: for neighbor in infected_neighbors:
if self.prob(self.prob_cured_healing_infected): if self.prob(self.prob_cured_healing_infected):
neighbor.state["id"] = 2 # Cured neighbor.state["id"] = 2 # Cured
@ -101,19 +101,19 @@ class SpreadModelM2(BaseAgent):
def vaccinated_behaviour(self): def vaccinated_behaviour(self):
# Cure # Cure
infected_neighbors = self.get_neighboring_agents(state_id=1) infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors: for neighbor in infected_neighbors:
if self.prob(self.prob_cured_healing_infected): if self.prob(self.prob_cured_healing_infected):
neighbor.state["id"] = 2 # Cured neighbor.state["id"] = 2 # Cured
# Vaccinate # Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0) neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors: for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral): if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state["id"] = 3 # Vaccinated neighbor.state["id"] = 3 # Vaccinated
# Generate anti-rumor # Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1) infected_neighbors_2 = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors_2: for neighbor in infected_neighbors_2:
if self.prob(self.prob_generate_anti_rumor): if self.prob(self.prob_generate_anti_rumor):
neighbor.state["id"] = 2 # Cured neighbor.state["id"] = 2 # Cured
@ -191,7 +191,7 @@ class ControlModelM2(BaseAgent):
self.state["visible"] = False self.state["visible"] = False
# Infected # Infected
infected_neighbors = self.get_neighboring_agents(state_id=1) infected_neighbors = self.get_neighbors(state_id=1)
if len(infected_neighbors) > 0: if len(infected_neighbors) > 0:
if self.random(self.prob_neutral_making_denier): if self.random(self.prob_neutral_making_denier):
self.state["id"] = 3 # Vaccinated making denier self.state["id"] = 3 # Vaccinated making denier
@ -199,7 +199,7 @@ class ControlModelM2(BaseAgent):
def infected_behaviour(self): def infected_behaviour(self):
# Neutral # Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0) neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors: for neighbor in neutral_neighbors:
if self.prob(self.prob_infect): if self.prob(self.prob_infect):
neighbor.state["id"] = 1 # Infected neighbor.state["id"] = 1 # Infected
@ -209,13 +209,13 @@ class ControlModelM2(BaseAgent):
self.state["visible"] = True self.state["visible"] = True
# Vaccinate # Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0) neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors: for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral): if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state["id"] = 3 # Vaccinated neighbor.state["id"] = 3 # Vaccinated
# Cure # Cure
infected_neighbors = self.get_neighboring_agents(state_id=1) infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors: for neighbor in infected_neighbors:
if self.prob(self.prob_cured_healing_infected): if self.prob(self.prob_cured_healing_infected):
neighbor.state["id"] = 2 # Cured neighbor.state["id"] = 2 # Cured
@ -224,47 +224,47 @@ class ControlModelM2(BaseAgent):
self.state["visible"] = True self.state["visible"] = True
# Cure # Cure
infected_neighbors = self.get_neighboring_agents(state_id=1) infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors: for neighbor in infected_neighbors:
if self.prob(self.prob_cured_healing_infected): if self.prob(self.prob_cured_healing_infected):
neighbor.state["id"] = 2 # Cured neighbor.state["id"] = 2 # Cured
# Vaccinate # Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0) neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors: for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral): if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state["id"] = 3 # Vaccinated neighbor.state["id"] = 3 # Vaccinated
# Generate anti-rumor # Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1) infected_neighbors_2 = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors_2: for neighbor in infected_neighbors_2:
if self.prob(self.prob_generate_anti_rumor): if self.prob(self.prob_generate_anti_rumor):
neighbor.state["id"] = 2 # Cured neighbor.state["id"] = 2 # Cured
def beacon_off_behaviour(self): def beacon_off_behaviour(self):
self.state["visible"] = False self.state["visible"] = False
infected_neighbors = self.get_neighboring_agents(state_id=1) infected_neighbors = self.get_neighbors(state_id=1)
if len(infected_neighbors) > 0: if len(infected_neighbors) > 0:
self.state["id"] == 5 # Beacon on self.state["id"] == 5 # Beacon on
def beacon_on_behaviour(self): def beacon_on_behaviour(self):
self.state["visible"] = False self.state["visible"] = False
# Cure (M2 feature added) # Cure (M2 feature added)
infected_neighbors = self.get_neighboring_agents(state_id=1) infected_neighbors = self.get_neighbors(state_id=1)
for neighbor in infected_neighbors: for neighbor in infected_neighbors:
if self.prob(self.prob_generate_anti_rumor): if self.prob(self.prob_generate_anti_rumor):
neighbor.state["id"] = 2 # Cured neighbor.state["id"] = 2 # Cured
neutral_neighbors_infected = neighbor.get_neighboring_agents(state_id=0) neutral_neighbors_infected = neighbor.get_neighbors(state_id=0)
for neighbor in neutral_neighbors_infected: for neighbor in neutral_neighbors_infected:
if self.prob(self.prob_generate_anti_rumor): if self.prob(self.prob_generate_anti_rumor):
neighbor.state["id"] = 3 # Vaccinated neighbor.state["id"] = 3 # Vaccinated
infected_neighbors_infected = neighbor.get_neighboring_agents(state_id=1) infected_neighbors_infected = neighbor.get_neighbors(state_id=1)
for neighbor in infected_neighbors_infected: for neighbor in infected_neighbors_infected:
if self.prob(self.prob_generate_anti_rumor): if self.prob(self.prob_generate_anti_rumor):
neighbor.state["id"] = 2 # Cured neighbor.state["id"] = 2 # Cured
# Vaccinate # Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0) neutral_neighbors = self.get_neighbors(state_id=0)
for neighbor in neutral_neighbors: for neighbor in neutral_neighbors:
if self.prob(self.prob_cured_vaccinate_neutral): if self.prob(self.prob_cured_vaccinate_neutral):
neighbor.state["id"] = 3 # Vaccinated neighbor.state["id"] = 3 # Vaccinated

View File

@ -69,10 +69,10 @@ class SISaModel(FSM):
return self.content return self.content
# Infected # Infected
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent) discontent_neighbors = self.count_neighbors(state_id=self.discontent)
if self.prob(scontent_neighbors * self.neutral_discontent_infected_prob): if self.prob(scontent_neighbors * self.neutral_discontent_infected_prob):
return self.discontent return self.discontent
content_neighbors = self.count_neighboring_agents(state_id=self.content.id) content_neighbors = self.count_neighbors(state_id=self.content.id)
if self.prob(s * self.neutral_content_infected_prob): if self.prob(s * self.neutral_content_infected_prob):
return self.content return self.content
return self.neutral return self.neutral
@ -84,7 +84,7 @@ class SISaModel(FSM):
return self.neutral return self.neutral
# Superinfected # Superinfected
content_neighbors = self.count_neighboring_agents(state_id=self.content.id) content_neighbors = self.count_neighbors(state_id=self.content.id)
if self.prob(s * self.discontent_content): if self.prob(s * self.discontent_content):
return self.content return self.content
return self.discontent return self.discontent
@ -96,9 +96,7 @@ class SISaModel(FSM):
return self.neutral return self.neutral
# Superinfected # Superinfected
discontent_neighbors = self.count_neighboring_agents( discontent_neighbors = self.count_neighbors(state_id=self.discontent.id)
state_id=self.discontent.id
)
if self.prob(scontent_neighbors * self.content_discontent): if self.prob(scontent_neighbors * self.content_discontent):
self.discontent self.discontent
return self.content return self.content

View File

@ -41,25 +41,25 @@ class SentimentCorrelationModel(BaseAgent):
sad_neighbors_1_time_step = [] sad_neighbors_1_time_step = []
disgusted_neighbors_1_time_step = [] disgusted_neighbors_1_time_step = []
angry_neighbors = self.get_neighboring_agents(state_id=1) angry_neighbors = self.get_neighbors(state_id=1)
for x in angry_neighbors: for x in angry_neighbors:
if x.state["time_awareness"][0] > (self.env.now - 500): if x.state["time_awareness"][0] > (self.env.now - 500):
angry_neighbors_1_time_step.append(x) angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step) num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighboring_agents(state_id=2) joyful_neighbors = self.get_neighbors(state_id=2)
for x in joyful_neighbors: for x in joyful_neighbors:
if x.state["time_awareness"][1] > (self.env.now - 500): if x.state["time_awareness"][1] > (self.env.now - 500):
joyful_neighbors_1_time_step.append(x) joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step) num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighboring_agents(state_id=3) sad_neighbors = self.get_neighbors(state_id=3)
for x in sad_neighbors: for x in sad_neighbors:
if x.state["time_awareness"][2] > (self.env.now - 500): if x.state["time_awareness"][2] > (self.env.now - 500):
sad_neighbors_1_time_step.append(x) sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step) num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighboring_agents(state_id=4) disgusted_neighbors = self.get_neighbors(state_id=4)
for x in disgusted_neighbors: for x in disgusted_neighbors:
if x.state["time_awareness"][3] > (self.env.now - 500): if x.state["time_awareness"][3] > (self.env.now - 500):
disgusted_neighbors_1_time_step.append(x) disgusted_neighbors_1_time_step.append(x)

View File

@ -243,223 +243,6 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
return f"{self.__class__.__name__}({self.unique_id})" return f"{self.__class__.__name__}({self.unique_id})"
class NetworkAgent(BaseAgent):
def __init__(self, *args, topology, node_id, **kwargs):
super().__init__(*args, **kwargs)
assert topology is not None
assert node_id is not None
self.G = topology
assert self.G
self.node_id = node_id
def count_neighboring_agents(self, state_id=None, **kwargs):
return len(self.get_neighboring_agents(state_id=state_id, **kwargs))
def get_neighboring_agents(self, **kwargs):
return list(self.iter_agents(limit_neighbors=True, **kwargs))
def add_edge(self, other):
assert self.node_id
assert other.node_id
assert self.node_id in self.G.nodes
assert other.node_id in self.G.nodes
self.topology.add_edge(self.node_id, other.node_id)
@property
def node(self):
return self.topology.nodes[self.node_id]
def iter_agents(self, unique_id=None, *, limit_neighbors=False, **kwargs):
unique_ids = None
if isinstance(unique_id, list):
unique_ids = set(unique_id)
elif unique_id is not None:
unique_ids = set(
[
unique_id,
]
)
if limit_neighbors:
neighbor_ids = set()
for node_id in self.G.neighbors(self.node_id):
if self.G.nodes[node_id].get("agent") is not None:
neighbor_ids.add(node_id)
if unique_ids:
unique_ids = unique_ids & neighbor_ids
else:
unique_ids = neighbor_ids
if not unique_ids:
return
unique_ids = list(unique_ids)
yield from super().iter_agents(unique_id=unique_ids, **kwargs)
def subgraph(self, center=True, **kwargs):
include = [self] if center else []
G = self.G.subgraph(
n.node_id for n in list(self.get_agents(**kwargs) + include)
)
return G
def remove_node(self):
print(f"Removing node for {self.unique_id}: {self.node_id}")
self.G.remove_node(self.node_id)
self.node_id = None
def add_edge(self, other, edge_attr_dict=None, *edge_attrs):
if self.node_id not in self.G.nodes(data=False):
raise ValueError(
"{} not in list of existing agents in the network".format(
self.unique_id
)
)
if other.node_id not in self.G.nodes(data=False):
raise ValueError(
"{} not in list of existing agents in the network".format(other)
)
self.G.add_edge(
self.node_id, other.node_id, edge_attr_dict=edge_attr_dict, *edge_attrs
)
def die(self, remove=True):
if not self.alive:
return
if remove:
self.remove_node()
return super().die()
def state(name=None):
def decorator(func, name=None):
"""
A state function should return either a state id, or a tuple (state_id, when)
The default value for state_id is the current state id.
The default value for when is the interval defined in the environment.
"""
if inspect.isgeneratorfunction(func):
orig_func = func
@wraps(func)
def func(self):
while True:
if not self._coroutine:
self._coroutine = orig_func(self)
try:
n = next(self._coroutine)
if n:
return None, n
return
except StopIteration as ex:
self._coroutine = None
next_state = ex.value
if next_state is not None:
self._set_state(next_state)
return next_state
func.id = name or func.__name__
func.is_default = False
return func
if callable(name):
return decorator(name)
else:
return partial(decorator, name=name)
def default_state(func):
func.is_default = True
return func
class MetaFSM(MetaAgent):
def __new__(mcls, name, bases, namespace):
states = {}
# Re-use states from inherited classes
default_state = None
for i in bases:
if isinstance(i, MetaFSM):
for state_id, state in i._states.items():
if state.is_default:
default_state = state
states[state_id] = state
# Add new states
for attr, func in namespace.items():
if hasattr(func, "id"):
if func.is_default:
default_state = func
states[func.id] = func
namespace.update(
{
"_default_state": default_state,
"_states": states,
}
)
return super(MetaFSM, mcls).__new__(
mcls=mcls, name=name, bases=bases, namespace=namespace
)
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, **kwargs):
super(FSM, self).__init__(**kwargs)
if not hasattr(self, "state_id"):
if not self._default_state:
raise ValueError(
"No default state specified for {}".format(self.unique_id)
)
self.state_id = self._default_state.id
self._coroutine = None
self._set_state(self.state_id)
def step(self):
self.debug(f"Agent {self.unique_id} @ state {self.state_id}")
default_interval = super().step()
next_state = self._states[self.state_id](self)
when = None
try:
next_state, *when = next_state
if not when:
when = None
elif len(when) == 1:
when = when[0]
else:
raise ValueError(
"Too many values returned. Only state (and time) allowed"
)
except TypeError:
pass
if next_state is not None:
self._set_state(next_state)
return when or default_interval
def _set_state(self, state, when=None):
if hasattr(state, "id"):
state = state.id
if state not in self._states:
raise ValueError("{} is not a valid state".format(state))
self.state_id = state
if when is not None:
self.model.schedule.add(self, when=when)
return state
def die(self):
return self.dead, super().die()
@state
def dead(self):
return self.die()
def prob(prob, random): def prob(prob, random):
""" """
A true/False uniform distribution with a given probability. A true/False uniform distribution with a given probability.
@ -525,7 +308,7 @@ def calculate_distribution(network_agents=None, agent_class=None):
return network_agents return network_agents
def serialize_type(agent_class, known_modules=[], **kwargs): def _serialize_type(agent_class, known_modules=[], **kwargs):
if isinstance(agent_class, str): if isinstance(agent_class, str):
return agent_class return agent_class
known_modules += ["soil.agents"] known_modules += ["soil.agents"]
@ -534,20 +317,7 @@ def serialize_type(agent_class, known_modules=[], **kwargs):
] # Get the name of the class ] # Get the name of the class
def serialize_definition(network_agents, known_modules=[]): def _deserialize_type(agent_class, known_modules=[]):
"""
When serializing an agent distribution, remove the thresholds, in order
to avoid cluttering the YAML definition file.
"""
d = deepcopy(list(network_agents))
for v in d:
if "threshold" in v:
del v["threshold"]
v["agent_class"] = serialize_type(v["agent_class"], known_modules=known_modules)
return d
def deserialize_type(agent_class, known_modules=[]):
if not isinstance(agent_class, str): if not isinstance(agent_class, str):
return agent_class return agent_class
known = known_modules + ["soil.agents", "soil.agents.custom"] known = known_modules + ["soil.agents", "soil.agents.custom"]
@ -555,31 +325,6 @@ def deserialize_type(agent_class, known_modules=[]):
return agent_class return agent_class
def deserialize_definition(ind, **kwargs):
d = deepcopy(ind)
for v in d:
v["agent_class"] = deserialize_type(v["agent_class"], **kwargs)
return d
def _validate_states(states, topology):
"""Validate states to avoid ignoring states during initialization"""
states = states or []
if isinstance(states, dict):
for x in states:
assert x in topology.nodes
else:
assert len(states) <= len(topology)
return states
def _convert_agent_classs(ind, to_string=False, **kwargs):
"""Convenience method to allow specifying agents by class or class name."""
if to_string:
return serialize_definition(ind, **kwargs)
return deserialize_definition(ind, **kwargs)
class AgentView(Mapping, Set): class AgentView(Mapping, Set):
"""A lazy-loaded list of agents.""" """A lazy-loaded list of agents."""
@ -663,7 +408,7 @@ def filter_agents(
state_id = tuple([state_id]) state_id = tuple([state_id])
if agent_class is not None: if agent_class is not None:
agent_class = deserialize_type(agent_class) agent_class = _deserialize_type(agent_class)
try: try:
agent_class = tuple(agent_class) agent_class = tuple(agent_class)
except TypeError: except TypeError:
@ -703,14 +448,6 @@ def from_config(
default = cfg or config.AgentConfig() default = cfg or config.AgentConfig()
if not isinstance(cfg, config.AgentConfig): if not isinstance(cfg, config.AgentConfig):
cfg = config.AgentConfig(**cfg) cfg = config.AgentConfig(**cfg)
return _agents_from_config(cfg, topology=topology, random=random)
def _agents_from_config(
cfg: config.AgentConfig, topology: nx.Graph, random
) -> List[Dict[str, Any]]:
if cfg and not isinstance(cfg, config.AgentConfig):
cfg = config.AgentConfig(**cfg)
agents = [] agents = []
@ -878,6 +615,8 @@ def _from_distro(
return agents return agents
from .network_agents import *
from .fsm import *
from .BassModel import * from .BassModel import *
from .BigMarketModel import * from .BigMarketModel import *
from .IndependentCascadeModel import * from .IndependentCascadeModel import *

133
soil/agents/fsm.py Normal file
View File

@ -0,0 +1,133 @@
from . import MetaAgent, BaseAgent
from functools import partial
import inspect
def state(name=None):
def decorator(func, name=None):
"""
A state function should return either a state id, or a tuple (state_id, when)
The default value for state_id is the current state id.
The default value for when is the interval defined in the environment.
"""
if inspect.isgeneratorfunction(func):
orig_func = func
@wraps(func)
def func(self):
while True:
if not self._coroutine:
self._coroutine = orig_func(self)
try:
n = next(self._coroutine)
if n:
return None, n
return
except StopIteration as ex:
self._coroutine = None
next_state = ex.value
if next_state is not None:
self._set_state(next_state)
return next_state
func.id = name or func.__name__
func.is_default = False
return func
if callable(name):
return decorator(name)
else:
return partial(decorator, name=name)
def default_state(func):
func.is_default = True
return func
class MetaFSM(MetaAgent):
def __new__(mcls, name, bases, namespace):
states = {}
# Re-use states from inherited classes
default_state = None
for i in bases:
if isinstance(i, MetaFSM):
for state_id, state in i._states.items():
if state.is_default:
default_state = state
states[state_id] = state
# Add new states
for attr, func in namespace.items():
if hasattr(func, "id"):
if func.is_default:
default_state = func
states[func.id] = func
namespace.update(
{
"_default_state": default_state,
"_states": states,
}
)
return super(MetaFSM, mcls).__new__(
mcls=mcls, name=name, bases=bases, namespace=namespace
)
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, **kwargs):
super(FSM, self).__init__(**kwargs)
if not hasattr(self, "state_id"):
if not self._default_state:
raise ValueError(
"No default state specified for {}".format(self.unique_id)
)
self.state_id = self._default_state.id
self._coroutine = None
self._set_state(self.state_id)
def step(self):
self.debug(f"Agent {self.unique_id} @ state {self.state_id}")
default_interval = super().step()
next_state = self._states[self.state_id](self)
when = None
try:
next_state, *when = next_state
if not when:
when = None
elif len(when) == 1:
when = when[0]
else:
raise ValueError(
"Too many values returned. Only state (and time) allowed"
)
except TypeError:
pass
if next_state is not None:
self._set_state(next_state)
return when or default_interval
def _set_state(self, state, when=None):
if hasattr(state, "id"):
state = state.id
if state not in self._states:
raise ValueError("{} is not a valid state".format(state))
self.state_id = state
if when is not None:
self.model.schedule.add(self, when=when)
return state
def die(self):
return self.dead, super().die()
@state
def dead(self):
return self.die()

View File

@ -0,0 +1,82 @@
from . import BaseAgent
class NetworkAgent(BaseAgent):
def __init__(self, *args, topology, node_id, **kwargs):
super().__init__(*args, **kwargs)
assert topology is not None
assert node_id is not None
self.G = topology
assert self.G
self.node_id = node_id
def count_neighbors(self, state_id=None, **kwargs):
return len(self.get_neighbors(state_id=state_id, **kwargs))
def get_neighbors(self, **kwargs):
return list(self.iter_agents(limit_neighbors=True, **kwargs))
@property
def node(self):
return self.G.nodes[self.node_id]
def iter_agents(self, unique_id=None, *, limit_neighbors=False, **kwargs):
unique_ids = None
if isinstance(unique_id, list):
unique_ids = set(unique_id)
elif unique_id is not None:
unique_ids = set(
[
unique_id,
]
)
if limit_neighbors:
neighbor_ids = set()
for node_id in self.G.neighbors(self.node_id):
if self.G.nodes[node_id].get("agent") is not None:
neighbor_ids.add(node_id)
if unique_ids:
unique_ids = unique_ids & neighbor_ids
else:
unique_ids = neighbor_ids
if not unique_ids:
return
unique_ids = list(unique_ids)
yield from super().iter_agents(unique_id=unique_ids, **kwargs)
def subgraph(self, center=True, **kwargs):
include = [self] if center else []
G = self.G.subgraph(
n.node_id for n in list(self.get_agents(**kwargs) + include)
)
return G
def remove_node(self):
print(f"Removing node for {self.unique_id}: {self.node_id}")
self.G.remove_node(self.node_id)
self.node_id = None
def add_edge(self, other, edge_attr_dict=None, *edge_attrs):
if self.node_id not in self.G.nodes(data=False):
raise ValueError(
"{} not in list of existing agents in the network".format(
self.unique_id
)
)
if other.node_id not in self.G.nodes(data=False):
raise ValueError(
"{} not in list of existing agents in the network".format(other)
)
self.G.add_edge(
self.node_id, other.node_id, edge_attr_dict=edge_attr_dict, *edge_attrs
)
def die(self, remove=True):
if not self.alive:
return None
if remove:
self.remove_node()
return super().die()

View File

@ -45,3 +45,17 @@ class TestMain(TestCase):
for i in range(5): for i in range(5):
t = g.step() t = g.step()
assert t == i assert t == i
def test_state_decorator(self):
class MyAgent(agents.FSM):
run = 0
@agents.default_state
@agents.state('original')
def root(self):
self.run += 1
e = environment.Environment()
a = MyAgent(model=e, unique_id=e.next_id())
a.step()
assert a.run == 1
a.step()
assert a.run == 2

View File

@ -160,32 +160,12 @@ class TestMain(TestCase):
def test_serialize_agent_class(self): def test_serialize_agent_class(self):
"""A class from soil.agents should be serialized without the module part""" """A class from soil.agents should be serialized without the module part"""
ser = agents.serialize_type(CustomAgent) ser = agents._serialize_type(CustomAgent)
assert ser == "test_main.CustomAgent" assert ser == "test_main.CustomAgent"
ser = agents.serialize_type(agents.BaseAgent) ser = agents._serialize_type(agents.BaseAgent)
assert ser == "BaseAgent" assert ser == "BaseAgent"
pickle.dumps(ser) pickle.dumps(ser)
def test_deserialize_agent_distribution(self):
agent_distro = [
{"agent_class": "CounterModel", "weight": 1},
{"agent_class": "test_main.CustomAgent", "weight": 2},
]
converted = agents.deserialize_definition(agent_distro)
assert converted[0]["agent_class"] == agents.CounterModel
assert converted[1]["agent_class"] == CustomAgent
pickle.dumps(converted)
def test_serialize_agent_distribution(self):
agent_distro = [
{"agent_class": agents.CounterModel, "weight": 1},
{"agent_class": CustomAgent, "weight": 2},
]
converted = agents.serialize_definition(agent_distro)
assert converted[0]["agent_class"] == "CounterModel"
assert converted[1]["agent_class"] == "test_main.CustomAgent"
pickle.dumps(converted)
def test_templates(self): def test_templates(self):
"""Loading a template should result in several configs""" """Loading a template should result in several configs"""
configs = serialization.load_file(join(EXAMPLES, "template.yml")) configs = serialization.load_file(join(EXAMPLES, "template.yml"))