1
0
mirror of https://github.com/gsi-upm/soil synced 2025-08-23 19:52:19 +00:00

Updated readthedocs

This commit is contained in:
Tasio Mendez
2017-04-27 13:15:56 +02:00
parent f1bb636ca8
commit 23fc9671c3
21 changed files with 960 additions and 43 deletions

View File

View File

@@ -13,11 +13,13 @@ Soil is an Agent-based Social Simulator in Python for modelling and simulation o
:caption: Learn more about soil:
installation
usage
models
Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`
.. Indices and tables
==================
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`

112
docs/_build/html/_sources/models.rst.txt vendored Normal file
View File

@@ -0,0 +1,112 @@
Developing new models
---------------------
This document describes how to develop a new analysis model.
What is a model?
================
A model defines the behaviour of the agents with a view to assessing their effects on the system as a whole.
In practice, a model consists of at least two parts:
* Python module: the actual code that describes the behaviour.
* Setting up the variables in the Simulation Settings JSON file.
This separation allows us to run the simulation with different agents.
Models Code
===========
All the models are imported to the main file. The initialization look like this:
.. code:: python
import settings
networkStatus = {} # Dict that will contain the status of every agent in the network
sentimentCorrelationNodeArray = []
for x in range(0, settings.number_of_nodes):
sentimentCorrelationNodeArray.append({'id': x})
# Initialize agent states. Let's assume everyone is normal.
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)]
# add keys as as necessary, but "id" must always refer to that state category
A new model have to inherit the BaseBehaviour class which is in the same module.
There are two basics methods:
* __init__
* step: used to define the behaviour over time.
Variable Initialization
=======================
The different parameters of the model have to be initialize in the Simulation Settings JSON file which will be
passed as a parameter to the simulation.
.. code:: json
{
"agent": ["SISaModel","ControlModelM2"],
"neutral_discontent_spon_prob": 0.04,
"neutral_discontent_infected_prob": 0.04,
"neutral_content_spon_prob": 0.18,
"neutral_content_infected_prob": 0.02,
"discontent_neutral": 0.13,
"discontent_content": 0.07,
"variance_d_c": 0.02,
"content_discontent": 0.009,
"variance_c_d": 0.003,
"content_neutral": 0.088,
"standard_variance": 0.055,
"prob_neutral_making_denier": 0.035,
"prob_infect": 0.075,
"prob_cured_healing_infected": 0.035,
"prob_cured_vaccinate_neutral": 0.035,
"prob_vaccinated_healing_infected": 0.035,
"prob_vaccinated_vaccinate_neutral": 0.035,
"prob_generate_anti_rumor": 0.035
}
In this file you will also define the models you are going to simulate. You can simulate as many models as you want.
The simulation returns one result for each model. For the usage, see :doc:`usage`.
Example Model
=============
In this section, we will implement a Sentiment Correlation Model.
The class would look like this:
.. code:: python
from ..BaseBehaviour import *
from .. import sentimentCorrelationNodeArray
class SentimentCorrelationModel(BaseBehaviour):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
self.anger_prob = environment.environment_params['anger_prob']
self.joy_prob = environment.environment_params['joy_prob']
self.sadness_prob = environment.environment_params['sadness_prob']
self.disgust_prob = environment.environment_params['disgust_prob']
self.time_awareness = []
for i in range(4): # In this model we have 4 sentiments
self.time_awareness.append(0) # 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
sentimentCorrelationNodeArray[self.id][self.env.now] = 0
def step(self, now):
self.behaviour() # Method which define the behaviour
super().step(now)
The variables will be modified by the user, so you have to include them in the Simulation Settings JSON file.

98
docs/_build/html/_sources/usage.rst.txt vendored Normal file
View File

@@ -0,0 +1,98 @@
Usage
-----
First of all, you need to install the package. See :doc:`installation` for installation instructions.
Simulation Settings
===================
Once installed, before running a simulation, you need to configure it.
* In the settings.py file you will find the configuration of the network.
.. code:: python
# Network settings
network_type = 1
number_of_nodes = 1000
max_time = 50
num_trials = 1
timeout = 2
* In the Simulation Settings JSON file, you will find the configuration of the models.
Network Types
=============
There are three types of network implemented, but you could add more.
.. code:: python
if settings.network_type == 0:
G = nx.complete_graph(settings.number_of_nodes)
if settings.network_type == 1:
G = nx.barabasi_albert_graph(settings.number_of_nodes, 10)
if settings.network_type == 2:
G = nx.margulis_gabber_galil_graph(settings.number_of_nodes, None)
# More types of networks can be added here
Models Settings
===============
After having configured the simulation, the next step is setting up the variables of the models.
For this, you will need to modify the Simulation Settings JSON file.
.. code:: json
{
"agent": ["SISaModel","ControlModelM2"],
"neutral_discontent_spon_prob": 0.04,
"neutral_discontent_infected_prob": 0.04,
"neutral_content_spon_prob": 0.18,
"neutral_content_infected_prob": 0.02,
"discontent_neutral": 0.13,
"discontent_content": 0.07,
"variance_d_c": 0.02,
"content_discontent": 0.009,
"variance_c_d": 0.003,
"content_neutral": 0.088,
"standard_variance": 0.055,
"prob_neutral_making_denier": 0.035,
"prob_infect": 0.075,
"prob_cured_healing_infected": 0.035,
"prob_cured_vaccinate_neutral": 0.035,
"prob_vaccinated_healing_infected": 0.035,
"prob_vaccinated_vaccinate_neutral": 0.035,
"prob_generate_anti_rumor": 0.035
}
In this file you will define the different models you are going to simulate. You can simulate as many models
as you want.
After setting up the models, you have to initialize the parameters of each one. You will find the parameters needed
in the documentation of each model.
Parameter validation will fail if a required parameter without a default has not been provided.
Running the Simulation
======================
After setting all the configuration, you will be able to run the simulation. All you need to do is execute:
.. code:: bash
python soil.py
The simulation will return a dynamic graph .gexf file which could be visualized with
`Gephi <https://gephi.org/users/download/>`__.
It will also return one .png picture for each model simulated.