1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-22 19:22:29 +00:00
soil/models/ModelM2/ControlModelM2.py

149 lines
6.2 KiB
Python
Raw Normal View History

2017-04-20 11:36:17 +00:00
import settings
import random
import numpy as np
from ..BaseBehaviour import *
from .. import init_states
class ControlModelM2(BaseBehaviour):
"""
Settings:
prob_neutral_making_denier
prob_infect
prob_cured_healing_infected
prob_cured_vaccinate_neutral
prob_vaccinated_healing_infected
prob_vaccinated_vaccinate_neutral
prob_generate_anti_rumor
"""
# Init infected
2017-04-24 10:55:00 +00:00
init_states[random.randint(0, settings.number_of_nodes-1)] = {'id': 1}
init_states[random.randint(0, settings.number_of_nodes-1)] = {'id': 1}
2017-04-20 11:36:17 +00:00
# Init beacons
init_states[random.randint(0, settings.number_of_nodes-1)] = {'id': 4}
init_states[random.randint(0, settings.number_of_nodes-1)] = {'id': 4}
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
2017-04-24 10:55:00 +00:00
self.prob_neutral_making_denier = np.random.normal(environment.environment_params['prob_neutral_making_denier'],
environment.environment_params['standard_variance'])
2017-04-20 11:36:17 +00:00
2017-04-24 10:55:00 +00:00
self.prob_infect = np.random.normal(environment.environment_params['prob_infect'],
environment.environment_params['standard_variance'])
2017-04-20 11:36:17 +00:00
2017-04-24 10:55:00 +00:00
self.prob_cured_healing_infected = np.random.normal(environment.environment_params['prob_cured_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_cured_vaccinate_neutral = np.random.normal(environment.environment_params['prob_cured_vaccinate_neutral'],
environment.environment_params['standard_variance'])
2017-04-20 11:36:17 +00:00
2017-04-24 10:55:00 +00:00
self.prob_vaccinated_healing_infected = np.random.normal(environment.environment_params['prob_vaccinated_healing_infected'],
environment.environment_params['standard_variance'])
self.prob_vaccinated_vaccinate_neutral = np.random.normal(environment.environment_params['prob_vaccinated_vaccinate_neutral'],
environment.environment_params['standard_variance'])
self.prob_generate_anti_rumor = np.random.normal(environment.environment_params['prob_generate_anti_rumor'],
environment.environment_params['standard_variance'])
2017-04-20 11:36:17 +00:00
def step(self, now):
if self.state['id'] == 0: # Neutral
self.neutral_behaviour()
elif self.state['id'] == 1: # Infected
self.infected_behaviour()
elif self.state['id'] == 2: # Cured
self.cured_behaviour()
elif self.state['id'] == 3: # Vaccinated
self.vaccinated_behaviour()
elif self.state['id'] == 4: # Beacon-off
self.beacon_off_behaviour()
elif self.state['id'] == 5: # Beacon-on
self.beacon_on_behaviour()
self.attrs['status'] = self.state['id']
super().step(now)
def neutral_behaviour(self):
# Infected
infected_neighbors = self.get_neighboring_agents(state_id=1)
2017-04-21 11:55:42 +00:00
if len(infected_neighbors) > 0:
2017-04-20 11:36:17 +00:00
if random.random() < self.prob_neutral_making_denier:
self.state['id'] = 3 # Vaccinated making denier
def infected_behaviour(self):
# Neutral
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_infect:
neighbor.state['id'] = 1 # Infected
def cured_behaviour(self):
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
def vaccinated_behaviour(self):
# Cure
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_cured_healing_infected:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated
# Generate anti-rumor
infected_neighbors_2 = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_2:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
def beacon_off_behaviour(self):
infected_neighbors = self.get_neighboring_agents(state_id=1)
if len(infected_neighbors) > 0:
self.state['id'] == 5 # Beacon on
def beacon_on_behaviour(self):
# Cure (M2 feature added)
infected_neighbors = self.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
neutral_neighbors_infected = neighbor.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 3 # Vaccinated
infected_neighbors_infected = neighbor.get_neighboring_agents(state_id=1)
for neighbor in infected_neighbors_infected:
if random.random() < self.prob_generate_anti_rumor:
neighbor.state['id'] = 2 # Cured
# Vaccinate
neutral_neighbors = self.get_neighboring_agents(state_id=0)
for neighbor in neutral_neighbors:
if random.random() < self.prob_cured_vaccinate_neutral:
neighbor.state['id'] = 3 # Vaccinated