1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-14 07:22:29 +00:00
soil/models.py

343 lines
12 KiB
Python
Raw Normal View History

from nxsim import NetworkSimulation
from nxsim import BaseNetworkAgent
from nxsim import BaseLoggingAgent
from random import randint
from pprint import pprint
from matplotlib import pyplot as plt
import random
import numpy as np
import networkx as nx
import settings
settings.init()
####################
# Network creation #
####################
if settings.network_type == 0:
G = nx.complete_graph(settings.number_of_nodes)
if settings.network_type == 1:
G = nx.barabasi_albert_graph(settings.number_of_nodes,3)
if settings.network_type == 2:
G = nx.margulis_gabber_galil_graph(settings.number_of_nodes, None)
# More types of networks can be added here
##############################
# Variables initializitation #
##############################
def init():
global networkStatus
networkStatus={} # Dict that will contain the status of every agent in the network
sentimentCorrelationNodeArray=[]
for x in range(0, settings.number_of_nodes):
sentimentCorrelationNodeArray.append({'id':x})
# Initialize agent states. Let's assume everyone is normal.
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
####################
# Available models #
####################
class ComportamientoBase(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self._attrs = {}
@property
def attrs(self):
now = self.env.now
if now not in self._attrs:
self._attrs[now] = {}
return self._attrs[now]
@attrs.setter
def attrs(self, value):
self._attrs[self.env.now] = value
def run(self):
while True:
self.step(self.env.now)
yield self.env.timeout(settings.timeout)
def step(self, now):
networkStatus['agente_%s'% self.id] = self.a_json()
def a_json(self):
final = {}
for stamp, attrs in self._attrs.items():
for a in attrs:
if a not in final:
final[a] = {}
final[a][stamp] = attrs[a]
return final
class BigMarketModel(ComportamientoBase):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.enterprises = settings.enterprises
self.type = ""
self.number_of_enterprises = len(settings.enterprises)
if self.id < self.number_of_enterprises: #Empresas
self.state['id']=self.id
self.type="Enterprise"
self.tweet_probability = settings.tweet_probability_enterprises[self.id]
else: #Usuarios normales
self.state['id']=self.number_of_enterprises
self.type="User"
self.tweet_probability = settings.tweet_probability_users
self.tweet_relevant_probability = settings.tweet_relevant_probability
self.tweet_probability_about = settings.tweet_probability_about #Lista
self.sentiment_about = settings.sentiment_about #Lista
def step(self, now):
if(self.id < self.number_of_enterprises): # Empresa
self.enterpriseBehaviour()
else: # Usuario
self.userBehaviour()
super().step(now)
def enterpriseBehaviour(self):
if random.random()< self.tweet_probability: #Twittea
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodos vecinos usuarios
for x in aware_neighbors:
if random.uniform(0,10) < 5:
x.sentiment_about[self.id] += 0.1 #Aumenta para empresa
else:
x.sentiment_about[self.id] -= 0.1 #Reduce para empresa
# Establecemos limites
if x.sentiment_about[self.id] > 1:
x.sentiment_about[self.id] = 1
if x.sentiment_about[self.id]< -1:
x.sentiment_about[self.id] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
def userBehaviour(self):
if random.random() < self.tweet_probability: #Twittea
if random.random() < self.tweet_relevant_probability: #Twittea algo relevante
#Probabilidad de tweet para cada empresa
for i in range(self.number_of_enterprises):
random_num = random.random()
if random_num < self.tweet_probability_about[i]:
#Se ha cumplido la condicion, evaluo los sentimientos hacia esa empresa
if self.sentiment_about[i] < 0:
#NEGATIVO
self.userTweets("negative",i)
elif self.sentiment_about[i] == 0:
#NEUTRO
pass
else:
#POSITIVO
self.userTweets("positive",i)
def userTweets(self,sentiment,enterprise):
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodos vecinos usuarios
for x in aware_neighbors:
if sentiment == "positive":
x.sentiment_about[enterprise] +=0.003
elif sentiment == "negative":
x.sentiment_about[enterprise] -=0.003
else:
pass
# Establecemos limites
if x.sentiment_about[enterprise] > 1:
x.sentiment_about[enterprise] = 1
if x.sentiment_about[enterprise] < -1:
x.sentiment_about[enterprise] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[enterprise]] = x.sentiment_about[enterprise]
class SentimentCorrelationModel(ComportamientoBase):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = settings.outside_effects_prob
self.anger_prob = settings.anger_prob
self.joy_prob = settings.joy_prob
self.sadness_prob = settings.sadness_prob
self.disgust_prob = settings.disgust_prob
self.time_awareness=[]
for i in range(4): #En este modelo tenemos 4 sentimientos
self.time_awareness.append(0) #0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self, now):
self.behaviour()
super().step(now)
def behaviour(self):
angry_neighbors_1_time_step=[]
joyful_neighbors_1_time_step=[]
sad_neighbors_1_time_step=[]
disgusted_neighbors_1_time_step=[]
angry_neighbors = self.get_neighboring_agents(state_id=1)
for x in angry_neighbors:
if x.time_awareness[0] > (self.env.now-500):
angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighboring_agents(state_id=2)
for x in joyful_neighbors:
if x.time_awareness[1] > (self.env.now-500):
joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighboring_agents(state_id=3)
for x in sad_neighbors:
if x.time_awareness[2] > (self.env.now-500):
sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighboring_agents(state_id=4)
for x in disgusted_neighbors:
if x.time_awareness[3] > (self.env.now-500):
disgusted_neighbors_1_time_step.append(x)
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
anger_prob= settings.anger_prob+(len(angry_neighbors_1_time_step)*settings.anger_prob)
joy_prob= settings.joy_prob+(len(joyful_neighbors_1_time_step)*settings.joy_prob)
sadness_prob = settings.sadness_prob+(len(sad_neighbors_1_time_step)*settings.sadness_prob)
disgust_prob = settings.disgust_prob+(len(disgusted_neighbors_1_time_step)*settings.disgust_prob)
outside_effects_prob= settings.outside_effects_prob
num = random.random()
if(num<outside_effects_prob):
self.state['id'] = random.randint(1,4)
sentimentCorrelationNodeArray[self.id][self.env.now]=self.state['id'] #Almaceno cuando se ha infectado para la red dinamica
self.time_awareness[self.state['id']-1] = self.env.now
self.attrs['sentiment'] = self.state['id']
if(num<anger_prob):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<joy_prob+anger_prob and num>anger_prob):
self.state['id'] = 2
sentimentCorrelationNodeArray[self.id][self.env.now]=2
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<sadness_prob+anger_prob+joy_prob and num>joy_prob+anger_prob):
self.state['id'] = 3
sentimentCorrelationNodeArray[self.id][self.env.now]=3
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<disgust_prob+sadness_prob+anger_prob+joy_prob and num>sadness_prob+anger_prob+joy_prob):
self.state['id'] = 4
sentimentCorrelationNodeArray[self.id][self.env.now]=4
self.time_awareness[self.state['id']-1] = self.env.now
self.attrs['sentiment'] = self.state['id']
class BassModel(ComportamientoBase):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self, now):
self.behaviour()
super().step(now)
def behaviour(self):
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
return
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
num_neighbors_aware = len(aware_neighbors)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
class IndependentCascadeModel(ComportamientoBase):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
self.time_awareness = 0
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self,now):
self.behaviour()
super().step(now)
def behaviour(self):
aware_neighbors_1_time_step=[]
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
self.time_awareness = self.env.now #Para saber cuando se han contagiado
else:
pass
self.attrs['status'] = self.state['id']
return
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
for x in aware_neighbors:
if x.time_awareness == (self.env.now-1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
return