1
0
mirror of https://github.com/gsi-upm/sitc synced 2025-01-06 19:21:29 +00:00
Go to file
2023-05-19 23:21:11 +02:00
lod Fix typos 2023-02-20 19:43:36 +01:00
ml1 minor typos in ml1 2022-09-05 18:20:29 +02:00
ml2 Delete 0_2_NLP_Assignment.ipynb 2023-04-20 16:19:57 +02:00
ml3 description about parameter h added 2019-03-21 19:35:50 +01:00
ml4 Fixed broken link and bug of sklearn-deap with scikit 0.24 2021-04-19 17:47:22 +02:00
ml5 Borrada versión anterior 2023-04-27 15:43:44 +02:00
nlp Updated 4_4 to use get_feature_names_out() instead of get_feature_names 2023-04-23 16:41:53 +02:00
python Merge 23dfc8663f into 3363c953f4 2023-05-19 23:21:11 +02:00
rdf fix typo 2020-02-20 17:38:02 +01:00
.gitignore Added gitignore 2016-03-28 12:34:10 +02:00
CONTRIBUTING.md Add Makefile 2019-03-06 12:08:34 +01:00
logo.jpg Add SPARQL notebooks 2018-03-13 13:32:29 +01:00
Makefile Makefile updated 2019-03-28 14:13:22 +01:00
README.md Update README.md 2021-02-09 19:54:56 +01:00
requirements.txt Add requirements 2021-11-10 08:48:54 +01:00

sitc

Exercises for Intelligent Systems Course at Universidad Politécnica de Madrid, Telecommunication Engineering School. This material is used in the subjects

  • SITC (Sistemas Inteligentes y Tecnologías del Conocimiento) - Master Universitario de Ingeniería de Telecomunicación (MUIT)
  • TIAD (Tecnologías Inteligentes de Análisis de Datos) - Master Universitario en Ingeniera de Redes y Servicios Telemáticos)

For following this course:

Topics

  • Python: quick introduction to Python
  • ML-1: introduction to machine learning with scikit-learn
  • ML-2: introduction to machine learning with pandas and scikit-learn
  • ML-3: introduction to machine learning. Neural Computing
  • ML-4: introduction to Evolutionary Computing
  • ML-5: introduction to Reinforcement Learning
  • NLP: introduction to NLP
  • LOD: Linked Open Data, exercises and example code