mirror of
https://github.com/gsi-upm/sitc
synced 2024-11-14 10:32:29 +00:00
845 lines
24 KiB
Plaintext
845 lines
24 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Course Notes for Learning Intelligent Systems"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## [Introduction to Machine Learning II](3_0_0_Intro_ML_2.ipynb)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Exercise - The Titanic Dataset"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"In this exercise we are going to put in practice what we have learnt in the notebooks of the session. \n",
|
||
"\n",
|
||
"Answer directly in your copy of the exercise and submit it as a moodle task."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"\n",
|
||
"import seaborn as sns\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import numpy as np\n",
|
||
"sns.set(color_codes=True)\n",
|
||
"\n",
|
||
"# if matplotlib is not set inline, you will not see plots\n",
|
||
"%matplotlib inline"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Reading Data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Assign the variable *df* a Dataframe with the Titanic Dataset from the URL https://raw.githubusercontent.com/gsi-upm/sitc/master/ml2/data-titanic/train.csv\"\n",
|
||
"\n",
|
||
"Print *df*."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Munging and Exploratory visualisation"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Obtain number of passengers and features of the dataset"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Obtain general statistics (count, mean, std, min, max, 25%, 50%, 75%) about the column Age"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Obtain the median of the age of the passengers"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Obtain number of missing values per feature"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"How many passsengers have survived? List them grouped by Sex and Pclass.\n",
|
||
"\n",
|
||
"Assign the result to a variable df_1 and print it"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Visualise df_1 as an histogram."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"# Feature Engineering"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Here you can find some features that have been proposed for this dataset. Your task is to analyse them and provide some insights. \n",
|
||
"\n",
|
||
"Use pandas and visualisation to justify your conclusions"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Feature FamilySize "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Regarding SbSp and Parch, we can define a new feature, 'FamilySize' that is the combination of both."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>PassengerId</th>\n",
|
||
" <th>Survived</th>\n",
|
||
" <th>Pclass</th>\n",
|
||
" <th>Name</th>\n",
|
||
" <th>Sex</th>\n",
|
||
" <th>Age</th>\n",
|
||
" <th>SibSp</th>\n",
|
||
" <th>Parch</th>\n",
|
||
" <th>Ticket</th>\n",
|
||
" <th>Fare</th>\n",
|
||
" <th>Cabin</th>\n",
|
||
" <th>Embarked</th>\n",
|
||
" <th>FamilySize</th>\n",
|
||
" <th>AgeGroup</th>\n",
|
||
" <th>Deck</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>1</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>Braund, Mr. Owen Harris</td>\n",
|
||
" <td>male</td>\n",
|
||
" <td>22.0</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>A/5 21171</td>\n",
|
||
" <td>7.2500</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>S</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>X</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>2</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
|
||
" <td>female</td>\n",
|
||
" <td>38.0</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>PC 17599</td>\n",
|
||
" <td>71.2833</td>\n",
|
||
" <td>C85</td>\n",
|
||
" <td>C</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>C</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>3</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>Heikkinen, Miss. Laina</td>\n",
|
||
" <td>female</td>\n",
|
||
" <td>26.0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>STON/O2. 3101282</td>\n",
|
||
" <td>7.9250</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>S</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>X</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>4</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
|
||
" <td>female</td>\n",
|
||
" <td>35.0</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>113803</td>\n",
|
||
" <td>53.1000</td>\n",
|
||
" <td>C123</td>\n",
|
||
" <td>S</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>C</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>5</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>Allen, Mr. William Henry</td>\n",
|
||
" <td>male</td>\n",
|
||
" <td>35.0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>373450</td>\n",
|
||
" <td>8.0500</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>S</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>X</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>...</th>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>886</th>\n",
|
||
" <td>887</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>Montvila, Rev. Juozas</td>\n",
|
||
" <td>male</td>\n",
|
||
" <td>27.0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>211536</td>\n",
|
||
" <td>13.0000</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>S</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>X</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>887</th>\n",
|
||
" <td>888</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>Graham, Miss. Margaret Edith</td>\n",
|
||
" <td>female</td>\n",
|
||
" <td>19.0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>112053</td>\n",
|
||
" <td>30.0000</td>\n",
|
||
" <td>B42</td>\n",
|
||
" <td>S</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>B</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>888</th>\n",
|
||
" <td>889</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>Johnston, Miss. Catherine Helen \"Carrie\"</td>\n",
|
||
" <td>female</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>2</td>\n",
|
||
" <td>W./C. 6607</td>\n",
|
||
" <td>23.4500</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>S</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>X</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>889</th>\n",
|
||
" <td>890</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>1</td>\n",
|
||
" <td>Behr, Mr. Karl Howell</td>\n",
|
||
" <td>male</td>\n",
|
||
" <td>26.0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>111369</td>\n",
|
||
" <td>30.0000</td>\n",
|
||
" <td>C148</td>\n",
|
||
" <td>C</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>C</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>890</th>\n",
|
||
" <td>891</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>3</td>\n",
|
||
" <td>Dooley, Mr. Patrick</td>\n",
|
||
" <td>male</td>\n",
|
||
" <td>32.0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>370376</td>\n",
|
||
" <td>7.7500</td>\n",
|
||
" <td>NaN</td>\n",
|
||
" <td>Q</td>\n",
|
||
" <td>0</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>X</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>891 rows × 15 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" PassengerId Survived Pclass \\\n",
|
||
"0 1 0 3 \n",
|
||
"1 2 1 1 \n",
|
||
"2 3 1 3 \n",
|
||
"3 4 1 1 \n",
|
||
"4 5 0 3 \n",
|
||
".. ... ... ... \n",
|
||
"886 887 0 2 \n",
|
||
"887 888 1 1 \n",
|
||
"888 889 0 3 \n",
|
||
"889 890 1 1 \n",
|
||
"890 891 0 3 \n",
|
||
"\n",
|
||
" Name Sex Age SibSp \\\n",
|
||
"0 Braund, Mr. Owen Harris male 22.0 1 \n",
|
||
"1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
|
||
"2 Heikkinen, Miss. Laina female 26.0 0 \n",
|
||
"3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
|
||
"4 Allen, Mr. William Henry male 35.0 0 \n",
|
||
".. ... ... ... ... \n",
|
||
"886 Montvila, Rev. Juozas male 27.0 0 \n",
|
||
"887 Graham, Miss. Margaret Edith female 19.0 0 \n",
|
||
"888 Johnston, Miss. Catherine Helen \"Carrie\" female NaN 1 \n",
|
||
"889 Behr, Mr. Karl Howell male 26.0 0 \n",
|
||
"890 Dooley, Mr. Patrick male 32.0 0 \n",
|
||
"\n",
|
||
" Parch Ticket Fare Cabin Embarked FamilySize AgeGroup \\\n",
|
||
"0 0 A/5 21171 7.2500 NaN S 1 3.0 \n",
|
||
"1 0 PC 17599 71.2833 C85 C 1 3.0 \n",
|
||
"2 0 STON/O2. 3101282 7.9250 NaN S 0 3.0 \n",
|
||
"3 0 113803 53.1000 C123 S 1 3.0 \n",
|
||
"4 0 373450 8.0500 NaN S 0 3.0 \n",
|
||
".. ... ... ... ... ... ... ... \n",
|
||
"886 0 211536 13.0000 NaN S 0 3.0 \n",
|
||
"887 0 112053 30.0000 B42 S 0 3.0 \n",
|
||
"888 2 W./C. 6607 23.4500 NaN S 3 NaN \n",
|
||
"889 0 111369 30.0000 C148 C 0 3.0 \n",
|
||
"890 0 370376 7.7500 NaN Q 0 3.0 \n",
|
||
"\n",
|
||
" Deck \n",
|
||
"0 X \n",
|
||
"1 C \n",
|
||
"2 X \n",
|
||
"3 C \n",
|
||
"4 X \n",
|
||
".. ... \n",
|
||
"886 X \n",
|
||
"887 B \n",
|
||
"888 X \n",
|
||
"889 C \n",
|
||
"890 X \n",
|
||
"\n",
|
||
"[891 rows x 15 columns]"
|
||
]
|
||
},
|
||
"execution_count": 20,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"df['FamilySize'] = df['SibSp'] + df['Parch']\n",
|
||
"df"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Feature Alone"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"It seems many people who went alone survived. We can define a new feature 'Alone'"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df['Alone'] = (df.FamilySize == 0)\n",
|
||
"df.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Feature Salutation"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"If we observe well in the name variable, there is a 'title' (Mr., Miss., Mrs.). We can add a feature wit this title."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"#Taken from http://www.analyticsvidhya.com/blog/2014/09/data-munging-python-using-pandas-baby-steps-python/\n",
|
||
"def name_extract(word):\n",
|
||
" return word.split(',')[1].split('.')[0].strip()\n",
|
||
"\n",
|
||
"df['Salutation'] = df['Name'].apply(name_extract)\n",
|
||
"df.head()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"We can list the different salutations."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df['Salutation'].unique()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df.groupby(['Salutation']).size()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"There only 4 main salutations, so we combine the rest of salutations in 'Others'."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {
|
||
"collapsed": true
|
||
},
|
||
"outputs": [
|
||
{
|
||
"ename": "NameError",
|
||
"evalue": "name 'df' is not defined",
|
||
"output_type": "error",
|
||
"traceback": [
|
||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
||
"\u001b[0;32m<ipython-input-1-515fd9f54fd1>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mreturn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Others'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Salutation'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Salutation'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgroup_salutation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Salutation'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||
"\u001b[0;31mNameError\u001b[0m: name 'df' is not defined"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"def group_salutation(old_salutation):\n",
|
||
" if old_salutation == 'Mr':\n",
|
||
" return('Mr')\n",
|
||
" else:\n",
|
||
" if old_salutation == 'Mrs':\n",
|
||
" return('Mrs')\n",
|
||
" else:\n",
|
||
" if old_salutation == 'Master':\n",
|
||
" return('Master')\n",
|
||
" else: \n",
|
||
" if old_salutation == 'Miss':\n",
|
||
" return('Miss')\n",
|
||
" else:\n",
|
||
" return('Others')\n",
|
||
"df['Salutation'] = df['Salutation'].apply(group_salutation)\n",
|
||
"df.groupby(['Salutation']).size()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Distribution\n",
|
||
"colors_sex = ['#ff69b4', 'b', 'r', 'y', 'm', 'c']\n",
|
||
"df.groupby('Salutation').size().plot(kind='bar', color=colors_sex)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df.boxplot(column='Age', by = 'Salutation', sym='k.')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Features Children and Female"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Specific features for Children and Female since there are more survivors\n",
|
||
"df['Children'] = df['Age'].map(lambda x: 1 if x < 6.0 else 0)\n",
|
||
"df['Female'] = df['Sex'].map(lambda x: 1 if x == \"female\" else 0)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Feature AgeGroup"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"# Group ages to simplify machine learning algorithms. 0: 0-5, 1: 6-10, 2: 11-15, 3: 16-59 and 4: 60-80\n",
|
||
"df['AgeGroup'] = np.nan\n",
|
||
"df.loc[(df.Age<6),'AgeGroup'] = 0\n",
|
||
"df.loc[(df.Age>=6) & (df.Age < 11),'AgeGroup'] = 1\n",
|
||
"df.loc[(df.Age>=11) & (df.Age < 16),'AgeGroup'] = 2\n",
|
||
"df.loc[(df.Age>=16) & (df.Age < 60),'AgeGroup'] = 3\n",
|
||
"df.loc[(df.Age>=60),'AgeGroup'] = 4"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Feature Deck\n",
|
||
"Only 1st class passengers have cabins, the rest are ‘Unknown’. A cabin number looks like ‘C123’. The letter refers to the deck."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def substrings_in_string(big_string, substrings):\n",
|
||
" if type(big_string) == float:\n",
|
||
" if np.isnan(big_string):\n",
|
||
" return 'X'\n",
|
||
" for substring in substrings:\n",
|
||
" if substring in big_string:\n",
|
||
" return substring[0::]\n",
|
||
" print(big_string)\n",
|
||
" return 'X'\n",
|
||
" \n",
|
||
"#Turning cabin number into Deck\n",
|
||
"cabin_list = ['A', 'B', 'C', 'D', 'E', 'F', 'T', 'G', 'Unknown']\n",
|
||
"df['Deck']=df['Cabin'].map(lambda x: substrings_in_string(x, cabin_list))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Feature FarePerPerson"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"This feature is created from two previous features: Fare and FamilySize."
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df['FarePerPerson']= df['Fare'] / (df['FamilySize'] + 1)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Feature AgeClass"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"Since age and class are both numbers we can just multiply them and get a new feature.\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"df['AgeClass']=df['Age']*df['Pclass']"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"## Licence"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||
"\n",
|
||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"datacleaner": {
|
||
"position": {
|
||
"top": "50px"
|
||
},
|
||
"python": {
|
||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||
},
|
||
"window_display": false
|
||
},
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.8.8"
|
||
},
|
||
"latex_envs": {
|
||
"LaTeX_envs_menu_present": true,
|
||
"autocomplete": true,
|
||
"bibliofile": "biblio.bib",
|
||
"cite_by": "apalike",
|
||
"current_citInitial": 1,
|
||
"eqLabelWithNumbers": true,
|
||
"eqNumInitial": 1,
|
||
"hotkeys": {
|
||
"equation": "Ctrl-E",
|
||
"itemize": "Ctrl-I"
|
||
},
|
||
"labels_anchors": false,
|
||
"latex_user_defs": false,
|
||
"report_style_numbering": false,
|
||
"user_envs_cfg": false
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 1
|
||
}
|