1
0
mirror of https://github.com/gsi-upm/sitc synced 2024-11-13 02:12:28 +00:00
sitc/ml2/3_0_0_Intro_ML_2.ipynb
2022-03-07 12:28:10 +01:00

132 lines
4.1 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](images/EscUpmPolit_p.gif \"UPM\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Course Notes for Learning Intelligent Systems"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Introduction to Machine Learning II\n",
" \n",
"In this lab session, we will go deeper in some aspects that were introduced in the previous session. This time we will delve into a little bit more detail about reading datasets, analyzing data and selecting features. In addition, we will explore the machine learning algorithm SVM in a binary classification problem provided by the Titanic dataset.\n",
"\n",
"# Objectives\n",
"\n",
"In this lecture we are going to introduce some more details about machine learning aspects. \n",
"\n",
"The main objectives of this session are:\n",
"* Learn how to read data from a file or URL with pandas\n",
"* Learn how to use the pandas DataFrame data structure\n",
"* Learn how to select features\n",
"* Understand better and SVM machine learning algorithm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Table of Contents"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. [Home](3_0_0_Intro_ML_2.ipynb)\n",
"1. [The Titanic Dataset. Reading Data](3_1_Read_Data.ipynb)\n",
"1. [Introduction to Pandas](3_2_Pandas.ipynb)\n",
"1. [Preprocessing: Data Munging with DataFrames](3_3_Data_Munging_with_Pandas.ipynb)\n",
"2. [Preprocessing: Visualisation and for DataFrames](3_4_Visualisation_Pandas.ipynb)\n",
"3. [Exercise 1](3_5_Exercise_1.ipynb)\n",
"1. [Machine Learning](3_6_Machine_Learning.ipynb)\n",
" 1. [SVM](3_7_SVM.ipynb)\n",
"5. [Exercise 2](3_8_Exercise_2.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## References"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* [IPython Notebook Tutorial for Titanic: Machine Learning from Disaster](https://www.kaggle.com/c/titanic/forums/t/5105/ipython-notebook-tutorial-for-titanic-machine-learning-from-disaster)\n",
"* [Scikit-learn videos and notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n",
"* [Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits](https://learning.oreilly.com/library/view/hands-on-machine-learning/9781838826048/), Tarek Amr, Packt Publishing, 2020.\n",
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka and Vahid Mirjalili, Packt Publishing, 2019."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Licence\n",
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
"\n",
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}