mirror of
https://github.com/gsi-upm/sitc
synced 2024-12-22 11:48:12 +00:00
498 lines
12 KiB
Plaintext
498 lines
12 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Course Notes for Learning Intelligent Systems"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## [Introduction to Machine Learning II](3_0_0_Intro_ML_2.ipynb)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Table of Contents\n",
|
|
"\n",
|
|
"* [Introduction to Pandas](#Introduction-to-Pandas)\n",
|
|
"* [Series](#Series)\n",
|
|
"* [DataFrame](#DataFrame)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Introduction to Pandas\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"This notebook provides an overview of the *pandas* library. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"[Pandas](http://pandas.pydata.org/) is a Python library that provides easy-to-use data structures and data analysis tools.\n",
|
|
"\n",
|
|
"The main advantage of *Pandas* is that provides extensive facilities for grouping, merging and querying pandas data structures, and also includes facilities for time series analysis, as well as i/o and visualisation facilities.\n",
|
|
"\n",
|
|
"Pandas in built on top of *NumPy*, so we will have usually to import both libraries.\n",
|
|
"\n",
|
|
"Pandas provides two main data structures:\n",
|
|
"* **Series** is a one dimensional labelled object, capable of holding any data type (integers, strings, floating point numbers, Python objects, etc.).. It is similar to an array, a list, a dictionary or a column in a table. Every value in a Series object has an index.\n",
|
|
"* **DataFrame** is a two dimensional labelled object with columns of potentially different types. It is similar to a database table, or a spreadsheet. It can be seen as a dictionary of Series that share the same index.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Series"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We are not going to use Series objects directly as frequently as DataFrames. Here we provide a short introduction"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import pandas as pd\n",
|
|
"from pandas import Series, DataFrame\n",
|
|
"\n",
|
|
"# create series object from an array\n",
|
|
"s = Series([5, 10, 15])\n",
|
|
"s"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We see each value has an associated label starting with 0 if no index is specified when the Series object is created. \n",
|
|
"\n",
|
|
"It is similar to a dictionary. In fact, we can also create a Series object from a dictionary as follows. In this case, the indexes are the keys of the dictionary."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"d = {'a': 5, 'b': 10, 'c': 15}\n",
|
|
"s = Series(d)\n",
|
|
"s"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# We can get the list of indexes\n",
|
|
"s.index"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# and the values\n",
|
|
"s.values"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Another option is to create the Series object from two lists, for values and indexes."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Series with population in 2015 of more populated cities in Spain\n",
|
|
"s = Series([3141991, 1604555, 786189, 693878, 664953, 569130], index=['Madrid', 'Barcelona', 'Valencia', 'Sevilla', \n",
|
|
" 'Zaragoza', 'Malaga'])\n",
|
|
"s"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Population of Madrid\n",
|
|
"s['Madrid']"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Indexing and slicing"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Until now, we have not seen any advantage in using Panda Series. we are going to show now some examples of their possibilities."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#Boolean condition\n",
|
|
"s > 1000000"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Cities with population greater than 1.000.000\n",
|
|
"s[s > 1000000]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Observe that (s > 1000000) returns a Series object. We can use this boolean vector as a filter to get a *slice* of the original series that contains only the elements where the value of the filter is True. The original Series s is not modified. This selection is called *boolean indexing*."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Cities with population greater than the mean\n",
|
|
"s[s > s.mean()]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Cities with population greater than the median\n",
|
|
"s[s > s.median()]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Check cities with a population greater than 700.000\n",
|
|
"s > 700000"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# List cities with a population greater than 700.000\n",
|
|
"s[s > 700000]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#Another way to write the same boolean indexing selection\n",
|
|
"bigger_than_700000 = s > 700000\n",
|
|
"bigger_than_700000"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#Cities with population > 700000\n",
|
|
"s[bigger_than_700000]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Operations on series"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can also carry out other mathematical operations."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Divide population by 2\n",
|
|
"s / 2"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Get the average population\n",
|
|
"s.mean()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Get the highest population\n",
|
|
"s.max()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Item assignment"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We can also change values directly or based on a condition. You can consult additional feautures in the manual."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Change population of one city\n",
|
|
"s['Madrid'] = 3320000\n",
|
|
"s"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Increase by 10% cities with population greater than 700000\n",
|
|
"s[s > 700000] = 1.1 * s[s > 700000]\n",
|
|
"s"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# DataFrame"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"As we said previously, **DataFrames** are two-dimensional data structures. You can see like a dict of Series that share the index."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# We are going to create a DataFrame from a dict of Series\n",
|
|
"d = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),\n",
|
|
" 'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}\n",
|
|
"df = DataFrame(d)\n",
|
|
"df"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"In this dataframe, the *indexes* (row labels) are *a*, *b*, *c* and *d* and the *columns* (column labels) are *one* and *two*.\n",
|
|
"\n",
|
|
"We see that the resulting DataFrame is the union of indexes, and missing values are included as NaN (to write this value we will use *np.nan*).\n",
|
|
"\n",
|
|
"If we specify an index, the dictionary is filtered."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# We can filter\n",
|
|
"df = DataFrame(d, index=['d', 'b', 'a'])\n",
|
|
"df"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Another option is to use the constructor with *index* and *columns*."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df = DataFrame(d, index=['d', 'b', 'a'], columns=['two', 'three'])\n",
|
|
"df"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"In the next notebook we are going to learn more about dataframes."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## References"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"* [Pandas](http://pandas.pydata.org/)\n",
|
|
"* [Learning Pandas, Michael Heydt, Packt Publishing, 2017](https://learning.oreilly.com/library/view/learning-pandas/9781787123137/)\n",
|
|
"* [Pandas. Introduction to Data Structures](https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html)\n",
|
|
"* [Introducing Pandas Objects](https://www.oreilly.com/learning/introducing-pandas-objects)\n",
|
|
"* [Boolean Operators in Pandas](https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-operators)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Licence"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
|
"\n",
|
|
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.12"
|
|
},
|
|
"latex_envs": {
|
|
"LaTeX_envs_menu_present": true,
|
|
"autocomplete": true,
|
|
"bibliofile": "biblio.bib",
|
|
"cite_by": "apalike",
|
|
"current_citInitial": 1,
|
|
"eqLabelWithNumbers": true,
|
|
"eqNumInitial": 1,
|
|
"hotkeys": {
|
|
"equation": "Ctrl-E",
|
|
"itemize": "Ctrl-I"
|
|
},
|
|
"labels_anchors": false,
|
|
"latex_user_defs": false,
|
|
"report_style_numbering": false,
|
|
"user_envs_cfg": false
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
}
|