mirror of
https://github.com/gsi-upm/sitc
synced 2024-11-17 20:12:28 +00:00
315 lines
8.2 KiB
Plaintext
315 lines
8.2 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Course Notes for Learning Intelligent Systems"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Text Classification"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Table of Contents\n",
|
|
"* [Objectives](#Objectives)\n",
|
|
"* [Corpus](#Corpus)\n",
|
|
"* [Classifier](#Classifier)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Objectives"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"In this session we provide a quick overview of how the vector models we have presented previously can be used for applying machine learning techniques, such as classification.\n",
|
|
"\n",
|
|
"The main objectives of this session are:\n",
|
|
"* Understand how to apply machine learning techniques on textual sources\n",
|
|
"* Learn the facilities provided by scikit-learn"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Corpus"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We are going to use on of the corpus that come prepackaged with Scikit-learn: the [20 newsgroup datase](http://qwone.com/~jason/20Newsgroups/). The 20 newsgroup dataset contains 20k documents that belong to 20 topics.\n",
|
|
"\n",
|
|
"We inspect now the corpus using the facilities from Scikit-learn, as explain in [scikit-learn](http://scikit-learn.org/stable/datasets/twenty_newsgroups.html#newsgroups)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from sklearn.datasets import fetch_20newsgroups\n",
|
|
"\n",
|
|
"# We remove metadata to avoid bias in the classification\n",
|
|
"newsgroups_train = fetch_20newsgroups(subset='train', remove=('headers', 'footers', 'quotes'))\n",
|
|
"newsgroups_test = fetch_20newsgroups(subset='test', remove=('headers', 'footers', 'quotes'))\n",
|
|
"\n",
|
|
"# print categories\n",
|
|
"print(list(newsgroups_train.target_names))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#Number of categories\n",
|
|
"print(len(newsgroups_train.target_names))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Show a document\n",
|
|
"docid = 1\n",
|
|
"doc = newsgroups_train.data[docid]\n",
|
|
"cat = newsgroups_train.target[docid]\n",
|
|
"\n",
|
|
"print(\"Category id \" + str(cat) + \" \" + newsgroups_train.target_names[cat])\n",
|
|
"print(\"Doc \" + doc)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#Number of files\n",
|
|
"newsgroups_train.filenames.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Obtain a vector\n",
|
|
"\n",
|
|
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
|
"\n",
|
|
"vectorizer = TfidfVectorizer(analyzer='word', stop_words='english')\n",
|
|
"\n",
|
|
"vectors_train = vectorizer.fit_transform(newsgroups_train.data)\n",
|
|
"vectors_train.shape"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# The tf-idf vectors are very sparse with an average of 66 non zero components in 101.323 dimensions (.06%)\n",
|
|
"vectors_train.nnz / float(vectors_train.shape[0])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Classifier"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Once we have vectors, we can create classifiers (or other machine learning algorithms such as clustering) as we saw previously in the notebooks of machine learning with scikit-learn."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from sklearn.naive_bayes import MultinomialNB\n",
|
|
"\n",
|
|
"from sklearn import metrics\n",
|
|
"\n",
|
|
"\n",
|
|
"# We learn the vocabulary (fit) with the train dataset and transform into vectors (fit_transform)\n",
|
|
"# Nevertheless, we only transform the test dataset into vectors (transform, not fit_transform)\n",
|
|
"\n",
|
|
"model = MultinomialNB(alpha=.01)\n",
|
|
"model.fit(vectors_train, newsgroups_train.target)\n",
|
|
"\n",
|
|
"vectors_test = vectorizer.transform(newsgroups_test.data)\n",
|
|
"pred = model.predict(vectors_test)\n",
|
|
"\n",
|
|
"metrics.f1_score(newsgroups_test.target, pred, average='weighted')\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"We are getting F1 of 0.69 for 20 categories this could be improved (optimization, preprocessing, etc.)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"from sklearn.utils.extmath import density\n",
|
|
"\n",
|
|
"print(\"dimensionality: %d\" % model.coef_.shape[1])\n",
|
|
"print(\"density: %f\" % density(model.coef_))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# We can review the top features per topic in Bayes (attribute coef_)\n",
|
|
"import numpy as np\n",
|
|
"\n",
|
|
"def show_top10(classifier, vectorizer, categories):\n",
|
|
" feature_names = np.asarray(vectorizer.get_feature_names())\n",
|
|
" for i, category in enumerate(categories):\n",
|
|
" top10 = np.argsort(classifier.coef_[i])[-10:]\n",
|
|
" print(\"%s: %s\" % (category, \" \".join(feature_names[top10])))\n",
|
|
"\n",
|
|
" \n",
|
|
"show_top10(model, vectorizer, newsgroups_train.target_names)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# We try the classifier in two new docs\n",
|
|
"\n",
|
|
"new_docs = ['This is a survey of PC computers', 'God is love']\n",
|
|
"new_vectors = vectorizer.transform(new_docs)\n",
|
|
"\n",
|
|
"pred_docs = model.predict(new_vectors)\n",
|
|
"print(pred_docs)\n",
|
|
"print([newsgroups_train.target_names[i] for i in pred_docs])"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## References\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"* [NLTK Book. Natural Language Processing with Python. Steven Bird, Ewan Klein, and Edward Loper. O'Reilly Media, 2009 ](http://www.nltk.org/book_1ed/)\n",
|
|
"* [NLTK Essentials, Nitin Hardeniya, Packt Publishing, 2015](http://proquest.safaribooksonline.com/search?q=NLTK%20Essentials)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Licence"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
|
"\n",
|
|
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.7.1"
|
|
},
|
|
"latex_envs": {
|
|
"LaTeX_envs_menu_present": true,
|
|
"autocomplete": true,
|
|
"bibliofile": "biblio.bib",
|
|
"cite_by": "apalike",
|
|
"current_citInitial": 1,
|
|
"eqLabelWithNumbers": true,
|
|
"eqNumInitial": 1,
|
|
"hotkeys": {
|
|
"equation": "Ctrl-E",
|
|
"itemize": "Ctrl-I"
|
|
},
|
|
"labels_anchors": false,
|
|
"latex_user_defs": false,
|
|
"report_style_numbering": false,
|
|
"user_envs_cfg": false
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
}
|