1
0
mirror of https://github.com/gsi-upm/sitc synced 2024-11-17 20:12:28 +00:00
sitc/ml1/2_7_Model_Persistence.ipynb
2019-02-28 15:25:19 +01:00

192 lines
4.7 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![](files/images/EscUpmPolit_p.gif \"UPM\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Course Notes for Learning Intelligent Systems"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## [Introduction to Machine Learning](2_0_0_Intro_ML.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Table of Contents\n",
"* [Model Persistence](#Model-Persistence)\n",
"* [References](#References)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Model Persistence"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The goal of this notebook is to learn how to save a model in the the scikit by using Pythons built-in persistence model, namely pickle\n",
"\n",
"First we recap the previous tasks: load data, preprocess and train the model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# load iris\n",
"from sklearn import datasets\n",
"iris = datasets.load_iris()\n",
"\n",
"# Training and test spliting\n",
"from sklearn.model_selection import train_test_split\n",
"x_iris, y_iris = iris.data, iris.target\n",
"# Test set will be the 25% taken randomly\n",
"x_train, x_test, y_train, y_test = train_test_split(x_iris, y_iris, test_size=0.25, random_state=33)\n",
"\n",
"# Create the model using the pipeline\n",
"from sklearn.pipeline import Pipeline\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.neighbors import KNeighborsClassifier\n",
"\n",
"# create a composite estimator made by a pipeline of preprocessing and the KNN model\n",
"model = Pipeline([\n",
" ('scaler', StandardScaler()),\n",
" ('KNN', KNeighborsClassifier())\n",
"])\n",
"\n",
"# Train the model\n",
"model.fit(x_train, y_train) \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we are going to save the model to a data structure called *pickle*. A pickle is a dictionary and can be used as a file or a string."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"s = pickle.dumps(model)\n",
"model2 = pickle.loads(s)\n",
"model2.predict(x_iris[0:1])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A more efficient alternative to pickle is joblib, especially for big data problems. In this case the model can only be saved to a file and not to a string."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# save model\n",
"from sklearn.externals import joblib\n",
"joblib.dump(model, 'filename.pkl') \n",
"\n",
"#load model\n",
"model2 = joblib.load('filename.pkl') "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## References"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"* [Tutorial scikit-learn](http://scikit-learn.org/stable/tutorial/basic/tutorial.html)\n",
"* [Model persistence in scikit-learn](http://scikit-learn.org/stable/modules/model_persistence.html#model-persistence)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Licence\n",
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
"\n",
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}