mirror of
https://github.com/gsi-upm/sitc
synced 2024-11-05 07:31:41 +00:00
596 lines
19 KiB
Plaintext
596 lines
19 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Course Notes for Learning Intelligent Systems"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © 2016 Carlos A. Iglesias"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Syntactic Processing"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Table of Contents\n",
|
|
"\n",
|
|
"* [Objectives](#Objectives)\n",
|
|
"* [POS Tagging](#POS-Tagging)\n",
|
|
"* [NER](#NER)\n",
|
|
"* [Parsing and Chunking](#Parsing-and-Chunking)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Objectives"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"In this session we are going to learn how to analyse the syntax of text. In particular, we will learn\n",
|
|
"* Understand and perform POS (Part of Speech) tagging\n",
|
|
"* Understand and perform NER (Named Entity Recognition)\n",
|
|
"* Understand and parse texts\n",
|
|
"\n",
|
|
"We will use the same examples than in the previous notebook, slightly modified for learning purposes."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"review = \"\"\"I purchased this Dell monitor because of budgetary concerns. This item was the most inexpensive 17 inch Apple monitor \n",
|
|
"available to me at the time I made the purchase. My overall experience with this monitor was very poor. When the \n",
|
|
"screen wasn't contracting or glitching the overall picture quality was poor to fair. I've viewed numerous different \n",
|
|
"monitor models since I 'm a college student at UPM in Madrid and this particular monitor had as poor of picture quality as \n",
|
|
"any I 've seen.\"\"\"\n",
|
|
"\n",
|
|
"tweet = \"\"\"@concert Lady Gaga is actually at the Britney Spears Femme Fatale Concert tonight!!! She still listens to \n",
|
|
" her music!!!! WOW!!! #ladygaga #britney\"\"\""
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# POS Tagging"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"POS Tagging is the process of assigning a grammatical category (known as *part of speech*, POS) to a word. For this purpose, the most common approach is using an annotated corpus such as Penn Treebank. The tag set (categories) depends on the corpus annotation. Fortunately, nltk defines a [universal tagset](http://www.nltk.org/book/ch05.html):\n",
|
|
"\n",
|
|
"\n",
|
|
"Tag\t| Meaning | English Examples\n",
|
|
"----|---------|------------------\n",
|
|
"ADJ\t| adjective | new, good, high, special, big, local\n",
|
|
"ADP\t| adposition | on, of, at, with, by, into, under\n",
|
|
"ADV\t| adverb | really, already, still, early, now\n",
|
|
"CONJ| conjunction | and, or, but, if, while, although\n",
|
|
"DET | determiner, article | the, a, some, most, every, no, which\n",
|
|
"NOUN | noun\t | year, home, costs, time, Africa\n",
|
|
"NUM\t| numeral | twenty-four, fourth, 1991, 14:24\n",
|
|
"PRT | particle | at, on, out, over per, that, up, with\n",
|
|
"PRON | pronoun | he, their, her, its, my, I, us\n",
|
|
"VERB | verb\t| is, say, told, given, playing, would\n",
|
|
". | punctuation marks | . , ; !\n",
|
|
"X | other | ersatz, esprit, dunno, gr8, univeristy"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"[('I', 'PRON'), ('purchased', 'VERB'), ('this', 'DET'), ('Dell', 'NOUN'), ('monitor', 'NOUN'), ('because', 'ADP'), ('of', 'ADP'), ('budgetary', 'ADJ'), ('concerns', 'NOUN'), ('.', '.'), ('This', 'DET'), ('item', 'NOUN'), ('was', 'VERB'), ('the', 'DET'), ('most', 'ADV'), ('inexpensive', 'ADJ'), ('17', 'NUM'), ('inch', 'NOUN'), ('Apple', 'NOUN'), ('monitor', 'NOUN'), ('available', 'ADJ'), ('to', 'PRT'), ('me', 'PRON'), ('at', 'ADP'), ('the', 'DET'), ('time', 'NOUN'), ('I', 'PRON'), ('made', 'VERB'), ('the', 'DET'), ('purchase', 'NOUN'), ('.', '.'), ('My', 'PRON'), ('overall', 'ADJ'), ('experience', 'NOUN'), ('with', 'ADP'), ('this', 'DET'), ('monitor', 'NOUN'), ('was', 'VERB'), ('very', 'ADV'), ('poor', 'ADJ'), ('.', '.'), ('When', 'ADV'), ('the', 'DET'), ('screen', 'NOUN'), ('was', 'VERB'), (\"n't\", 'ADV'), ('contracting', 'VERB'), ('or', 'CONJ'), ('glitching', 'VERB'), ('the', 'DET'), ('overall', 'ADJ'), ('picture', 'NOUN'), ('quality', 'NOUN'), ('was', 'VERB'), ('poor', 'ADJ'), ('to', 'PRT'), ('fair', 'VERB'), ('.', '.'), ('I', 'PRON'), (\"'ve\", 'VERB'), ('viewed', 'VERB'), ('numerous', 'ADJ'), ('different', 'ADJ'), ('monitor', 'NOUN'), ('models', 'NOUN'), ('since', 'ADP'), ('I', 'PRON'), (\"'m\", 'VERB'), ('a', 'DET'), ('college', 'NOUN'), ('student', 'NOUN'), ('at', 'ADP'), ('UPM', 'NOUN'), ('in', 'ADP'), ('Madrid', 'NOUN'), ('and', 'CONJ'), ('this', 'DET'), ('particular', 'ADJ'), ('monitor', 'NOUN'), ('had', 'VERB'), ('as', 'ADP'), ('poor', 'ADJ'), ('of', 'ADP'), ('picture', 'NOUN'), ('quality', 'NOUN'), ('as', 'ADP'), ('any', 'DET'), ('I', 'PRON'), (\"'ve\", 'VERB'), ('seen', 'VERB'), ('.', '.')]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from nltk import pos_tag, word_tokenize\n",
|
|
"print (pos_tag(word_tokenize(review), tagset='universal'))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Based on this POS info, we could use correctly now the WordNetLemmatizer. The WordNetLemmatizer only is interesting for 4 POS categories: ADJ, ADV, NOUN, and VERB."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"['I', 'purchase', 'Dell', 'monitor', 'because', 'of', 'budgetary', 'concern', 'item', 'be', 'most', 'inexpensive', '17', 'inch', 'Apple', 'monitor', 'available', 'me', 'at', 'time', 'I', 'make', 'purchase', 'My', 'overall', 'experience', 'with', 'monitor', 'be', 'very', 'poor', 'When', 'screen', 'be', \"n't\", 'contract', 'or', 'glitching', 'overall', 'picture', 'quality', 'be', 'poor', 'fair', 'I', \"'ve\", 'view', 'numerous', 'different', 'monitor', 'model', 'since', 'I', \"'m\", 'college', 'student', 'at', 'UPM', 'in', 'Madrid', 'and', 'particular', 'monitor', 'have', 'a', 'poor', 'of', 'picture', 'quality', 'a', 'I', \"'ve\", 'see']\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from nltk.stem import WordNetLemmatizer\n",
|
|
"\n",
|
|
"review_postagged = pos_tag(word_tokenize(review), tagset='universal')\n",
|
|
"pos_mapping = {'NOUN': 'n', 'ADJ': 'a', 'VERB': 'v', 'ADV': 'r', 'ADP': 'n', 'CONJ': 'n', \n",
|
|
" 'PRON': 'n', 'NUM': 'n', 'X': 'n' }\n",
|
|
"\n",
|
|
"wordnet = WordNetLemmatizer()\n",
|
|
"lemmas = [wordnet.lemmatize(w, pos=pos_mapping[tag]) for (w,tag) in review_postagged if tag in pos_mapping.keys()]\n",
|
|
"print(lemmas)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# NER"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Named Entity Recognition (NER) is an information retrieval for identifying named entities of places, organisation of persons. NER usually relies in a tagged corpus. NER algorithms can be trained for new corpora."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"(S\n",
|
|
" I/PRP\n",
|
|
" purchased/VBD\n",
|
|
" this/DT\n",
|
|
" (ORGANIZATION Dell/NNP)\n",
|
|
" monitor/NN\n",
|
|
" because/IN\n",
|
|
" of/IN\n",
|
|
" budgetary/JJ\n",
|
|
" concerns/NNS\n",
|
|
" ./.\n",
|
|
" This/DT\n",
|
|
" item/NN\n",
|
|
" was/VBD\n",
|
|
" the/DT\n",
|
|
" most/RBS\n",
|
|
" inexpensive/JJ\n",
|
|
" 17/CD\n",
|
|
" inch/NN\n",
|
|
" Apple/NNP\n",
|
|
" monitor/NN\n",
|
|
" available/JJ\n",
|
|
" to/TO\n",
|
|
" me/PRP\n",
|
|
" at/IN\n",
|
|
" the/DT\n",
|
|
" time/NN\n",
|
|
" I/PRP\n",
|
|
" made/VBD\n",
|
|
" the/DT\n",
|
|
" purchase/NN\n",
|
|
" ./.\n",
|
|
" My/PRP$\n",
|
|
" overall/JJ\n",
|
|
" experience/NN\n",
|
|
" with/IN\n",
|
|
" this/DT\n",
|
|
" monitor/NN\n",
|
|
" was/VBD\n",
|
|
" very/RB\n",
|
|
" poor/JJ\n",
|
|
" ./.\n",
|
|
" When/WRB\n",
|
|
" the/DT\n",
|
|
" screen/NN\n",
|
|
" was/VBD\n",
|
|
" n't/RB\n",
|
|
" contracting/VBG\n",
|
|
" or/CC\n",
|
|
" glitching/VBG\n",
|
|
" the/DT\n",
|
|
" overall/JJ\n",
|
|
" picture/NN\n",
|
|
" quality/NN\n",
|
|
" was/VBD\n",
|
|
" poor/JJ\n",
|
|
" to/TO\n",
|
|
" fair/VB\n",
|
|
" ./.\n",
|
|
" I/PRP\n",
|
|
" 've/VBP\n",
|
|
" viewed/VBN\n",
|
|
" numerous/JJ\n",
|
|
" different/JJ\n",
|
|
" monitor/NN\n",
|
|
" models/NNS\n",
|
|
" since/IN\n",
|
|
" I/PRP\n",
|
|
" 'm/VBP\n",
|
|
" a/DT\n",
|
|
" college/NN\n",
|
|
" student/NN\n",
|
|
" at/IN\n",
|
|
" (ORGANIZATION UPM/NNP)\n",
|
|
" in/IN\n",
|
|
" (GPE Madrid/NNP)\n",
|
|
" and/CC\n",
|
|
" this/DT\n",
|
|
" particular/JJ\n",
|
|
" monitor/NN\n",
|
|
" had/VBD\n",
|
|
" as/IN\n",
|
|
" poor/JJ\n",
|
|
" of/IN\n",
|
|
" picture/NN\n",
|
|
" quality/NN\n",
|
|
" as/IN\n",
|
|
" any/DT\n",
|
|
" I/PRP\n",
|
|
" 've/VBP\n",
|
|
" seen/VBN\n",
|
|
" ./.)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from nltk import ne_chunk, pos_tag, word_tokenize\n",
|
|
"ne_tagged = ne_chunk(pos_tag(word_tokenize(review)), binary=False)\n",
|
|
"print(ne_tagged) "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"NLTK comes with other NER implementations. We can also use online services, such as [OpenCalais](http://www.opencalais.com/), [DBpedia Spotlight](https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki/Web-service) or [TagME](http://tagme.di.unipi.it/)."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Parsing and Chunking"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"**Parsing** is the process of obtaining a parsing tree given a grammar. It which can be very useful to understand the relationship among the words.\n",
|
|
"\n",
|
|
"As we have seen in class, we can follow a traditional approach and obtain a full parsing tree or shallow parsing (chunking) and obtain a partial tree.\n",
|
|
"\n",
|
|
"We can use the StandfordParser that is integrated in NLTK, but it requires to configure the CLASSPATH, which can be a bit annoying. Instead, we are going to see some demos to understand how grammars work. In case you are interested, you can consult the [manual](http://www.nltk.org/api/nltk.parse.html) to run it.\n",
|
|
"\n",
|
|
"In the following example, you will run an interactive context-free parser, called [shift-reduce parser](http://www.nltk.org/book/ch08.html).\n",
|
|
"The pane on the left shows the grammar as a list of production rules. The pane on the right contains the stack and the remaining input.\n",
|
|
"\n",
|
|
"You should:\n",
|
|
"* Run pressing 'step' until the sentence is fully analyzed. With each step, the parser either shifts one word onto the stack or reduces two subtrees of the stack into a new subtree.\n",
|
|
"* Try to act as the parser. Instead of pressing 'step', press 'shift' and 'reduce'. Follow the 'always shift before reduce' rule. It is likely you will reach a state where the parser cannot proceed. You can go back with 'Undo'."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [],
|
|
"source": [
|
|
"from nltk.app import srparser_app\n",
|
|
"srparser_app.app()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"**Chunking** o **shallow parsing** aims at extracting relevant parts of the sentence. There are (two main approaches)[http://www.nltk.org/book/ch07.html] to chunking: using regular expressions based on POS tags, or training a chunk parser.\n",
|
|
"\n",
|
|
"We are going to illustrate the first technique for extracting NP chunks.\n",
|
|
"\n",
|
|
"We define regular expressions for the chunks we want to get."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 42,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"(S\n",
|
|
" I/PRON\n",
|
|
" purchased/VERB\n",
|
|
" (NP this/DET Dell/NOUN monitor/NOUN)\n",
|
|
" because/ADP\n",
|
|
" of/ADP\n",
|
|
" (NP budgetary/ADJ concerns/NOUN)\n",
|
|
" ./.\n",
|
|
" (NP This/DET item/NOUN)\n",
|
|
" was/VERB\n",
|
|
" (NP\n",
|
|
" the/DET\n",
|
|
" most/ADV\n",
|
|
" inexpensive/ADJ\n",
|
|
" 17/NUM\n",
|
|
" inch/NOUN\n",
|
|
" Apple/NOUN\n",
|
|
" monitor/NOUN)\n",
|
|
" available/ADJ\n",
|
|
" to/PRT\n",
|
|
" me/PRON\n",
|
|
" at/ADP\n",
|
|
" (NP the/DET time/NOUN)\n",
|
|
" I/PRON\n",
|
|
" made/VERB\n",
|
|
" (NP the/DET purchase/NOUN)\n",
|
|
" ./.\n",
|
|
" (NP My/PRON overall/ADJ experience/NOUN)\n",
|
|
" with/ADP\n",
|
|
" (NP this/DET monitor/NOUN)\n",
|
|
" was/VERB\n",
|
|
" very/ADV\n",
|
|
" poor/ADJ\n",
|
|
" ./.\n",
|
|
" When/ADV\n",
|
|
" (NP the/DET screen/NOUN)\n",
|
|
" was/VERB\n",
|
|
" n't/ADV\n",
|
|
" contracting/VERB\n",
|
|
" or/CONJ\n",
|
|
" glitching/VERB\n",
|
|
" (NP the/DET overall/ADJ picture/NOUN quality/NOUN)\n",
|
|
" was/VERB\n",
|
|
" poor/ADJ\n",
|
|
" to/PRT\n",
|
|
" fair/VERB\n",
|
|
" ./.\n",
|
|
" I/PRON\n",
|
|
" 've/VERB\n",
|
|
" viewed/VERB\n",
|
|
" (NP numerous/ADJ different/ADJ monitor/NOUN models/NOUN)\n",
|
|
" since/ADP\n",
|
|
" I/PRON\n",
|
|
" 'm/VERB\n",
|
|
" (NP a/DET college/NOUN student/NOUN)\n",
|
|
" at/ADP\n",
|
|
" (NP UPM/NOUN)\n",
|
|
" in/ADP\n",
|
|
" (NP Madrid/NOUN)\n",
|
|
" and/CONJ\n",
|
|
" (NP this/DET particular/ADJ monitor/NOUN)\n",
|
|
" had/VERB\n",
|
|
" as/ADP\n",
|
|
" poor/ADJ\n",
|
|
" of/ADP\n",
|
|
" (NP picture/NOUN quality/NOUN)\n",
|
|
" as/ADP\n",
|
|
" any/DET\n",
|
|
" I/PRON\n",
|
|
" 've/VERB\n",
|
|
" seen/VERB\n",
|
|
" ./.)\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"from nltk.chunk.regexp import *\n",
|
|
"pattern = \"\"\"NP: {<PRON><ADJ><NOUN>+} \n",
|
|
" {<DET>?<ADV>?<ADJ|NUM>*?<NOUN>+}\n",
|
|
" \"\"\"\n",
|
|
"NPChunker = RegexpParser(pattern)\n",
|
|
"\n",
|
|
"reviews_pos = (pos_tag(word_tokenize(review), tagset='universal'))\n",
|
|
"\n",
|
|
"chunks_np = NPChunker.parse(reviews_pos)\n",
|
|
"print(chunks_np)\n",
|
|
"chunks_np.draw()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Now we can traverse the trees and obtain the strings as follows."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 54,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[Tree('NP', [('this', 'DET'), ('Dell', 'NOUN'), ('monitor', 'NOUN')]),\n",
|
|
" Tree('NP', [('budgetary', 'ADJ'), ('concerns', 'NOUN')]),\n",
|
|
" Tree('NP', [('This', 'DET'), ('item', 'NOUN')]),\n",
|
|
" Tree('NP', [('the', 'DET'), ('most', 'ADV'), ('inexpensive', 'ADJ'), ('17', 'NUM'), ('inch', 'NOUN'), ('Apple', 'NOUN'), ('monitor', 'NOUN')]),\n",
|
|
" Tree('NP', [('the', 'DET'), ('time', 'NOUN')]),\n",
|
|
" Tree('NP', [('the', 'DET'), ('purchase', 'NOUN')]),\n",
|
|
" Tree('NP', [('My', 'PRON'), ('overall', 'ADJ'), ('experience', 'NOUN')]),\n",
|
|
" Tree('NP', [('this', 'DET'), ('monitor', 'NOUN')]),\n",
|
|
" Tree('NP', [('the', 'DET'), ('screen', 'NOUN')]),\n",
|
|
" Tree('NP', [('the', 'DET'), ('overall', 'ADJ'), ('picture', 'NOUN'), ('quality', 'NOUN')]),\n",
|
|
" Tree('NP', [('numerous', 'ADJ'), ('different', 'ADJ'), ('monitor', 'NOUN'), ('models', 'NOUN')]),\n",
|
|
" Tree('NP', [('a', 'DET'), ('college', 'NOUN'), ('student', 'NOUN')]),\n",
|
|
" Tree('NP', [('UPM', 'NOUN')]),\n",
|
|
" Tree('NP', [('Madrid', 'NOUN')]),\n",
|
|
" Tree('NP', [('this', 'DET'), ('particular', 'ADJ'), ('monitor', 'NOUN')]),\n",
|
|
" Tree('NP', [('picture', 'NOUN'), ('quality', 'NOUN')])]"
|
|
]
|
|
},
|
|
"execution_count": 54,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"def extractTrees(parsed_tree, category='NP'):\n",
|
|
" return list(parsed_tree.subtrees(filter=lambda x: x.label()==category))\n",
|
|
"\n",
|
|
"extractTrees(chunks_np, 'NP')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 90,
|
|
"metadata": {
|
|
"collapsed": false
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"['this Dell monitor',\n",
|
|
" 'budgetary concerns',\n",
|
|
" 'This item',\n",
|
|
" 'the most inexpensive 17 inch Apple monitor',\n",
|
|
" 'the time',\n",
|
|
" 'the purchase',\n",
|
|
" 'My overall experience',\n",
|
|
" 'this monitor',\n",
|
|
" 'the screen',\n",
|
|
" 'the overall picture quality',\n",
|
|
" 'numerous different monitor models',\n",
|
|
" 'a college student',\n",
|
|
" 'UPM',\n",
|
|
" 'Madrid',\n",
|
|
" 'this particular monitor',\n",
|
|
" 'picture quality']"
|
|
]
|
|
},
|
|
"execution_count": 90,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"def extractStrings(parsed_tree, category='NP'):\n",
|
|
" return [\" \".join(word for word, pos in vp.leaves()) for vp in extractTrees(parsed_tree, category)]\n",
|
|
" \n",
|
|
"extractStrings(chunks_np)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {
|
|
"collapsed": true
|
|
},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## References\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"* [NLTK Book. Natural Language Processing with Python. Steven Bird, Ewan Klein, and Edward Loper. O'Reilly Media, 2009 ](http://www.nltk.org/book_1ed/)\n",
|
|
"* [NLTK Essentials, Nitin Hardeniya, Packt Publishing, 2015](http://proquest.safaribooksonline.com/search?q=NLTK%20Essentials)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Licence"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
|
"\n",
|
|
"© 2016 Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.5.1"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 0
|
|
}
|