mirror of
https://github.com/gsi-upm/sitc
synced 2024-12-22 11:48:12 +00:00
139 lines
4.6 KiB
Plaintext
139 lines
4.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Course Notes for Learning Intelligent Systems"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos Á. Iglesias"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## [Introduction to Machine Learning V](2_6_0_Intro_RL.ipynb)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Exercises\n",
|
|
"\n",
|
|
"\n",
|
|
"## Taxi\n",
|
|
"Analyze the [Taxi problem](https://gymnasium.farama.org/environments/toy_text/taxi/) and solve it applying Q-Learning. You can find a solution as the one previously presented [here](https://www.oreilly.com/learning/introduction-to-reinforcement-learning-and-openai-gym), and the notebook is [here](https://github.com/wagonhelm/Reinforcement-Learning-Introduction/blob/master/Reinforcement%20Learning%20Introduction.ipynb). Take into account that Gymnasium has changed, so you will have to adapt the code.\n",
|
|
"\n",
|
|
"Analyze the impact of not changing the learning rate or changing it in a different way. "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Optional exercises\n",
|
|
"Select one of the following exercises.\n",
|
|
"\n",
|
|
"## Blackjack\n",
|
|
"Analyze how to appy Q-Learning for solving Blackjack.\n",
|
|
"You can find information in this [article](https://gymnasium.farama.org/tutorials/training_agents/blackjack_tutorial/).\n",
|
|
"\n",
|
|
"## Doom\n",
|
|
"Read this [article](https://medium.freecodecamp.org/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8) and execute the companion [notebook](https://github.com/simoninithomas/Deep_reinforcement_learning_Course/blob/master/Deep%20Q%20Learning/Doom/Deep%20Q%20learning%20with%20Doom.ipynb). Analyze the results and provide conclusions about DQN.\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## References\n",
|
|
"* [Gymnasium documentation](https://gymnasium.farama.org/).\n",
|
|
"* [Diving deeper into Reinforcement Learning with Q-Learning, Thomas Simonini](https://medium.freecodecamp.org/diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe).\n",
|
|
"* Illustrations by [Thomas Simonini](https://github.com/simoninithomas/Deep_reinforcement_learning_Course) and [Sung Kim](https://www.youtube.com/watch?v=xgoO54qN4lY).\n",
|
|
"* [Frozen Lake solution with TensorFlow](https://analyticsindiamag.com/openai-gym-frozen-lake-beginners-guide-reinforcement-learning/)\n",
|
|
"* [Deep Q-Learning for Doom](https://medium.freecodecamp.org/an-introduction-to-deep-q-learning-lets-play-doom-54d02d8017d8)\n",
|
|
"* [Intro OpenAI Gym with Random Search and the Cart Pole scenario](http://www.pinchofintelligence.com/getting-started-openai-gym/)\n",
|
|
"* [Q-Learning for the Taxi scenario](https://www.oreilly.com/learning/introduction-to-reinforcement-learning-and-openai-gym)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Licence"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
|
"\n",
|
|
"© Carlos Á. Iglesias, Universidad Politécnica de Madrid."
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"datacleaner": {
|
|
"position": {
|
|
"top": "50px"
|
|
},
|
|
"python": {
|
|
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
|
},
|
|
"window_display": false
|
|
},
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.10.10"
|
|
},
|
|
"latex_envs": {
|
|
"LaTeX_envs_menu_present": true,
|
|
"autocomplete": true,
|
|
"bibliofile": "biblio.bib",
|
|
"cite_by": "apalike",
|
|
"current_citInitial": 1,
|
|
"eqLabelWithNumbers": true,
|
|
"eqNumInitial": 1,
|
|
"hotkeys": {
|
|
"equation": "Ctrl-E",
|
|
"itemize": "Ctrl-I"
|
|
},
|
|
"labels_anchors": false,
|
|
"latex_user_defs": false,
|
|
"report_style_numbering": false,
|
|
"user_envs_cfg": false
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 1
|
|
}
|