mirror of
https://github.com/gsi-upm/sitc
synced 2025-01-07 03:31:28 +00:00
Compare commits
7 Commits
f9965fdbcd
...
267421e5b8
Author | SHA1 | Date | |
---|---|---|---|
|
267421e5b8 | ||
|
a1abd4b766 | ||
|
c1d3ca38ea | ||
|
a1be167cc0 | ||
|
4d339a1a83 | ||
|
47fe85d527 | ||
|
d857869c06 |
@ -14,6 +14,12 @@ Also note that we have a code of conduct, please follow it in all your interacti
|
||||
2. If you are adding code, ensure the changed notebooks can be run in a fresh environment. Include instructions to download
|
||||
any additional dependencies.
|
||||
3. Ensure any spurious changes are removed, such as compilation files (`pyc`) or metadata changes in a notebook.
|
||||
You can automatically do so using nbstripout:
|
||||
```
|
||||
pip install nbstripout
|
||||
nbstripout --install
|
||||
```
|
||||
This will install a git hook that strips all metadata from the notebooks before you commit changes to git.
|
||||
4. Submit your pull request on GitHub.
|
||||
5. A member of the GSI-UPM group will review your request.
|
||||
6. The reviewer may ask for further changes before merging the contribution. Please, follow the reviewer's instructions before resubmitting.
|
||||
|
@ -102,7 +102,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.5"
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
|
@ -95,7 +95,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.5"
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
|
@ -122,6 +122,8 @@
|
||||
"source": [
|
||||
"If you installed the conda distribution, scikit-learn is already installed! This is the best option.\n",
|
||||
"\n",
|
||||
"Anyway, before starting, update all the packages: `conda update --all`. \n",
|
||||
"\n",
|
||||
"In case it is an old installation, you can update it using conda: `conda update scikit-learn`.\n",
|
||||
"\n",
|
||||
"If it is not installed, install it with conda: `conda install scikit-learn`.\n",
|
||||
@ -176,7 +178,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.5"
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
|
@ -161,9 +161,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Plot the distribution of the dataset\n",
|
||||
@ -172,6 +170,8 @@
|
||||
"# x and y are all the samples from column 0 (sepal_length) and 1 (sepal_width) respectively\n",
|
||||
"x,y = iris.data[:,0], iris.data[:,1]\n",
|
||||
"\n",
|
||||
"#if you want to understand better this code, see what happens when you replace name by 0, 1, 2 in the line\n",
|
||||
"# cond = iris.target == name. \n",
|
||||
"for name in names:\n",
|
||||
" cond = iris.target == name\n",
|
||||
" plt.plot(x[cond], y[cond], linestyle='none', marker='o', label=iris.target_names[name])\n",
|
||||
@ -192,9 +192,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"x_index = 0\n",
|
||||
@ -266,7 +264,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.5"
|
||||
"version": "3.7.1"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -18,7 +18,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © 2016 Carlos A. Iglesias"
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -70,7 +70,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
@ -101,9 +101,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Train classifier"
|
||||
]
|
||||
@ -117,17 +115,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Mean score: 0.940 (+/- 0.021)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.model_selection import cross_val_score, KFold\n",
|
||||
"from sklearn.pipeline import Pipeline\n",
|
||||
@ -179,51 +169,18 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'ds': DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n",
|
||||
" max_features=None, max_leaf_nodes=None,\n",
|
||||
" min_impurity_split=1e-07, min_samples_leaf=1,\n",
|
||||
" min_samples_split=2, min_weight_fraction_leaf=0.0,\n",
|
||||
" presort=False, random_state=None, splitter='best'),\n",
|
||||
" 'scaler': StandardScaler(copy=True, with_mean=True, with_std=True)}"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.named_steps"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[('scaler', StandardScaler(copy=True, with_mean=True, with_std=True)),\n",
|
||||
" ('ds',\n",
|
||||
" DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None,\n",
|
||||
" max_features=None, max_leaf_nodes=None,\n",
|
||||
" min_impurity_split=1e-07, min_samples_leaf=1,\n",
|
||||
" min_samples_split=2, min_weight_fraction_leaf=0.0,\n",
|
||||
" presort=False, random_state=None, splitter='best'))]"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.steps"
|
||||
]
|
||||
@ -237,20 +194,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"dict_keys(['steps', 'scaler', 'ds', 'scaler__copy', 'scaler__with_mean', 'scaler__with_std', 'ds__class_weight', 'ds__criterion', 'ds__max_depth', 'ds__max_features', 'ds__max_leaf_nodes', 'ds__min_impurity_split', 'ds__min_samples_leaf', 'ds__min_samples_split', 'ds__min_weight_fraction_leaf', 'ds__presort', 'ds__random_state', 'ds__splitter'])"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.get_params().keys()"
|
||||
]
|
||||
@ -264,24 +210,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Pipeline(steps=[('scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('ds', DecisionTreeClassifier(class_weight='balanced', criterion='gini',\n",
|
||||
" max_depth=None, max_features=None, max_leaf_nodes=None,\n",
|
||||
" min_impurity_split=1e-07, min_samples_leaf=1,\n",
|
||||
" min_samples_split=2, min_weight_fraction_leaf=0.0,\n",
|
||||
" presort=False, random_state=None, splitter='best'))])"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.set_params(ds__class_weight='balanced')"
|
||||
]
|
||||
@ -295,24 +226,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Pipeline(steps=[('scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('ds', DecisionTreeClassifier(class_weight='balanced', criterion='gini',\n",
|
||||
" max_depth=None, max_features=None, max_leaf_nodes=None,\n",
|
||||
" min_impurity_split=1e-07, min_samples_leaf=1,\n",
|
||||
" min_samples_split=2, min_weight_fraction_leaf=0.0,\n",
|
||||
" presort=False, random_state=None, splitter='best'))])"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = Pipeline([\n",
|
||||
" ('scaler', StandardScaler()),\n",
|
||||
@ -330,17 +246,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[ 0.01834862 0.01910853 0.05728223 0.90526062]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Fit the model\n",
|
||||
"model.fit(x_train, y_train) \n",
|
||||
@ -351,17 +259,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[ 0.01834862 0.01910853 0.05728223 0.90526062]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Using steps, we take the last step (-1) or the second step (1)\n",
|
||||
"#name, my_desision_tree = model.steps[1]\n",
|
||||
@ -389,47 +289,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'ds': DecisionTreeClassifier(class_weight='balanced', criterion='gini',\n",
|
||||
" max_depth=None, max_features=None, max_leaf_nodes=None,\n",
|
||||
" min_impurity_split=1e-07, min_samples_leaf=1,\n",
|
||||
" min_samples_split=2, min_weight_fraction_leaf=0.0,\n",
|
||||
" presort=False, random_state=None, splitter='best'),\n",
|
||||
" 'ds__class_weight': 'balanced',\n",
|
||||
" 'ds__criterion': 'gini',\n",
|
||||
" 'ds__max_depth': None,\n",
|
||||
" 'ds__max_features': None,\n",
|
||||
" 'ds__max_leaf_nodes': None,\n",
|
||||
" 'ds__min_impurity_split': 1e-07,\n",
|
||||
" 'ds__min_samples_leaf': 1,\n",
|
||||
" 'ds__min_samples_split': 2,\n",
|
||||
" 'ds__min_weight_fraction_leaf': 0.0,\n",
|
||||
" 'ds__presort': False,\n",
|
||||
" 'ds__random_state': None,\n",
|
||||
" 'ds__splitter': 'best',\n",
|
||||
" 'scaler': StandardScaler(copy=True, with_mean=True, with_std=True),\n",
|
||||
" 'scaler__copy': True,\n",
|
||||
" 'scaler__with_mean': True,\n",
|
||||
" 'scaler__with_std': True,\n",
|
||||
" 'steps': [('scaler',\n",
|
||||
" StandardScaler(copy=True, with_mean=True, with_std=True)),\n",
|
||||
" ('ds', DecisionTreeClassifier(class_weight='balanced', criterion='gini',\n",
|
||||
" max_depth=None, max_features=None, max_leaf_nodes=None,\n",
|
||||
" min_impurity_split=1e-07, min_samples_leaf=1,\n",
|
||||
" min_samples_split=2, min_weight_fraction_leaf=0.0,\n",
|
||||
" presort=False, random_state=None, splitter='best'))]}"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model.get_params()"
|
||||
]
|
||||
@ -466,18 +328,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Best score: 0.946428571429\n",
|
||||
"Best params: {'max_depth': 3}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.model_selection import GridSearchCV\n",
|
||||
"from sklearn.tree import DecisionTreeClassifier\n",
|
||||
@ -496,32 +349,16 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Now we are going to show the results of grid search"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"0.946 (+/-0.075) for {'max_depth': 3}\n",
|
||||
"0.929 (+/-0.024) for {'max_depth': 4}\n",
|
||||
"0.946 (+/-0.075) for {'max_depth': 5}\n",
|
||||
"0.929 (+/-0.024) for {'max_depth': 6}\n",
|
||||
"0.946 (+/-0.075) for {'max_depth': 7}\n",
|
||||
"0.946 (+/-0.075) for {'max_depth': 8}\n",
|
||||
"0.929 (+/-0.024) for {'max_depth': 9}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We print the score for each value of max_depth\n",
|
||||
"for i, max_depth in enumerate(gs.cv_results_['params']):\n",
|
||||
@ -539,17 +376,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Mean score: 0.953 (+/- 0.020)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create a composite estimator made by a pipeline of preprocessing and the KNN model\n",
|
||||
"model = Pipeline([\n",
|
||||
@ -581,550 +410,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"# Tuning hyper-parameters for precision\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples.\n",
|
||||
" 'precision', 'predicted', average, warn_for)\n",
|
||||
"/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples.\n",
|
||||
" 'precision', 'predicted', average, warn_for)\n",
|
||||
"/opt/conda/lib/python3.6/site-packages/sklearn/metrics/classification.py:1113: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples.\n",
|
||||
" 'precision', 'predicted', average, warn_for)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Best parameters set found on development set:\n",
|
||||
"\n",
|
||||
"{'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"\n",
|
||||
"Grid scores on development set:\n",
|
||||
"\n",
|
||||
"0.964 (+/-0.092) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.943 (+/-0.084) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.123) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.936 (+/-0.122) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.953 (+/-0.126) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.973 (+/-0.068) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.968 (+/-0.132) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.123) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.943 (+/-0.081) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.123) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.919 (+/-0.251) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.975 (+/-0.079) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.953 (+/-0.126) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.123) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.951 (+/-0.118) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.953 (+/-0.126) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.943 (+/-0.113) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.953 (+/-0.126) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.948 (+/-0.108) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.953 (+/-0.126) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.961 (+/-0.081) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.953 (+/-0.126) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.928 (+/-0.165) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.953 (+/-0.126) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.949 (+/-0.118) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.953 (+/-0.134) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.123) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.123) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.942 (+/-0.067) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.980 (+/-0.062) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.945 (+/-0.141) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.949 (+/-0.095) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.953 (+/-0.126) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.123) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.953 (+/-0.126) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.961 (+/-0.114) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.972 (+/-0.069) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.953 (+/-0.126) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.123) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.125) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.142) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.956 (+/-0.121) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.968 (+/-0.082) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.956 (+/-0.097) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.906 (+/-0.296) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.932 (+/-0.110) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.955 (+/-0.121) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.921 (+/-0.132) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.942 (+/-0.132) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.948 (+/-0.108) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.945 (+/-0.123) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.897 (+/-0.187) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.944 (+/-0.148) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.948 (+/-0.107) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.961 (+/-0.081) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.939 (+/-0.117) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.949 (+/-0.090) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.972 (+/-0.068) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.906 (+/-0.162) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.947 (+/-0.146) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.123) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.953 (+/-0.134) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.975 (+/-0.079) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.932 (+/-0.136) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.940 (+/-0.146) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.953 (+/-0.082) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.979 (+/-0.064) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.952 (+/-0.108) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.968 (+/-0.082) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.919 (+/-0.106) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.941 (+/-0.129) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.943 (+/-0.113) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.956 (+/-0.094) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.954 (+/-0.154) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.949 (+/-0.158) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.943 (+/-0.113) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.893 (+/-0.163) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.916 (+/-0.186) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.943 (+/-0.113) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.961 (+/-0.081) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.947 (+/-0.108) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.912 (+/-0.120) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.960 (+/-0.082) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.943 (+/-0.113) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.962 (+/-0.113) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.966 (+/-0.070) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.962 (+/-0.113) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.943 (+/-0.113) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.949 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.954 (+/-0.112) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.943 (+/-0.113) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.955 (+/-0.097) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.974 (+/-0.081) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.947 (+/-0.175) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.950 (+/-0.117) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.943 (+/-0.113) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.935 (+/-0.075) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.954 (+/-0.129) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.940 (+/-0.142) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.934 (+/-0.155) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.927 (+/-0.112) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.943 (+/-0.113) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.934 (+/-0.184) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.932 (+/-0.136) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.968 (+/-0.082) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.903 (+/-0.240) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.939 (+/-0.179) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.975 (+/-0.079) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.923 (+/-0.094) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.967 (+/-0.083) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.944 (+/-0.115) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.177) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.943 (+/-0.113) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.964 (+/-0.092) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.950 (+/-0.117) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.895 (+/-0.229) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.944 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.930 (+/-0.199) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.953 (+/-0.126) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.949 (+/-0.116) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.943 (+/-0.113) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.922 (+/-0.177) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.959 (+/-0.067) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.933 (+/-0.136) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.933 (+/-0.125) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.943 (+/-0.113) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.939 (+/-0.117) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.123) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.918 (+/-0.155) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.945 (+/-0.123) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.931 (+/-0.153) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.944 (+/-0.113) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.957 (+/-0.120) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.972 (+/-0.069) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.968 (+/-0.082) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.950 (+/-0.118) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.955 (+/-0.111) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"\n",
|
||||
"Detailed classification report:\n",
|
||||
"\n",
|
||||
"The model is trained on the full development set.\n",
|
||||
"The scores are computed on the full evaluation set.\n",
|
||||
"\n",
|
||||
" precision recall f1-score support\n",
|
||||
"\n",
|
||||
" 0 1.00 1.00 1.00 8\n",
|
||||
" 1 0.92 1.00 0.96 11\n",
|
||||
" 2 1.00 0.95 0.97 19\n",
|
||||
"\n",
|
||||
"avg / total 0.98 0.97 0.97 38\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Tuning hyper-parameters for recall\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/opt/conda/lib/python3.6/site-packages/sklearn/model_selection/_search.py:667: DeprecationWarning: The grid_scores_ attribute was deprecated in version 0.18 in favor of the more elaborate cv_results_ attribute. The grid_scores_ attribute will not be available from 0.20\n",
|
||||
" DeprecationWarning)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Best parameters set found on development set:\n",
|
||||
"\n",
|
||||
"{'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"\n",
|
||||
"Grid scores on development set:\n",
|
||||
"\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.893 (+/-0.215) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.955 (+/-0.092) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.155) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.155) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.241) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.866 (+/-0.268) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.884 (+/-0.218) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.911 (+/-0.179) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.973 (+/-0.081) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.155) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.893 (+/-0.177) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.137) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.162) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.187) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.104) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.911 (+/-0.191) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.141) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.114) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.155) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.911 (+/-0.137) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.902 (+/-0.148) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.158) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.113) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.137) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.137) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.147) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.893 (+/-0.255) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.117) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.141) for {'class_weight': 'balanced', 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.955 (+/-0.115) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.893 (+/-0.139) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.168) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.137) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.911 (+/-0.179) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.137) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.146) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.121) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.911 (+/-0.179) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.955 (+/-0.115) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.141) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.955 (+/-0.121) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.119) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.109) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.137) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.183) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.120) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.168) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.183) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.955 (+/-0.147) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.955 (+/-0.121) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.158) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.168) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.866 (+/-0.202) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.137) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.155) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.141) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.154) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.151) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.964 (+/-0.140) for {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.955 (+/-0.115) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.140) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.120) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.131) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.181) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.204) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.154) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.137) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.955 (+/-0.146) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.955 (+/-0.121) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.136) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.964 (+/-0.121) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.086) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.175) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.114) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.173) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.110) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.175) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.168) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.131) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.964 (+/-0.119) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.110) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.110) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.120) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.147) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.127) for {'class_weight': None, 'criterion': 'gini', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.955 (+/-0.115) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.893 (+/-0.213) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.875 (+/-0.216) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.196) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.911 (+/-0.173) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 3, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.163) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.115) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 4, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.187) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.187) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.131) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.155) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 5, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.127) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.159) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.120) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 6, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.137) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.902 (+/-0.179) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.175) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.902 (+/-0.148) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 7, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.929 (+/-0.132) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.955 (+/-0.146) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.955 (+/-0.169) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.964 (+/-0.121) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.136) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 8, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'best'}\n",
|
||||
"0.920 (+/-0.147) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': None, 'splitter': 'random'}\n",
|
||||
"0.946 (+/-0.140) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'best'}\n",
|
||||
"0.938 (+/-0.137) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 5, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'best'}\n",
|
||||
"0.929 (+/-0.168) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 10, 'splitter': 'random'}\n",
|
||||
"0.938 (+/-0.138) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'best'}\n",
|
||||
"0.946 (+/-0.120) for {'class_weight': None, 'criterion': 'entropy', 'max_depth': 9, 'max_leaf_nodes': 20, 'splitter': 'random'}\n",
|
||||
"\n",
|
||||
"Detailed classification report:\n",
|
||||
"\n",
|
||||
"The model is trained on the full development set.\n",
|
||||
"The scores are computed on the full evaluation set.\n",
|
||||
"\n",
|
||||
" precision recall f1-score support\n",
|
||||
"\n",
|
||||
" 0 1.00 1.00 1.00 8\n",
|
||||
" 1 1.00 0.64 0.78 11\n",
|
||||
" 2 0.83 1.00 0.90 19\n",
|
||||
"\n",
|
||||
"avg / total 0.91 0.89 0.89 38\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/opt/conda/lib/python3.6/site-packages/sklearn/model_selection/_search.py:667: DeprecationWarning: The grid_scores_ attribute was deprecated in version 0.18 in favor of the more elaborate cv_results_ attribute. The grid_scores_ attribute will not be available from 0.20\n",
|
||||
" DeprecationWarning)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Set the parameters by cross-validation\n",
|
||||
"\n",
|
||||
@ -1156,8 +444,11 @@
|
||||
" print()\n",
|
||||
" print(\"Grid scores on development set:\")\n",
|
||||
" print()\n",
|
||||
" for params, mean_score, scores in gs.grid_scores_:\n",
|
||||
" print(\"%0.3f (+/-%0.03f) for %r\" % (mean_score, scores.std() * 2, params))\n",
|
||||
" means = gs.cv_results_['mean_test_score']\n",
|
||||
" stds = gs.cv_results_['std_test_score']\n",
|
||||
"\n",
|
||||
" for mean_score, std_score, params in zip(means, stds, gs.cv_results_['params']):\n",
|
||||
" print(\"%0.3f (+/-%0.03f) for %r\" % (mean_score, std_score * 2, params))\n",
|
||||
" print()\n",
|
||||
"\n",
|
||||
" print(\"Detailed classification report:\")\n",
|
||||
@ -1172,26 +463,16 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Let's evaluate the resulting tuning."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Mean score: 0.907 (+/- 0.015)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# create a composite estimator made by a pipeline of preprocessing and the KNN model\n",
|
||||
"model = Pipeline([\n",
|
||||
@ -1251,7 +532,7 @@
|
||||
"source": [
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© 2016 Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
@ -1271,7 +552,24 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.3"
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@ -18,7 +18,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © 2016 Carlos A. Iglesias"
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -55,22 +55,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Pipeline(steps=[('scaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('KNN', KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n",
|
||||
" metric_params=None, n_jobs=1, n_neighbors=5, p=2,\n",
|
||||
" weights='uniform'))])"
|
||||
]
|
||||
},
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# load iris\n",
|
||||
"from sklearn import datasets\n",
|
||||
@ -106,20 +93,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"array([0])"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pickle\n",
|
||||
"s = pickle.dumps(model)\n",
|
||||
@ -136,10 +112,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# save model\n",
|
||||
@ -172,7 +146,7 @@
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© 2016 Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
@ -192,7 +166,24 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.3"
|
||||
"version": "3.6.7"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
File diff suppressed because one or more lines are too long
BIN
ml1/filename.pkl
Normal file
BIN
ml1/filename.pkl
Normal file
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 21 KiB After Width: | Height: | Size: 106 KiB |
@ -1,7 +1,7 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.colors import ListedColormap
|
||||
from sklearn.cross_validation import train_test_split
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
from sklearn.datasets import make_moons, make_circles, make_classification
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -84,25 +84,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"0 5\n",
|
||||
"1 10\n",
|
||||
"2 15\n",
|
||||
"dtype: int64"
|
||||
]
|
||||
},
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import pandas as pd\n",
|
||||
@ -124,25 +108,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"a 5\n",
|
||||
"b 10\n",
|
||||
"c 15\n",
|
||||
"dtype: int64"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"d = {'a': 5, 'b': 10, 'c': 15}\n",
|
||||
"s = Series(d)\n",
|
||||
@ -151,22 +119,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Index(['a', 'b', 'c'], dtype='object')"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We can get the list of indexes\n",
|
||||
"s.index"
|
||||
@ -174,22 +129,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"array([ 5, 10, 15])"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# and the values\n",
|
||||
"s.values"
|
||||
@ -204,28 +146,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Madrid 3141991\n",
|
||||
"Barcelona 1604555\n",
|
||||
"Valencia 786189\n",
|
||||
"Sevilla 693878\n",
|
||||
"Zaragoza 664953\n",
|
||||
"Malaga 569130\n",
|
||||
"dtype: int64"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Series with population in 2015 of more populated cities in Spain\n",
|
||||
"s = Series([3141991, 1604555, 786189, 693878, 664953, 569130], index=['Madrid', 'Barcelona', 'Valencia', 'Sevilla', \n",
|
||||
@ -235,22 +158,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"3141991"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Population of Madrid\n",
|
||||
"s['Madrid']"
|
||||
@ -272,28 +182,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Madrid True\n",
|
||||
"Barcelona True\n",
|
||||
"Valencia False\n",
|
||||
"Sevilla False\n",
|
||||
"Zaragoza False\n",
|
||||
"Malaga False\n",
|
||||
"dtype: bool"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Boolean condition\n",
|
||||
"s > 1000000"
|
||||
@ -301,24 +192,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Madrid 3141991\n",
|
||||
"Barcelona 1604555\n",
|
||||
"dtype: int64"
|
||||
]
|
||||
},
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Cities with population greater than 1.000.000\n",
|
||||
"s[s > 1000000]"
|
||||
@ -333,24 +209,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Madrid 3141991\n",
|
||||
"Barcelona 1604555\n",
|
||||
"dtype: int64"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Cities with population greater than the mean\n",
|
||||
"s[s > s.mean()]"
|
||||
@ -358,25 +219,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Madrid 3141991\n",
|
||||
"Barcelona 1604555\n",
|
||||
"Valencia 786189\n",
|
||||
"dtype: int64"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Cities with population greater than the median\n",
|
||||
"s[s > s.median()]"
|
||||
@ -384,28 +229,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Madrid True\n",
|
||||
"Barcelona True\n",
|
||||
"Valencia True\n",
|
||||
"Sevilla False\n",
|
||||
"Zaragoza False\n",
|
||||
"Malaga False\n",
|
||||
"dtype: bool"
|
||||
]
|
||||
},
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Check cities with a population greater than 700.000\n",
|
||||
"s > 700000"
|
||||
@ -413,25 +239,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Madrid 3141991\n",
|
||||
"Barcelona 1604555\n",
|
||||
"Valencia 786189\n",
|
||||
"dtype: int64"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# List cities with a population greater than 700.000\n",
|
||||
"s[s > 700000]"
|
||||
@ -439,28 +249,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Madrid True\n",
|
||||
"Barcelona True\n",
|
||||
"Valencia True\n",
|
||||
"Sevilla False\n",
|
||||
"Zaragoza False\n",
|
||||
"Malaga False\n",
|
||||
"dtype: bool"
|
||||
]
|
||||
},
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Another way to write the same boolean indexing selection\n",
|
||||
"bigger_than_700000 = s > 700000\n",
|
||||
@ -469,25 +260,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Madrid 3141991\n",
|
||||
"Barcelona 1604555\n",
|
||||
"Valencia 786189\n",
|
||||
"dtype: int64"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Cities with population > 700000\n",
|
||||
"s[bigger_than_700000]"
|
||||
@ -509,28 +284,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Madrid 1570995.5\n",
|
||||
"Barcelona 802277.5\n",
|
||||
"Valencia 393094.5\n",
|
||||
"Sevilla 346939.0\n",
|
||||
"Zaragoza 332476.5\n",
|
||||
"Malaga 284565.0\n",
|
||||
"dtype: float64"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Divide population by 2\n",
|
||||
"s / 2"
|
||||
@ -538,22 +294,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"1243449.3333333333"
|
||||
]
|
||||
},
|
||||
"execution_count": 16,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Get the average population\n",
|
||||
"s.mean()"
|
||||
@ -561,22 +304,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"3141991"
|
||||
]
|
||||
},
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Get the highest population\n",
|
||||
"s.max()"
|
||||
@ -598,28 +328,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Madrid 3320000\n",
|
||||
"Barcelona 1604555\n",
|
||||
"Valencia 786189\n",
|
||||
"Sevilla 693878\n",
|
||||
"Zaragoza 664953\n",
|
||||
"Malaga 569130\n",
|
||||
"dtype: int64"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Change population of one city\n",
|
||||
"s['Madrid'] = 3320000\n",
|
||||
@ -628,28 +339,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"Madrid 3652000.0\n",
|
||||
"Barcelona 1765010.5\n",
|
||||
"Valencia 864807.9\n",
|
||||
"Sevilla 693878.0\n",
|
||||
"Zaragoza 664953.0\n",
|
||||
"Malaga 569130.0\n",
|
||||
"dtype: float64"
|
||||
]
|
||||
},
|
||||
"execution_count": 19,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Increase by 10% cities with population greater than 700000\n",
|
||||
"s[s > 700000] = 1.1 * s[s > 700000]\n",
|
||||
@ -672,61 +364,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>one</th>\n",
|
||||
" <th>two</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>a</th>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>b</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>c</th>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>d</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" one two\n",
|
||||
"a 1.0 1.0\n",
|
||||
"b 2.0 2.0\n",
|
||||
"c 3.0 3.0\n",
|
||||
"d NaN 4.0"
|
||||
]
|
||||
},
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We are going to create a DataFrame from a dict of Series\n",
|
||||
"d = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),\n",
|
||||
@ -748,55 +388,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 21,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>one</th>\n",
|
||||
" <th>two</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>d</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>b</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>a</th>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" one two\n",
|
||||
"d NaN 4.0\n",
|
||||
"b 2.0 2.0\n",
|
||||
"a 1.0 1.0"
|
||||
]
|
||||
},
|
||||
"execution_count": 21,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We can filter\n",
|
||||
"df = DataFrame(d, index=['d', 'b', 'a'])\n",
|
||||
@ -812,55 +406,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>two</th>\n",
|
||||
" <th>three</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>d</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>b</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>a</th>\n",
|
||||
" <td>1.0</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" two three\n",
|
||||
"d 4.0 NaN\n",
|
||||
"b 2.0 NaN\n",
|
||||
"a 1.0 NaN"
|
||||
]
|
||||
},
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = DataFrame(d, index=['d', 'b', 'a'], columns=['two', 'three'])\n",
|
||||
"df"
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
@ -46,10 +46,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
@ -82,9 +80,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
@ -105,9 +101,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
@ -121,9 +115,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
@ -137,9 +129,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
@ -153,17 +143,13 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"How many passsengers have survived? List them grouped by Sex and Pclass.\n",
|
||||
"\n",
|
||||
@ -173,17 +159,13 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Visualise df_1 as an histogram."
|
||||
]
|
||||
@ -191,17 +173,13 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Feature Engineering"
|
||||
]
|
||||
@ -232,9 +210,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df['FamilySize'] = df['SibSp'] + df['Parch']\n",
|
||||
@ -258,9 +234,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df['Alone'] = (df.FamilySize == 0)\n",
|
||||
@ -284,9 +258,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Taken from http://www.analyticsvidhya.com/blog/2014/09/data-munging-python-using-pandas-baby-steps-python/\n",
|
||||
@ -307,9 +279,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df['Salutation'].unique()"
|
||||
@ -318,9 +288,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df.groupby(['Salutation']).size()"
|
||||
@ -336,9 +304,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def group_salutation(old_salutation):\n",
|
||||
@ -362,9 +328,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Distribution\n",
|
||||
@ -375,9 +339,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df.boxplot(column='Age', by = 'Salutation', sym='k.')"
|
||||
@ -393,9 +355,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Specific features for Children and Female since there are more survivors\n",
|
||||
@ -413,9 +373,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Group ages to simplify machine learning algorithms. 0: 0-5, 1: 6-10, 2: 11-15, 3: 16-59 and 4: 60-80\n",
|
||||
@ -437,10 +395,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def substrings_in_string(big_string, substrings):\n",
|
||||
@ -475,9 +431,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df['FarePerPerson']= df['Fare'] / (df['FamilySize'] + 1)"
|
||||
@ -500,9 +454,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df['AgeClass']=df['Age']*df['Pclass']"
|
||||
|
File diff suppressed because one or more lines are too long
@ -19,11 +19,10 @@ samples.
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn import cross_validation
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
from sklearn.svm import SVC
|
||||
from sklearn.datasets import load_digits
|
||||
from sklearn.learning_curve import learning_curve
|
||||
from sklearn.model_selection import learning_curve
|
||||
|
||||
|
||||
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
|
||||
@ -53,7 +52,7 @@ def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
|
||||
cv : integer, cross-validation generator, optional
|
||||
If an integer is passed, it is the number of folds (defaults to 3).
|
||||
Specific cross-validation objects can be passed, see
|
||||
sklearn.cross_validation module for the list of possible objects
|
||||
sklearn.model_selection module for the list of possible objects
|
||||
|
||||
n_jobs : integer, optional
|
||||
Number of jobs to run in parallel (default 1).
|
||||
|
@ -72,9 +72,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"scrolled": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import random\n",
|
||||
|
@ -68,9 +68,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"review = \"\"\"I purchased this monitor because of budgetary concerns. This item was the most inexpensive 17 inch monitor \n",
|
||||
@ -111,9 +109,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import nltk\n",
|
||||
@ -171,9 +167,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from nltk.tokenize import sent_tokenize, word_tokenize\n",
|
||||
@ -199,10 +193,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"scrolled": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"words = [word_tokenize(t) for t in sent_tokenize(review)]\n",
|
||||
@ -219,9 +210,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"words = word_tokenize(review)\n",
|
||||
@ -239,9 +228,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from nltk.tokenize import TweetTokenizer\n",
|
||||
@ -268,9 +255,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from nltk.stem import PorterStemmer, LancasterStemmer, WordNetLemmatizer\n",
|
||||
@ -304,9 +289,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"As we can see, we get the forms *are* and *is* instead of *be*. This is because we have not introduce the Part-Of-Speech (POS), and the default POS is 'n' (name).\n",
|
||||
"\n",
|
||||
@ -316,9 +299,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"verbs = \"are crying is have has\"\n",
|
||||
@ -327,9 +308,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Depending of the application, we can select stemmers or lemmatizers. \n",
|
||||
"\n",
|
||||
@ -341,9 +320,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def preprocess(words, type='doc'):\n",
|
||||
@ -376,9 +353,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from nltk.corpus import stopwords\n",
|
||||
@ -390,9 +365,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def preprocess(words, type='doc'):\n",
|
||||
@ -428,9 +401,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import string\n",
|
||||
@ -474,9 +445,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"frec = nltk.FreqDist(nltk.word_tokenize(review))\n",
|
||||
|
@ -62,9 +62,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"review = \"\"\"I purchased this Dell monitor because of budgetary concerns. This item was the most inexpensive 17 inch Apple monitor \n",
|
||||
@ -110,9 +108,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from nltk import pos_tag, word_tokenize\n",
|
||||
@ -129,9 +125,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print (pos_tag(word_tokenize(review)))"
|
||||
@ -147,9 +141,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import nltk\n",
|
||||
@ -166,9 +158,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from nltk.stem import WordNetLemmatizer\n",
|
||||
@ -199,9 +189,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from nltk import ne_chunk, pos_tag, word_tokenize\n",
|
||||
@ -246,9 +234,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from nltk.app import srparser_app\n",
|
||||
@ -265,9 +251,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from nltk.app import rdparser_app\n",
|
||||
@ -288,9 +272,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from nltk.chunk.regexp import *\n",
|
||||
@ -316,9 +298,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def extractTrees(parsed_tree, category='NP'):\n",
|
||||
@ -330,9 +310,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def extractStrings(parsed_tree, category='NP'):\n",
|
||||
|
@ -60,9 +60,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"doc1 = 'Summer is coming but Summer is short'\n",
|
||||
@ -73,9 +71,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Tools"
|
||||
]
|
||||
@ -110,9 +106,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.feature_extraction.text import CountVectorizer\n",
|
||||
@ -123,9 +117,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"As we can see, [CountVectorizer](http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html#sklearn.feature_extraction.text.CountVectorizer) comes with many options. We can define many configuration options, such as the maximum or minimum frequency of a term (*min_fd*, *max_df*), maximum number of features (*max_features*), if we analyze words or characters (*analyzer*), or if the output is binary or not (*binary*). *CountVectorizer* also allows us to include if we want to preprocess the input (*preprocessor*) before tokenizing it (*tokenizer*) and exclude stop words (*stop_words*).\n",
|
||||
"\n",
|
||||
@ -137,9 +129,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectors = vectorizer.fit_transform(documents)\n",
|
||||
@ -148,9 +138,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"We see the vectors are stored as a sparse matrix of 3x6 dimensions.\n",
|
||||
"We can print the matrix as well as the feature names."
|
||||
@ -159,9 +147,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(vectors.toarray())\n",
|
||||
@ -170,9 +156,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"As you can see, the pronoun 'I' has been removed because of the default token_pattern. \n",
|
||||
"We can change this as follows."
|
||||
@ -181,9 +165,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorizer = CountVectorizer(analyzer=\"word\", stop_words=None, token_pattern='(?u)\\\\b\\\\w+\\\\b') \n",
|
||||
@ -201,9 +183,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorizer = CountVectorizer(analyzer=\"word\", stop_words='english', token_pattern='(?u)\\\\b\\\\w+\\\\b') \n",
|
||||
@ -214,9 +194,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#stop words in scikit-learn for English\n",
|
||||
@ -226,9 +204,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Vectors\n",
|
||||
@ -246,9 +222,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from scipy.spatial.distance import cosine\n",
|
||||
@ -275,9 +249,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorizer = CountVectorizer(analyzer=\"word\", stop_words='english', binary=True) \n",
|
||||
@ -288,9 +260,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectors.toarray()"
|
||||
@ -313,9 +283,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectorizer = CountVectorizer(analyzer=\"word\", stop_words='english', ngram_range=[2,2]) \n",
|
||||
@ -326,9 +294,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectors.toarray()"
|
||||
@ -351,9 +317,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||||
@ -366,9 +330,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectors.toarray()"
|
||||
@ -384,9 +346,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train = [doc1, doc2, doc3]\n",
|
||||
@ -400,10 +360,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"scrolled": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vectors.toarray()"
|
||||
@ -419,9 +376,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
||||
@ -445,9 +400,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.metrics.pairwise import linear_kernel\n",
|
||||
|
@ -74,19 +74,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware', 'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles', 'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian', 'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc', 'talk.religion.misc']\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.datasets import fetch_20newsgroups\n",
|
||||
"\n",
|
||||
@ -100,19 +90,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"20\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Number of categories\n",
|
||||
"print(len(newsgroups_train.target_names))"
|
||||
@ -120,28 +100,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Category id 4 comp.sys.mac.hardware\n",
|
||||
"Doc A fair number of brave souls who upgraded their SI clock oscillator have\n",
|
||||
"shared their experiences for this poll. Please send a brief message detailing\n",
|
||||
"your experiences with the procedure. Top speed attained, CPU rated speed,\n",
|
||||
"add on cards and adapters, heat sinks, hour of usage per day, floppy disk\n",
|
||||
"functionality with 800 and 1.4 m floppies are especially requested.\n",
|
||||
"\n",
|
||||
"I will be summarizing in the next two days, so please add to the network\n",
|
||||
"knowledge base if you have done the clock upgrade and haven't answered this\n",
|
||||
"poll. Thanks.\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Show a document\n",
|
||||
"docid = 1\n",
|
||||
@ -154,22 +115,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(11314,)"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Number of files\n",
|
||||
"newsgroups_train.filenames.shape"
|
||||
@ -177,30 +125,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/home/cif/anaconda3/lib/python3.5/site-packages/numpy/core/fromnumeric.py:2652: VisibleDeprecationWarning: `rank` is deprecated; use the `ndim` attribute or function instead. To find the rank of a matrix see `numpy.linalg.matrix_rank`.\n",
|
||||
" VisibleDeprecationWarning)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(11314, 101323)"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Obtain a vector\n",
|
||||
"\n",
|
||||
@ -214,22 +141,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"66.80510871486653"
|
||||
]
|
||||
},
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# The tf-idf vectors are very sparse with an average of 66 non zero components in 101.323 dimensions (.06%)\n",
|
||||
"vectors_train.nnz / float(vectors_train.shape[0])"
|
||||
@ -251,30 +165,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/home/cif/anaconda3/lib/python3.5/site-packages/numpy/core/fromnumeric.py:2652: VisibleDeprecationWarning: `rank` is deprecated; use the `ndim` attribute or function instead. To find the rank of a matrix see `numpy.linalg.matrix_rank`.\n",
|
||||
" VisibleDeprecationWarning)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"0.69545360719001303"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.naive_bayes import MultinomialNB\n",
|
||||
"\n",
|
||||
@ -302,20 +195,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"dimensionality: 101323\n",
|
||||
"density: 1.000000\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.utils.extmath import density\n",
|
||||
"\n",
|
||||
@ -325,38 +207,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"alt.atheism: islam atheists say just religion atheism think don people god\n",
|
||||
"comp.graphics: looking format 3d know program file files thanks image graphics\n",
|
||||
"comp.os.ms-windows.misc: card problem thanks driver drivers use files dos file windows\n",
|
||||
"comp.sys.ibm.pc.hardware: monitor disk thanks pc ide controller bus card scsi drive\n",
|
||||
"comp.sys.mac.hardware: know monitor does quadra simms thanks problem drive apple mac\n",
|
||||
"comp.windows.x: using windows x11r5 use application thanks widget server motif window\n",
|
||||
"misc.forsale: asking email sell price condition new shipping offer 00 sale\n",
|
||||
"rec.autos: don ford new good dealer just engine like cars car\n",
|
||||
"rec.motorcycles: don just helmet riding like motorcycle ride bikes dod bike\n",
|
||||
"rec.sport.baseball: braves players pitching hit runs games game baseball team year\n",
|
||||
"rec.sport.hockey: league year nhl games season players play hockey team game\n",
|
||||
"sci.crypt: people use escrow nsa keys government chip clipper encryption key\n",
|
||||
"sci.electronics: don thanks voltage used know does like circuit power use\n",
|
||||
"sci.med: skepticism cadre dsl banks chastity n3jxp pitt gordon geb msg\n",
|
||||
"sci.space: just lunar earth shuttle like moon launch orbit nasa space\n",
|
||||
"soc.religion.christian: believe faith christian christ bible people christians church jesus god\n",
|
||||
"talk.politics.guns: just law firearms government fbi don weapons people guns gun\n",
|
||||
"talk.politics.mideast: said arabs arab turkish people armenians armenian jews israeli israel\n",
|
||||
"talk.politics.misc: know state clinton president just think tax don government people\n",
|
||||
"talk.religion.misc: think don koresh objective christians bible people christian jesus god\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We can review the top features per topic in Bayes (attribute coef_)\n",
|
||||
"import numpy as np\n",
|
||||
@ -373,28 +226,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[ 2 15]\n",
|
||||
"['comp.os.ms-windows.misc', 'soc.religion.christian']\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/home/cif/anaconda3/lib/python3.5/site-packages/numpy/core/fromnumeric.py:2652: VisibleDeprecationWarning: `rank` is deprecated; use the `ndim` attribute or function instead. To find the rank of a matrix see `numpy.linalg.matrix_rank`.\n",
|
||||
" VisibleDeprecationWarning)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We try the classifier in two new docs\n",
|
||||
"\n",
|
||||
|
@ -77,9 +77,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.datasets import fetch_20newsgroups\n",
|
||||
@ -123,9 +121,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from gensim import matutils\n",
|
||||
@ -152,10 +148,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from gensim.models.ldamodel import LdaModel\n",
|
||||
@ -169,9 +163,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check the topics\n",
|
||||
@ -188,9 +180,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# import the gensim.corpora module to generate dictionary\n",
|
||||
@ -222,9 +212,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# You can save the dictionary\n",
|
||||
@ -236,9 +224,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Generate a list of docs, where each doc is a list of words\n",
|
||||
@ -249,9 +235,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# import the gensim.corpora module to generate dictionary\n",
|
||||
@ -263,9 +247,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# You can optionally save the dictionary \n",
|
||||
@ -277,9 +259,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We can print the dictionary, it is a mappying of id and tokens\n",
|
||||
@ -290,9 +270,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# construct the corpus representing each document as a bag-of-words (bow) vector\n",
|
||||
@ -302,9 +280,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from gensim.models import TfidfModel\n",
|
||||
@ -317,9 +293,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#print tf-idf of first document\n",
|
||||
@ -329,9 +303,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from gensim.models.ldamodel import LdaModel\n",
|
||||
@ -344,9 +316,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check the topics\n",
|
||||
@ -356,9 +326,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check the lsa vector for the first document\n",
|
||||
@ -369,9 +337,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#predict topics of a new doc\n",
|
||||
@ -384,9 +350,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#transform into LDA space\n",
|
||||
@ -397,9 +361,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# print the document's single most prominent LDA topic\n",
|
||||
@ -409,9 +371,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"lda_vector_tfidf = lda_model[tfidf_model[bow_vector]]\n",
|
||||
@ -430,9 +390,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from gensim.models.lsimodel import LsiModel\n",
|
||||
@ -448,9 +406,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check the topics\n",
|
||||
@ -460,9 +416,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# check the lsi vector for the first document\n",
|
||||
|
@ -123,183 +123,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>essay_id</th>\n",
|
||||
" <th>essay_set</th>\n",
|
||||
" <th>essay</th>\n",
|
||||
" <th>rater1_domain1</th>\n",
|
||||
" <th>rater2_domain1</th>\n",
|
||||
" <th>rater3_domain1</th>\n",
|
||||
" <th>domain1_score</th>\n",
|
||||
" <th>rater1_domain2</th>\n",
|
||||
" <th>rater2_domain2</th>\n",
|
||||
" <th>domain2_score</th>\n",
|
||||
" <th>...</th>\n",
|
||||
" <th>rater2_trait3</th>\n",
|
||||
" <th>rater2_trait4</th>\n",
|
||||
" <th>rater2_trait5</th>\n",
|
||||
" <th>rater2_trait6</th>\n",
|
||||
" <th>rater3_trait1</th>\n",
|
||||
" <th>rater3_trait2</th>\n",
|
||||
" <th>rater3_trait3</th>\n",
|
||||
" <th>rater3_trait4</th>\n",
|
||||
" <th>rater3_trait5</th>\n",
|
||||
" <th>rater3_trait6</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Dear local newspaper, I think effects computer...</td>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>8</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Dear @CAPS1 @CAPS2, I believe that using compu...</td>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>9</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Dear, @CAPS1 @CAPS2 @CAPS3 More and more peopl...</td>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>7</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Dear Local Newspaper, @CAPS1 I have found that...</td>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>10</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>...</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"<p>4 rows × 28 columns</p>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" essay_id essay_set essay \\\n",
|
||||
"0 1 1 Dear local newspaper, I think effects computer... \n",
|
||||
"1 2 1 Dear @CAPS1 @CAPS2, I believe that using compu... \n",
|
||||
"2 3 1 Dear, @CAPS1 @CAPS2 @CAPS3 More and more peopl... \n",
|
||||
"3 4 1 Dear Local Newspaper, @CAPS1 I have found that... \n",
|
||||
"\n",
|
||||
" rater1_domain1 rater2_domain1 rater3_domain1 domain1_score \\\n",
|
||||
"0 4 4 NaN 8 \n",
|
||||
"1 5 4 NaN 9 \n",
|
||||
"2 4 3 NaN 7 \n",
|
||||
"3 5 5 NaN 10 \n",
|
||||
"\n",
|
||||
" rater1_domain2 rater2_domain2 domain2_score ... \\\n",
|
||||
"0 NaN NaN NaN ... \n",
|
||||
"1 NaN NaN NaN ... \n",
|
||||
"2 NaN NaN NaN ... \n",
|
||||
"3 NaN NaN NaN ... \n",
|
||||
"\n",
|
||||
" rater2_trait3 rater2_trait4 rater2_trait5 rater2_trait6 rater3_trait1 \\\n",
|
||||
"0 NaN NaN NaN NaN NaN \n",
|
||||
"1 NaN NaN NaN NaN NaN \n",
|
||||
"2 NaN NaN NaN NaN NaN \n",
|
||||
"3 NaN NaN NaN NaN NaN \n",
|
||||
"\n",
|
||||
" rater3_trait2 rater3_trait3 rater3_trait4 rater3_trait5 rater3_trait6 \n",
|
||||
"0 NaN NaN NaN NaN NaN \n",
|
||||
"1 NaN NaN NaN NaN NaN \n",
|
||||
"2 NaN NaN NaN NaN NaN \n",
|
||||
"3 NaN NaN NaN NaN NaN \n",
|
||||
"\n",
|
||||
"[4 rows x 28 columns]"
|
||||
]
|
||||
},
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
@ -311,44 +137,18 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(12976, 28)"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df_orig.shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(1783, 3)"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We filter the data of the essay_set number 1, and we keep only two columns for this \n",
|
||||
"# example\n",
|
||||
@ -359,83 +159,17 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>essay_id</th>\n",
|
||||
" <th>essay</th>\n",
|
||||
" <th>domain1_score</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>Dear local newspaper, I think effects computer...</td>\n",
|
||||
" <td>8</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2</td>\n",
|
||||
" <td>Dear @CAPS1 @CAPS2, I believe that using compu...</td>\n",
|
||||
" <td>9</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>3</td>\n",
|
||||
" <td>Dear, @CAPS1 @CAPS2 @CAPS3 More and more peopl...</td>\n",
|
||||
" <td>7</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>4</td>\n",
|
||||
" <td>Dear Local Newspaper, @CAPS1 I have found that...</td>\n",
|
||||
" <td>10</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>5</td>\n",
|
||||
" <td>Dear @LOCATION1, I know having computers has a...</td>\n",
|
||||
" <td>8</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" essay_id essay domain1_score\n",
|
||||
"0 1 Dear local newspaper, I think effects computer... 8\n",
|
||||
"1 2 Dear @CAPS1 @CAPS2, I believe that using compu... 9\n",
|
||||
"2 3 Dear, @CAPS1 @CAPS2 @CAPS3 More and more peopl... 7\n",
|
||||
"3 4 Dear Local Newspaper, @CAPS1 I have found that... 10\n",
|
||||
"4 5 Dear @LOCATION1, I know having computers has a... 8"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df[0:5]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Define X and Y\n",
|
||||
@ -468,10 +202,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Generic Transformer \n",
|
||||
@ -509,10 +241,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Sample of statistics using nltk\n",
|
||||
@ -541,10 +271,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.base import BaseEstimator, TransformerMixin\n",
|
||||
@ -581,10 +309,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.base import BaseEstimator, TransformerMixin\n",
|
||||
@ -635,10 +361,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.pipeline import Pipeline, FeatureUnion\n",
|
||||
@ -674,23 +398,12 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 37,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Scores in every iteration [ 0.39798206 0.27497194]\n",
|
||||
"Accuracy: 0.34 (+/- 0.12)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from sklearn.naive_bayes import MultinomialNB\n",
|
||||
"from sklearn.cross_validation import cross_val_score, KFold\n",
|
||||
"from sklearn.model_selection import cross_val_score, KFold\n",
|
||||
"from sklearn.metrics import classification_report\n",
|
||||
"from sklearn.feature_extraction import DictVectorizer\n",
|
||||
"from sklearn.preprocessing import FunctionTransformer\n",
|
||||
@ -726,7 +439,7 @@
|
||||
"\n",
|
||||
"# Using KFold validation\n",
|
||||
"\n",
|
||||
"cv = KFold(X.shape[0], 2, shuffle=True, random_state=33)\n",
|
||||
"cv = KFold(2, shuffle=True, random_state=33)\n",
|
||||
"scores = cross_val_score(pipeline, X, y, cv=cv)\n",
|
||||
"print(\"Scores in every iteration\", scores)\n",
|
||||
"print(\"Accuracy: %0.2f (+/- %0.2f)\" % (scores.mean(), scores.std() * 2))"
|
||||
@ -734,9 +447,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The result is not very good :(."
|
||||
]
|
||||
@ -789,9 +500,9 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.1"
|
||||
"version": "3.6.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
|
@ -117,9 +117,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Example: we use Jupyter as a calculator, let's execute 2+2"
|
||||
]
|
||||
@ -140,20 +138,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"4"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"2+2"
|
||||
]
|
||||
|
@ -39,31 +39,16 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Booleans"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"False"
|
||||
]
|
||||
},
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"True and False # operations with booleans"
|
||||
]
|
||||
@ -71,9 +56,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"not True"
|
||||
@ -82,9 +65,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"True or False"
|
||||
@ -111,9 +92,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"2 + 2 # 2 plus 2 (integers)"
|
||||
@ -122,9 +101,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"2.0 * 3.0 # 2.0 times 3.0 (floats)"
|
||||
@ -133,9 +110,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"2.0 ** 4.0 # 2.0 to the power of 4 (float)"
|
||||
@ -144,9 +119,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"(3 + 4j) + (5 + 5j) #add two complex numbers"
|
||||
@ -155,9 +128,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"10 / 3 # classic division"
|
||||
@ -166,9 +137,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"10 // 3 # floor division"
|
||||
@ -177,9 +146,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"10 % 3 # remainder"
|
||||
@ -188,9 +155,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"10e158*17e158 #overflow shown as 'inf', infinitive"
|
||||
@ -199,9 +164,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(10)"
|
||||
@ -210,9 +173,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(2 + 3j)"
|
||||
@ -221,9 +182,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(2.1)"
|
||||
@ -232,9 +191,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(2E3)"
|
||||
@ -249,9 +206,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Strings are **immutable sequences** of Unicode code points.\n",
|
||||
"\n",
|
||||
@ -261,9 +216,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\"This is a string\""
|
||||
@ -272,9 +225,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"'This is also a string'"
|
||||
@ -283,9 +234,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\"This is a string containing single quotes 'hi'\""
|
||||
@ -294,9 +243,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"'This is string containing double quotes \"hi\"'"
|
||||
@ -305,9 +252,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"'''This is \n",
|
||||
@ -328,9 +273,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\"String with special characters: \\n newline, \\a beep and \\\\ slash\""
|
||||
@ -339,9 +282,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\"concatenate \" + \"two strings\" #use of '+' for concatenating two strings"
|
||||
@ -350,9 +291,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"len('hola') # length of a string"
|
||||
@ -361,9 +300,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(\"hola\")"
|
||||
@ -379,9 +316,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s = \"hola\" # assign the string value \"hola\" to the variable s"
|
||||
@ -390,9 +325,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s # get the value of s"
|
||||
@ -401,9 +334,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s[0]"
|
||||
@ -412,9 +343,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s[1]"
|
||||
@ -423,9 +352,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s[3]"
|
||||
@ -434,9 +361,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s [-1] # we can start from the beginning (index 0, 1, 2, ...) or from the last position (-1, -2, ...)"
|
||||
@ -452,9 +377,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s[0:2] #slice [0,2)"
|
||||
@ -463,9 +386,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s[:2] #slice [0,2)"
|
||||
@ -474,9 +395,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s[:] #slice [0, len(s)]"
|
||||
@ -485,9 +404,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s[:-2]"
|
||||
@ -496,9 +413,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s[-4:-2]"
|
||||
@ -518,9 +433,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"se = \"This is a string\""
|
||||
@ -529,9 +442,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"se[::1] # moves from 0 to len, and the index is incremented by 1"
|
||||
@ -540,9 +451,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"se[0:14:2] #take the even indexed characters from 0 to 14"
|
||||
@ -551,9 +460,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"se[::-1] #reverse the string"
|
||||
@ -562,9 +469,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"se[:4:-1]"
|
||||
@ -580,9 +485,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"a = 'b'"
|
||||
@ -591,9 +494,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"se + \" plus \" + se + \" plus \"+ a*3"
|
||||
@ -611,9 +512,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s.lower()"
|
||||
@ -622,9 +521,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s.upper()"
|
||||
@ -633,9 +530,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s.split('o') # splits String "
|
||||
@ -660,9 +555,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"\"hohoho\".split('h')"
|
||||
@ -671,9 +564,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(\"hohoho\".split('h'))"
|
||||
|
@ -42,9 +42,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Lists"
|
||||
]
|
||||
@ -52,9 +50,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l = [1, 2, 3, 4, 5, 6]"
|
||||
@ -63,9 +59,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l"
|
||||
@ -74,9 +68,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l[0:3] # we can use slicing in sequence types"
|
||||
@ -85,9 +77,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"other_list = [1, 0.0, \"hola\"] #lists can have elements of different types"
|
||||
@ -96,9 +86,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"other_list"
|
||||
@ -107,9 +95,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l + other_list # we can add lists (append)"
|
||||
@ -118,9 +104,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l * 3 # we can add n times a list"
|
||||
@ -129,9 +113,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"len(l) # length of a list (as Strings)"
|
||||
@ -140,9 +122,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l.append(7) #append at the end of the list. Check help with Shift-tab, and methods with tab"
|
||||
@ -151,9 +131,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l"
|
||||
@ -162,9 +140,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l.pop() # remove last element"
|
||||
@ -173,9 +149,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l"
|
||||
@ -184,9 +158,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l.pop(2) # remove element at index 2"
|
||||
@ -195,9 +167,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l"
|
||||
@ -206,18 +176,14 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l.insert(2,3) # insert at index 2 the value 3"
|
||||
@ -226,9 +192,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l"
|
||||
@ -237,9 +201,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l.reverse()"
|
||||
@ -248,9 +210,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l"
|
||||
@ -259,9 +219,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l.sort()"
|
||||
@ -270,9 +228,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l"
|
||||
@ -281,9 +237,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l.remove(3) # remove first ocurrence of 3 from l. Remember: remove (element) vs pop(index)"
|
||||
@ -292,9 +246,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l"
|
||||
@ -303,9 +255,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l[0] = 0 # lists are mutable"
|
||||
@ -314,9 +264,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l"
|
||||
@ -325,9 +273,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"2 in l # check if an element is in a list"
|
||||
@ -336,9 +282,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"7 in l # check if an element is in a list "
|
||||
@ -347,9 +291,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"4 not in l # check if an element is not in a list"
|
||||
@ -358,9 +300,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l.index(4) # search for an item"
|
||||
@ -369,9 +309,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l.index(-1) # search for an item, error since it is not in the list"
|
||||
@ -380,9 +318,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"matrix = [[1,2], [3,4]] # matrix"
|
||||
@ -391,9 +327,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"matrix"
|
||||
@ -402,9 +336,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"matrix[0][0]"
|
||||
@ -413,9 +345,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"matrix[0][1]"
|
||||
@ -424,9 +354,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(matrix)"
|
||||
@ -455,9 +383,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tuple = ('a', 1)"
|
||||
@ -466,9 +392,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tuple"
|
||||
@ -476,9 +400,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Tuples implement all the common [sequence operators](https://docs.python.org/3/library/stdtypes.html#typesseq-common), such as slicing, concatenation, len, etc."
|
||||
]
|
||||
@ -486,9 +408,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tuple[::-1]"
|
||||
@ -497,9 +417,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"len(tuple)"
|
||||
@ -508,9 +426,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tuple * 2 + ('b', 'c', 2.1, True)"
|
||||
@ -519,9 +435,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tuple[1]"
|
||||
@ -530,9 +444,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"tuple[1] = 2 # Error, tuples are inmutable"
|
||||
@ -541,9 +453,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(tuple)"
|
||||
@ -558,9 +468,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"A [range](https://docs.python.org/3/library/stdtypes.html#range) represents an immutable sequence of numbers. Ranges are created with two constructors: *range(stop)* or *range(start, stop, [step])*. \n",
|
||||
"\n",
|
||||
@ -569,10 +477,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"r = range(10)"
|
||||
@ -580,66 +486,27 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"range(0, 10)"
|
||||
]
|
||||
},
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"r"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"True"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"5 in r # check if a number is in a range"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"2"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"r[2] # Get a value"
|
||||
]
|
||||
@ -647,9 +514,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(r)"
|
||||
@ -658,9 +523,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"list(range(10))"
|
||||
@ -669,9 +532,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"list(range(1,10,2))"
|
||||
|
@ -42,9 +42,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Sets"
|
||||
]
|
||||
@ -52,9 +50,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_set = set() #create a set\n",
|
||||
@ -64,9 +60,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_set.add(1) # add an element\n",
|
||||
@ -76,9 +70,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_set.add(2) # add another element"
|
||||
@ -87,9 +79,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_set"
|
||||
@ -98,9 +88,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_set.add(3) # add another one\n",
|
||||
@ -110,9 +98,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_set.add(1) #try to add a repeated element\n",
|
||||
@ -122,9 +108,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s2 = set(range(10)) # we can create a set from a range\n",
|
||||
@ -134,9 +118,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"l = ['a', 'a', 'b', 'c', 'c', 'c']"
|
||||
@ -145,9 +127,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s3 = set(l) # if we create a set from a list, elements are not repeated\n",
|
||||
@ -157,9 +137,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"len(s3) "
|
||||
@ -168,9 +146,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"s3.union(s2) # we can use set methods: union(), intersection(), difference(), ..."
|
||||
@ -179,9 +155,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"3 in my_set #check membership"
|
||||
@ -190,9 +164,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(s3)"
|
||||
@ -208,9 +180,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_dictionary = {'key1': 1, 'key2': 2, 'key3': 3} # pairs of key-value mappings\n",
|
||||
@ -220,9 +190,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_dictionary['key1'] #retrieve a value given a key"
|
||||
@ -231,9 +199,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_dict = dict()\n",
|
||||
@ -246,9 +212,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_dict == my_dictionary # check if both dictionaries are equal"
|
||||
@ -257,9 +221,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_dict2 = {'one': {'two': {'three': 'Nested dict'}}} #nested dictionary\n",
|
||||
@ -269,9 +231,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_dict2['one']['two']['three'] #access the value"
|
||||
@ -279,9 +239,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Dictionaries have different methods, check them with Tab."
|
||||
]
|
||||
@ -289,9 +247,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_dict.keys() # in Python3 we get a View object that changes when the dictionary changes"
|
||||
@ -300,9 +256,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"list(my_dict.keys()) # we can convert it to a list, we see dicionaries are unordered"
|
||||
@ -311,9 +265,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"my_dict.values()"
|
||||
@ -322,9 +274,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"list(my_dict.values())"
|
||||
@ -333,9 +283,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(my_dict)"
|
||||
|
@ -59,31 +59,16 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 1. Conditional statements: if, elif, else"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"6"
|
||||
]
|
||||
},
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import random # import random before using it\n",
|
||||
"x = random.randrange(1, 10) # generate a random integer between [1, 10] (both included)\n",
|
||||
@ -93,9 +78,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Execute several times in order the previous cell and this one\n",
|
||||
@ -110,9 +93,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Only one branch\n",
|
||||
@ -125,9 +106,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Python has no switch statement for multiple branches\n",
|
||||
@ -158,9 +137,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# for with ranges\n",
|
||||
@ -171,9 +148,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# for with lists\n",
|
||||
@ -185,9 +160,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# for with tuples\n",
|
||||
@ -199,9 +172,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# for with dictionaries\n",
|
||||
@ -213,9 +184,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We get only the keys. If we want the pairs we need to create a generator (we will see this later)\n",
|
||||
@ -233,9 +202,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"x = 5\n",
|
||||
@ -247,9 +214,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Else is optional\n",
|
||||
@ -261,9 +226,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### 2.3. Break, continue, pass\n",
|
||||
"\n",
|
||||
@ -277,9 +240,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Example find an element, else executed at the end\n",
|
||||
@ -295,9 +256,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Example else\n",
|
||||
@ -313,9 +272,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We improve above code with break\n",
|
||||
@ -333,9 +290,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We improve above code with break\n",
|
||||
@ -353,9 +308,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Print numbers from 0 to 15 which are not multiple of 3\n",
|
||||
@ -368,9 +321,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Find the first occurrence of an element in a list\n",
|
||||
@ -387,9 +338,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Example of pass, when we do not want to do anything\n",
|
||||
@ -418,9 +367,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Syntax: first what we want to include in the list (x) and then how to obtain x\n",
|
||||
@ -432,9 +379,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# list = {x² : x in {0 ... 9}}\n",
|
||||
@ -445,9 +390,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# list = {x² : x in {0 ... 9}, x is even}\n",
|
||||
|
@ -42,9 +42,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def sum(a, b):\n",
|
||||
@ -56,9 +54,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#keyword parameters\n",
|
||||
@ -69,9 +65,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def greetings():\n",
|
||||
@ -85,9 +79,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We can assign a function to a variable. Fun\n",
|
||||
@ -97,9 +89,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(d)"
|
||||
@ -108,9 +98,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(greetings)"
|
||||
@ -127,9 +115,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def reverse(l):\n",
|
||||
@ -154,9 +140,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def sum(a, b=0):\n",
|
||||
@ -175,9 +159,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#variable number of arguments: *\n",
|
||||
@ -194,9 +176,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Packing \n",
|
||||
@ -209,9 +189,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Lambda functions\n",
|
||||
"\n",
|
||||
@ -221,9 +199,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def sq(x):\n",
|
||||
@ -264,9 +240,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"print(1, 2, 3, 4)\n",
|
||||
@ -285,13 +259,11 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import math\n",
|
||||
"print('Number: {},{}'.format(1, 2)) #replaces [] inside the string by the arguments of format\n",
|
||||
"print('Number: {},{}'.format(1, 2)) #replaces {} inside the string by the arguments of format\n",
|
||||
"print('PI #{}#'.format(math.pi))\n",
|
||||
"print('PI #{:5.2f}#'.format(math.pi)) # at least 5 characters with two decimals"
|
||||
]
|
||||
@ -308,9 +280,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"num = input('Enter a number ')\n",
|
||||
|
@ -51,9 +51,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"a = 2\n",
|
||||
@ -74,9 +72,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"type(a)"
|
||||
@ -103,9 +99,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"a = 'd'\n",
|
||||
@ -115,9 +109,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"a = 'd' + 3\n",
|
||||
@ -126,18 +118,14 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## 2. Mutability"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Objects whose value can change are said to be **mutable**; objects whose value is unchangeable once they are created are called **immutable**.\n",
|
||||
"\n",
|
||||
@ -148,9 +136,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Exercise mutable type\n",
|
||||
@ -166,9 +152,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Exercise mutable type\n",
|
||||
@ -182,9 +166,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Exercise mutable type\n",
|
||||
@ -200,9 +182,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Exercise mutable type\n",
|
||||
@ -225,9 +205,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Example of a local variable\n",
|
||||
@ -246,9 +224,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Access global variables\n",
|
||||
@ -275,9 +251,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"NUMBER_OF_LIFES = 5\n",
|
||||
@ -322,9 +296,9 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.5.1"
|
||||
"version": "3.6.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
|
@ -46,10 +46,8 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Example class declaration\n",
|
||||
@ -67,29 +65,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"<__main__.TV_Set object at 0x7fec69171860> off\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"__main__.TV_Set"
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Example object instantiation\n",
|
||||
"\n",
|
||||
@ -100,19 +78,9 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Samsung on\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Call on method\n",
|
||||
"my_tv.on()\n",
|
||||
@ -132,9 +100,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"#Example class declaration\n",
|
||||
@ -174,9 +140,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Person:\n",
|
||||
@ -192,9 +156,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Example __str(self)__\n",
|
||||
@ -235,9 +197,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Now we could change the age of Pedro to a negative value\n",
|
||||
@ -255,9 +215,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class Person:\n",
|
||||
|
@ -40,9 +40,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Example SyntaxError - missing semicolon in while\n",
|
||||
@ -61,9 +59,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Example TypeError - wrong use of '+' with different types\n",
|
||||
@ -73,10 +69,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"scrolled": true
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Example NameError: variable not defined\n",
|
||||
@ -98,9 +91,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Example\n",
|
||||
@ -116,9 +107,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Example with finally\n",
|
||||
@ -135,9 +124,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Example with else and finally\n",
|
||||
@ -164,9 +151,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def add(a, b):\n",
|
||||
|
@ -46,9 +46,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# We can import the module plural with import, but we should use the full name\n",
|
||||
@ -59,9 +57,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import babel.messages.plurals\n",
|
||||
@ -71,9 +67,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from babel.messages import plurals # with from-import, we can use the short name\n",
|
||||
@ -83,9 +77,7 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": false
|
||||
},
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from babel.messages.plurals import get_plural # now we can use directly get_plural()\n",
|
||||
|
Loading…
Reference in New Issue
Block a user