mirror of
https://github.com/gsi-upm/sitc
synced 2025-01-06 19:21:29 +00:00
Compare commits
15 Commits
dc23b178d7
...
78e62af098
Author | SHA1 | Date | |
---|---|---|---|
|
78e62af098 | ||
|
3f5eba3e84 | ||
|
2de1cda8f1 | ||
|
cc442c35f3 | ||
|
1100c352fa | ||
|
9b573d292d | ||
|
dd8a4f50d8 | ||
|
47148f2ccc | ||
|
8ffda8123a | ||
|
6629837e7d | ||
|
ba08a9a264 | ||
|
4b8fd30f42 | ||
|
d879369930 | ||
|
4da01f3ae6 | ||
|
da9a01e26b |
@ -71,7 +71,6 @@
|
||||
"source": [
|
||||
"* [Scikit-learn web page](http://scikit-learn.org/stable/)\n",
|
||||
"* [Scikit-learn videos](http://blog.kaggle.com/author/kevin-markham/) and [notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n",
|
||||
"* [scikit-learn : Machine Learning Simplified](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), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
|
||||
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019."
|
||||
]
|
||||
},
|
||||
|
@ -63,9 +63,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [Scikit-learn web page](http://scikit-learn.org/stable/)\n",
|
||||
"* [Scikit-learn videos](http://blog.kaggle.com/author/kevin-markham/) and [notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n",
|
||||
"* [scikit-learn : Machine Learning Simplified](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
|
||||
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019."
|
||||
"* [Scikit-learn videos](http://blog.kaggle.com/author/kevin-markham/) and [notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -228,7 +228,6 @@
|
||||
"source": [
|
||||
"* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n",
|
||||
"* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n",
|
||||
"* [Mastering Pandas](https://learning.oreilly.com/library/view/mastering-pandas/9781789343236/), Femi Anthony, Packt Publishing, 2015.\n",
|
||||
"* [Matplotlib web page](http://matplotlib.org/index.html)\n",
|
||||
"* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n",
|
||||
"* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)\n",
|
||||
|
@ -408,7 +408,6 @@
|
||||
"source": [
|
||||
"* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n",
|
||||
"* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n",
|
||||
"* [Mastering Pandas](https://learning.oreilly.com/library/view/mastering-pandas/9781789343236/), Femi Anthony, Packt Publishing, 2015.\n",
|
||||
"* [Matplotlib web page](http://matplotlib.org/index.html)\n",
|
||||
"* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n",
|
||||
"* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)\n",
|
||||
|
@ -163,7 +163,6 @@
|
||||
"source": [
|
||||
"* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n",
|
||||
"* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n",
|
||||
"* [Mastering Pandas](https://learning.oreilly.com/library/view/mastering-pandas/9781789343236/), Femi Anthony, Packt Publishing, 2015.\n",
|
||||
"* [Matplotlib web page](http://matplotlib.org/index.html)\n",
|
||||
"* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n",
|
||||
"* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)"
|
||||
|
@ -154,7 +154,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [General concepts of machine learning with scikit-learn](https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/auto_examples/tutorial/plot_ML_flow_chart.html)\n",
|
||||
"* [Python Data Science Handbook](https://jakevdp.github.io/PythonDataScienceHandbook/index.html)\n",
|
||||
"* [A Tour of Machine Learning Algorithms](http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/)"
|
||||
]
|
||||
},
|
||||
|
@ -379,8 +379,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [KNeighborsClassifier API scikit-learn](http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)\n",
|
||||
"* [Learning scikit-learn: Machine Learning in Python](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2013.\n"
|
||||
"* [KNeighborsClassifier API scikit-learn](http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -509,8 +509,6 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [Plot the decision surface of a decision tree on the iris dataset](https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html)\n",
|
||||
"* [scikit-learn : Machine Learning Simplified](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
|
||||
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019.\n",
|
||||
"* [Parameter estimation using grid search with cross-validation](https://scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_digits.html)\n",
|
||||
"* [Decision trees in python with scikit-learn and pandas](http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html)"
|
||||
]
|
||||
|
@ -518,8 +518,6 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [Plot the decision surface of a decision tree on the iris dataset](https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html)\n",
|
||||
"* [scikit-learn : Machine Learning Simplified](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
|
||||
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019.\n",
|
||||
"* [Hyperparameter estimation using grid search with cross-validation](http://scikit-learn.org/stable/auto_examples/model_selection/grid_search_digits.html)\n",
|
||||
"* [Decision trees in python with scikit-learn and pandas](http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html)"
|
||||
]
|
||||
|
@ -47,7 +47,7 @@ def get_code(tree, feature_names, target_names,
|
||||
|
||||
recurse(left, right, threshold, features, 0, 0)
|
||||
|
||||
# Taken from http://scikit-learn.org/stable/auto_examples/tree/plot_iris.html#example-tree-plot-iris-py
|
||||
# Taken from https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
@ -114,4 +114,4 @@ def plot_tree_iris():
|
||||
|
||||
plt.suptitle("Decision surface of a decision tree using paired features")
|
||||
plt.legend()
|
||||
plt.show()
|
||||
plt.show()
|
||||
|
@ -74,9 +74,7 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [IPython Notebook Tutorial for Titanic: Machine Learning from Disaster](https://www.kaggle.com/c/titanic/forums/t/5105/ipython-notebook-tutorial-for-titanic-machine-learning-from-disaster)\n",
|
||||
"* [Scikit-learn videos and notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n",
|
||||
"* [Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits](https://learning.oreilly.com/library/view/hands-on-machine-learning/9781838826048/), Tarek Amr, Packt Publishing, 2020.\n",
|
||||
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka and Vahid Mirjalili, Packt Publishing, 2019."
|
||||
"* [Scikit-learn videos and notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -213,8 +213,7 @@
|
||||
"* [Pandas API input-output](http://pandas.pydata.org/pandas-docs/stable/api.html#input-output)\n",
|
||||
"* [Pandas API - pandas.read_csv](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html)\n",
|
||||
"* [DataFrame](http://pandas.pydata.org/pandas-docs/stable/dsintro.html)\n",
|
||||
"* [An introduction to NumPy and Scipy](https://sites.engineering.ucsb.edu/~shell/che210d/numpy.pdf)\n",
|
||||
"* [NumPy tutorial](https://numpy.org/doc/stable/)"
|
||||
"* [An introduction to NumPy and Scipy](https://sites.engineering.ucsb.edu/~shell/che210d/numpy.pdf)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -433,7 +433,6 @@
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"* [Pandas](http://pandas.pydata.org/)\n",
|
||||
"* [Learning Pandas, Michael Heydt, Packt Publishing, 2017](https://learning.oreilly.com/library/view/learning-pandas/9781787123137/)\n",
|
||||
"* [Pandas. Introduction to Data Structures](https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html)\n",
|
||||
"* [Introducing Pandas Objects](https://www.oreilly.com/learning/introducing-pandas-objects)\n",
|
||||
"* [Boolean Operators in Pandas](https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-operators)"
|
||||
|
@ -373,8 +373,8 @@
|
||||
"source": [
|
||||
"#Mean age of passengers per Passenger class\n",
|
||||
"\n",
|
||||
"#First we calculate the mean\n",
|
||||
"df.groupby('Pclass').mean()"
|
||||
"#First we calculate the mean for the numeric columns\n",
|
||||
"df.select_dtypes(np.number).groupby('Pclass').mean()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user