1
0
mirror of https://github.com/gsi-upm/sitc synced 2025-01-05 02:41:29 +00:00

Compare commits

...

15 Commits

Author SHA1 Message Date
Carlos A. Iglesias
78e62af098
Update 3_3_Data_Munging_with_Pandas.ipynb
Updated to last version of scikit
2024-02-21 12:29:04 +01:00
Carlos A. Iglesias
3f5eba3e84
Update 3_2_Pandas.ipynb
Updated links
2024-02-21 12:16:12 +01:00
Carlos A. Iglesias
2de1cda8f1
Update 3_1_Read_Data.ipynb
Updated links
2024-02-21 12:14:25 +01:00
Carlos A. Iglesias
cc442c35f3
Update 3_0_0_Intro_ML_2.ipynb
Updated links
2024-02-21 12:12:14 +01:00
Carlos A. Iglesias
1100c352fa
Update 2_6_Model_Tuning.ipynb
updated links
2024-02-21 11:47:34 +01:00
Carlos A. Iglesias
9b573d292d
Update 2_5_2_Decision_Tree_Model.ipynb
Updated links
2024-02-21 11:41:42 +01:00
Carlos A. Iglesias
dd8a4f50d8
Update 2_5_2_Decision_Tree_Model.ipynb
Updated links
2024-02-21 11:40:59 +01:00
Carlos A. Iglesias
47148f2ccc
Update util_ds.py
Updated links
2024-02-21 11:40:06 +01:00
Carlos A. Iglesias
8ffda8123a
Update 2_5_1_kNN_Model.ipynb
Updated links
2024-02-21 11:07:38 +01:00
Carlos A. Iglesias
6629837e7d
Update 2_5_0_Machine_Learning.ipynb
Updated links
2024-02-21 11:06:21 +01:00
Carlos A. Iglesias
ba08a9a264
Update 2_4_Preprocessing.ipynb
Updated links
2024-02-21 11:02:09 +01:00
Carlos A. Iglesias
4b8fd30f42
Update 2_3_1_Advanced_Visualisation.ipynb
Updated links
2024-02-21 11:00:53 +01:00
Carlos A. Iglesias
d879369930
Update 2_3_0_Visualisation.ipynb
Updated links
2024-02-21 10:57:34 +01:00
Carlos A. Iglesias
4da01f3ae6
Update 2_0_0_Intro_ML.ipynb
Updated links
2024-02-21 10:44:43 +01:00
Carlos A. Iglesias
da9a01e26b
Update 2_0_1_Objectives.ipynb
Updated links
2024-02-21 10:43:40 +01:00
14 changed files with 9 additions and 24 deletions

View File

@ -71,7 +71,6 @@
"source": [ "source": [
"* [Scikit-learn web page](http://scikit-learn.org/stable/)\n", "* [Scikit-learn web page](http://scikit-learn.org/stable/)\n",
"* [Scikit-learn videos](http://blog.kaggle.com/author/kevin-markham/) and [notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n", "* [Scikit-learn videos](http://blog.kaggle.com/author/kevin-markham/) and [notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n",
"* [scikit-learn : Machine Learning Simplified](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), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019." "* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019."
] ]
}, },

View File

@ -63,9 +63,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"* [Scikit-learn web page](http://scikit-learn.org/stable/)\n", "* [Scikit-learn web page](http://scikit-learn.org/stable/)\n",
"* [Scikit-learn videos](http://blog.kaggle.com/author/kevin-markham/) and [notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n", "* [Scikit-learn videos](http://blog.kaggle.com/author/kevin-markham/) and [notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n"
"* [scikit-learn : Machine Learning Simplified](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019."
] ]
}, },
{ {

View File

@ -228,7 +228,6 @@
"source": [ "source": [
"* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n", "* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n",
"* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n", "* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n",
"* [Mastering Pandas](https://learning.oreilly.com/library/view/mastering-pandas/9781789343236/), Femi Anthony, Packt Publishing, 2015.\n",
"* [Matplotlib web page](http://matplotlib.org/index.html)\n", "* [Matplotlib web page](http://matplotlib.org/index.html)\n",
"* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n", "* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n",
"* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)\n", "* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)\n",

View File

@ -408,7 +408,6 @@
"source": [ "source": [
"* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n", "* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n",
"* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n", "* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n",
"* [Mastering Pandas](https://learning.oreilly.com/library/view/mastering-pandas/9781789343236/), Femi Anthony, Packt Publishing, 2015.\n",
"* [Matplotlib web page](http://matplotlib.org/index.html)\n", "* [Matplotlib web page](http://matplotlib.org/index.html)\n",
"* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n", "* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n",
"* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)\n", "* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)\n",

View File

@ -163,7 +163,6 @@
"source": [ "source": [
"* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n", "* [Feature selection](http://scikit-learn.org/stable/modules/feature_selection.html)\n",
"* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n", "* [Classification probability](http://scikit-learn.org/stable/auto_examples/classification/plot_classification_probability.html)\n",
"* [Mastering Pandas](https://learning.oreilly.com/library/view/mastering-pandas/9781789343236/), Femi Anthony, Packt Publishing, 2015.\n",
"* [Matplotlib web page](http://matplotlib.org/index.html)\n", "* [Matplotlib web page](http://matplotlib.org/index.html)\n",
"* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n", "* [Using matlibplot in IPython](http://ipython.readthedocs.org/en/stable/interactive/plotting.html)\n",
"* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)" "* [Seaborn Tutorial](https://stanford.edu/~mwaskom/software/seaborn/tutorial.html)"

View File

@ -154,7 +154,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"* [General concepts of machine learning with scikit-learn](https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/auto_examples/tutorial/plot_ML_flow_chart.html)\n", "* [Python Data Science Handbook](https://jakevdp.github.io/PythonDataScienceHandbook/index.html)\n",
"* [A Tour of Machine Learning Algorithms](http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/)" "* [A Tour of Machine Learning Algorithms](http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/)"
] ]
}, },

View File

@ -379,8 +379,7 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"* [KNeighborsClassifier API scikit-learn](http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)\n", "* [KNeighborsClassifier API scikit-learn](http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html)\n"
"* [Learning scikit-learn: Machine Learning in Python](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2013.\n"
] ]
}, },
{ {

View File

@ -509,8 +509,6 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"* [Plot the decision surface of a decision tree on the iris dataset](https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html)\n", "* [Plot the decision surface of a decision tree on the iris dataset](https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html)\n",
"* [scikit-learn : Machine Learning Simplified](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019.\n",
"* [Parameter estimation using grid search with cross-validation](https://scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_digits.html)\n", "* [Parameter estimation using grid search with cross-validation](https://scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_digits.html)\n",
"* [Decision trees in python with scikit-learn and pandas](http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html)" "* [Decision trees in python with scikit-learn and pandas](http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html)"
] ]

View File

@ -518,8 +518,6 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"* [Plot the decision surface of a decision tree on the iris dataset](https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html)\n", "* [Plot the decision surface of a decision tree on the iris dataset](https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html)\n",
"* [scikit-learn : Machine Learning Simplified](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n",
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019.\n",
"* [Hyperparameter estimation using grid search with cross-validation](http://scikit-learn.org/stable/auto_examples/model_selection/grid_search_digits.html)\n", "* [Hyperparameter estimation using grid search with cross-validation](http://scikit-learn.org/stable/auto_examples/model_selection/grid_search_digits.html)\n",
"* [Decision trees in python with scikit-learn and pandas](http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html)" "* [Decision trees in python with scikit-learn and pandas](http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html)"
] ]

View File

@ -47,7 +47,7 @@ def get_code(tree, feature_names, target_names,
recurse(left, right, threshold, features, 0, 0) recurse(left, right, threshold, features, 0, 0)
# Taken from http://scikit-learn.org/stable/auto_examples/tree/plot_iris.html#example-tree-plot-iris-py # Taken from https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
@ -114,4 +114,4 @@ def plot_tree_iris():
plt.suptitle("Decision surface of a decision tree using paired features") plt.suptitle("Decision surface of a decision tree using paired features")
plt.legend() plt.legend()
plt.show() plt.show()

View File

@ -74,9 +74,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"* [IPython Notebook Tutorial for Titanic: Machine Learning from Disaster](https://www.kaggle.com/c/titanic/forums/t/5105/ipython-notebook-tutorial-for-titanic-machine-learning-from-disaster)\n", "* [IPython Notebook Tutorial for Titanic: Machine Learning from Disaster](https://www.kaggle.com/c/titanic/forums/t/5105/ipython-notebook-tutorial-for-titanic-machine-learning-from-disaster)\n",
"* [Scikit-learn videos and notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n", "* [Scikit-learn videos and notebooks](https://github.com/justmarkham/scikit-learn-videos) by Kevin Marham\n"
"* [Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits](https://learning.oreilly.com/library/view/hands-on-machine-learning/9781838826048/), Tarek Amr, Packt Publishing, 2020.\n",
"* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka and Vahid Mirjalili, Packt Publishing, 2019."
] ]
}, },
{ {

View File

@ -213,8 +213,7 @@
"* [Pandas API input-output](http://pandas.pydata.org/pandas-docs/stable/api.html#input-output)\n", "* [Pandas API input-output](http://pandas.pydata.org/pandas-docs/stable/api.html#input-output)\n",
"* [Pandas API - pandas.read_csv](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html)\n", "* [Pandas API - pandas.read_csv](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html)\n",
"* [DataFrame](http://pandas.pydata.org/pandas-docs/stable/dsintro.html)\n", "* [DataFrame](http://pandas.pydata.org/pandas-docs/stable/dsintro.html)\n",
"* [An introduction to NumPy and Scipy](https://sites.engineering.ucsb.edu/~shell/che210d/numpy.pdf)\n", "* [An introduction to NumPy and Scipy](https://sites.engineering.ucsb.edu/~shell/che210d/numpy.pdf)\n"
"* [NumPy tutorial](https://numpy.org/doc/stable/)"
] ]
}, },
{ {

View File

@ -433,7 +433,6 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"* [Pandas](http://pandas.pydata.org/)\n", "* [Pandas](http://pandas.pydata.org/)\n",
"* [Learning Pandas, Michael Heydt, Packt Publishing, 2017](https://learning.oreilly.com/library/view/learning-pandas/9781787123137/)\n",
"* [Pandas. Introduction to Data Structures](https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html)\n", "* [Pandas. Introduction to Data Structures](https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html)\n",
"* [Introducing Pandas Objects](https://www.oreilly.com/learning/introducing-pandas-objects)\n", "* [Introducing Pandas Objects](https://www.oreilly.com/learning/introducing-pandas-objects)\n",
"* [Boolean Operators in Pandas](https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-operators)" "* [Boolean Operators in Pandas](https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-operators)"

View File

@ -373,8 +373,8 @@
"source": [ "source": [
"#Mean age of passengers per Passenger class\n", "#Mean age of passengers per Passenger class\n",
"\n", "\n",
"#First we calculate the mean\n", "#First we calculate the mean for the numeric columns\n",
"df.groupby('Pclass').mean()" "df.select_dtypes(np.number).groupby('Pclass').mean()"
] ]
}, },
{ {