1
0
mirror of https://github.com/gsi-upm/sitc synced 2025-01-08 04:01:27 +00:00

Compare commits

...

6 Commits

Author SHA1 Message Date
cif2cif
44aa3d24fb Updated joblib import to sklearn 0.23 2021-02-27 21:30:21 +01:00
cif2cif
8925a4a3c1 Clean 2_5_2 2021-02-27 20:51:52 +01:00
cif2cif
23913811df Clean 2_5_1 2021-02-27 20:50:03 +01:00
cif2cif
7b4391f187 Updated reference to module six modified in scikit-learn 0.23 2021-02-27 20:21:15 +01:00
cif2cif
0c100dbadc Merge branch 'master' of https://github.com/gsi-upm/sitc 2021-02-27 20:12:26 +01:00
cif2cif
2f7cbe9e45 Updated util_knn.py to new version of scikit 2021-02-27 20:11:17 +01:00
4 changed files with 80 additions and 261 deletions

File diff suppressed because one or more lines are too long

View File

@ -74,7 +74,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -124,25 +124,9 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [],
{
"data": {
"text/plain": [
"DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,\n",
" max_features=None, max_leaf_nodes=None,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=1, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, presort=False, random_state=1,\n",
" splitter='best')"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.tree import DecisionTreeClassifier\n",
"import numpy as np\n", "import numpy as np\n",
@ -161,24 +145,9 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [],
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prediction [1 0 1 1 1 0 0 1 0 2 0 0 1 2 0 1 2 2 1 1 0 0 2 0 0 2 1 1 2 2 2 2 0 0 1 1 0\n",
" 1 2 1 2 0 2 0 1 0 2 1 0 2 2 0 0 2 0 0 0 2 2 0 1 0 1 0 1 1 1 1 1 0 1 0 1 2\n",
" 0 0 0 0 2 2 0 1 1 2 1 0 0 2 1 1 0 1 1 0 2 1 2 1 2 0 1 0 0 0 2 1 2 1 2 1 2\n",
" 0]\n",
"Expected [1 0 1 1 1 0 0 1 0 2 0 0 1 2 0 1 2 2 1 1 0 0 2 0 0 2 1 1 2 2 2 2 0 0 1 1 0\n",
" 1 2 1 2 0 2 0 1 0 2 1 0 2 2 0 0 2 0 0 0 2 2 0 1 0 1 0 1 1 1 1 1 0 1 0 1 2\n",
" 0 0 0 0 2 2 0 1 1 2 1 0 0 1 1 1 0 1 1 0 2 2 2 1 2 0 1 0 0 0 2 1 2 1 2 1 2\n",
" 0]\n"
]
}
],
"source": [ "source": [
"print(\"Prediction \", model.predict(x_train))\n", "print(\"Prediction \", model.predict(x_train))\n",
"print(\"Expected \", y_train)" "print(\"Expected \", y_train)"
@ -193,26 +162,9 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [],
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predicted probabilities [[0. 0.97368421 0.02631579]\n",
" [1. 0. 0. ]\n",
" [0. 0.97368421 0.02631579]\n",
" [0. 0.97368421 0.02631579]\n",
" [0. 0.97368421 0.02631579]\n",
" [1. 0. 0. ]\n",
" [1. 0. 0. ]\n",
" [0. 0.97368421 0.02631579]\n",
" [1. 0. 0. ]\n",
" [0. 0. 1. ]]\n"
]
}
],
"source": [ "source": [
"# Print the \n", "# Print the \n",
"print(\"Predicted probabilities\", model.predict_proba(x_train[:10]))" "print(\"Predicted probabilities\", model.predict_proba(x_train[:10]))"
@ -220,17 +172,9 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [],
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy in training 0.9821428571428571\n"
]
}
],
"source": [ "source": [
"# Evaluate Accuracy in training\n", "# Evaluate Accuracy in training\n",
"\n", "\n",
@ -241,17 +185,9 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [],
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy in testing 0.9210526315789473\n"
]
}
],
"source": [ "source": [
"# Now we evaluate error in testing\n", "# Now we evaluate error in testing\n",
"y_test_pred = model.predict(x_test)\n", "y_test_pred = model.predict(x_test)\n",
@ -273,24 +209,12 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 7, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [],
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'pydotplus'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-7-1bf5ec7fb043>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mIPython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdisplay\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexternals\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msix\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mStringIO\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mpydotplus\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mpydot\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdot_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mStringIO\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'pydotplus'"
]
}
],
"source": [ "source": [
"from IPython.display import Image \n", "from IPython.display import Image \n",
"from sklearn.externals.six import StringIO\n", "from six import StringIO\n",
"import pydotplus as pydot\n", "import pydotplus as pydot\n",
"\n", "\n",
"dot_data = StringIO() \n", "dot_data = StringIO() \n",
@ -529,6 +453,15 @@
} }
], ],
"metadata": { "metadata": {
"datacleaner": {
"position": {
"top": "50px"
},
"python": {
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
},
"window_display": false
},
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
"language": "python", "language": "python",
@ -544,7 +477,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.1" "version": "3.7.9"
}, },
"latex_envs": { "latex_envs": {
"LaTeX_envs_menu_present": true, "LaTeX_envs_menu_present": true,

View File

@ -117,7 +117,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"# save model\n", "# save model\n",
"from sklearn.externals import joblib\n", "import joblib\n",
"joblib.dump(model, 'filename.pkl') \n", "joblib.dump(model, 'filename.pkl') \n",
"\n", "\n",
"#load model\n", "#load model\n",
@ -151,6 +151,15 @@
} }
], ],
"metadata": { "metadata": {
"datacleaner": {
"position": {
"top": "50px"
},
"python": {
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
},
"window_display": false
},
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
"language": "python", "language": "python",
@ -166,7 +175,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.7" "version": "3.7.9"
}, },
"latex_envs": { "latex_envs": {
"LaTeX_envs_menu_present": true, "LaTeX_envs_menu_present": true,

View File

@ -2,6 +2,7 @@ import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets from sklearn import neighbors, datasets
import seaborn as sns
from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import KNeighborsClassifier
# Taken from http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html # Taken from http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
@ -19,9 +20,9 @@ def plot_classification_iris():
h = .02 # step size in the mesh h = .02 # step size in the mesh
n_neighbors = 15 n_neighbors = 15
# Create color maps # Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF']) cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF']) cmap_bold = ['darkorange', 'c', 'darkblue']
for weights in ['uniform', 'distance']: for weights in ['uniform', 'distance']:
# we create an instance of Neighbours Classifier and fit the data. # we create an instance of Neighbours Classifier and fit the data.
@ -29,7 +30,7 @@ def plot_classification_iris():
clf.fit(X, y) clf.fit(X, y)
# Plot the decision boundary. For that, we will assign a color to each # Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max]. # point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
@ -38,14 +39,17 @@ def plot_classification_iris():
# Put the result into a color plot # Put the result into a color plot
Z = Z.reshape(xx.shape) Z = Z.reshape(xx.shape)
plt.figure() plt.figure(figsize=(8, 6))
plt.pcolormesh(xx, yy, Z, cmap=cmap_light) plt.contourf(xx, yy, Z, cmap=cmap_light)
# Plot also the training points # Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold) sns.scatterplot(x=X[:, 0], y=X[:, 1], hue=iris.target_names[y],
palette=cmap_bold, alpha=1.0, edgecolor="black")
plt.xlim(xx.min(), xx.max()) plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max()) plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i, weights = '%s')" plt.title("3-Class classification (k = %i, weights = '%s')"
% (n_neighbors, weights)) % (n_neighbors, weights))
plt.xlabel(iris.feature_names[0])
plt.ylabel(iris.feature_names[1])
plt.show() plt.show()