1
0
mirror of https://github.com/gsi-upm/sitc synced 2025-01-09 20:41:27 +00:00

Compare commits

..

No commits in common. "ae8d3d3ba24e88f5fb7b54a894cea3b45d475c5d" and "3d6d96dd8ae76fea8724f60630190ac56d50901a" have entirely different histories.

4 changed files with 91 additions and 439 deletions

View File

@ -46,7 +46,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 11, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -209,315 +209,12 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 20, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [],
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>PassengerId</th>\n",
" <th>Survived</th>\n",
" <th>Pclass</th>\n",
" <th>Name</th>\n",
" <th>Sex</th>\n",
" <th>Age</th>\n",
" <th>SibSp</th>\n",
" <th>Parch</th>\n",
" <th>Ticket</th>\n",
" <th>Fare</th>\n",
" <th>Cabin</th>\n",
" <th>Embarked</th>\n",
" <th>FamilySize</th>\n",
" <th>AgeGroup</th>\n",
" <th>Deck</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>Braund, Mr. Owen Harris</td>\n",
" <td>male</td>\n",
" <td>22.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>A/5 21171</td>\n",
" <td>7.2500</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>X</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n",
" <td>female</td>\n",
" <td>38.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>PC 17599</td>\n",
" <td>71.2833</td>\n",
" <td>C85</td>\n",
" <td>C</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>C</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>Heikkinen, Miss. Laina</td>\n",
" <td>female</td>\n",
" <td>26.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>STON/O2. 3101282</td>\n",
" <td>7.9250</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" <td>0</td>\n",
" <td>3.0</td>\n",
" <td>X</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n",
" <td>female</td>\n",
" <td>35.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>113803</td>\n",
" <td>53.1000</td>\n",
" <td>C123</td>\n",
" <td>S</td>\n",
" <td>1</td>\n",
" <td>3.0</td>\n",
" <td>C</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>Allen, Mr. William Henry</td>\n",
" <td>male</td>\n",
" <td>35.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>373450</td>\n",
" <td>8.0500</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" <td>0</td>\n",
" <td>3.0</td>\n",
" <td>X</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>886</th>\n",
" <td>887</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>Montvila, Rev. Juozas</td>\n",
" <td>male</td>\n",
" <td>27.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>211536</td>\n",
" <td>13.0000</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" <td>0</td>\n",
" <td>3.0</td>\n",
" <td>X</td>\n",
" </tr>\n",
" <tr>\n",
" <th>887</th>\n",
" <td>888</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Graham, Miss. Margaret Edith</td>\n",
" <td>female</td>\n",
" <td>19.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>112053</td>\n",
" <td>30.0000</td>\n",
" <td>B42</td>\n",
" <td>S</td>\n",
" <td>0</td>\n",
" <td>3.0</td>\n",
" <td>B</td>\n",
" </tr>\n",
" <tr>\n",
" <th>888</th>\n",
" <td>889</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>Johnston, Miss. Catherine Helen \"Carrie\"</td>\n",
" <td>female</td>\n",
" <td>NaN</td>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>W./C. 6607</td>\n",
" <td>23.4500</td>\n",
" <td>NaN</td>\n",
" <td>S</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>X</td>\n",
" </tr>\n",
" <tr>\n",
" <th>889</th>\n",
" <td>890</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Behr, Mr. Karl Howell</td>\n",
" <td>male</td>\n",
" <td>26.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>111369</td>\n",
" <td>30.0000</td>\n",
" <td>C148</td>\n",
" <td>C</td>\n",
" <td>0</td>\n",
" <td>3.0</td>\n",
" <td>C</td>\n",
" </tr>\n",
" <tr>\n",
" <th>890</th>\n",
" <td>891</td>\n",
" <td>0</td>\n",
" <td>3</td>\n",
" <td>Dooley, Mr. Patrick</td>\n",
" <td>male</td>\n",
" <td>32.0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>370376</td>\n",
" <td>7.7500</td>\n",
" <td>NaN</td>\n",
" <td>Q</td>\n",
" <td>0</td>\n",
" <td>3.0</td>\n",
" <td>X</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>891 rows × 15 columns</p>\n",
"</div>"
],
"text/plain": [
" PassengerId Survived Pclass \\\n",
"0 1 0 3 \n",
"1 2 1 1 \n",
"2 3 1 3 \n",
"3 4 1 1 \n",
"4 5 0 3 \n",
".. ... ... ... \n",
"886 887 0 2 \n",
"887 888 1 1 \n",
"888 889 0 3 \n",
"889 890 1 1 \n",
"890 891 0 3 \n",
"\n",
" Name Sex Age SibSp \\\n",
"0 Braund, Mr. Owen Harris male 22.0 1 \n",
"1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n",
"2 Heikkinen, Miss. Laina female 26.0 0 \n",
"3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n",
"4 Allen, Mr. William Henry male 35.0 0 \n",
".. ... ... ... ... \n",
"886 Montvila, Rev. Juozas male 27.0 0 \n",
"887 Graham, Miss. Margaret Edith female 19.0 0 \n",
"888 Johnston, Miss. Catherine Helen \"Carrie\" female NaN 1 \n",
"889 Behr, Mr. Karl Howell male 26.0 0 \n",
"890 Dooley, Mr. Patrick male 32.0 0 \n",
"\n",
" Parch Ticket Fare Cabin Embarked FamilySize AgeGroup \\\n",
"0 0 A/5 21171 7.2500 NaN S 1 3.0 \n",
"1 0 PC 17599 71.2833 C85 C 1 3.0 \n",
"2 0 STON/O2. 3101282 7.9250 NaN S 0 3.0 \n",
"3 0 113803 53.1000 C123 S 1 3.0 \n",
"4 0 373450 8.0500 NaN S 0 3.0 \n",
".. ... ... ... ... ... ... ... \n",
"886 0 211536 13.0000 NaN S 0 3.0 \n",
"887 0 112053 30.0000 B42 S 0 3.0 \n",
"888 2 W./C. 6607 23.4500 NaN S 3 NaN \n",
"889 0 111369 30.0000 C148 C 0 3.0 \n",
"890 0 370376 7.7500 NaN Q 0 3.0 \n",
"\n",
" Deck \n",
"0 X \n",
"1 C \n",
"2 X \n",
"3 C \n",
"4 X \n",
".. ... \n",
"886 X \n",
"887 B \n",
"888 X \n",
"889 C \n",
"890 X \n",
"\n",
"[891 rows x 15 columns]"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"df['FamilySize'] = df['SibSp'] + df['Parch']\n", "df['FamilySize'] = df['SibSp'] + df['Parch']\n",
"df" "df.head()"
] ]
}, },
{ {
@ -606,31 +303,9 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [],
{
"ename": "KeyError",
"evalue": "'Salutation'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3079\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3080\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3081\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
"\u001b[0;32mpandas/_libs/hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[0;34m()\u001b[0m\n",
"\u001b[0;31mKeyError\u001b[0m: 'Salutation'",
"\nThe above exception was the direct cause of the following exception:\n",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-8-515fd9f54fd1>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mreturn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Others'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Salutation'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Salutation'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgroup_salutation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Salutation'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3022\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3023\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3024\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3025\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3026\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key, method, tolerance)\u001b[0m\n\u001b[1;32m 3080\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcasted_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3081\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3082\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3083\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3084\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtolerance\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyError\u001b[0m: 'Salutation'"
]
}
],
"source": [ "source": [
"def group_salutation(old_salutation):\n", "def group_salutation(old_salutation):\n",
" if old_salutation == 'Mr':\n", " if old_salutation == 'Mr':\n",
@ -697,13 +372,13 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"# Group ages to simplify machine learning algorithms. 0: 0-5, 1: 6-10, 2: 11-15, 3: 16-59 and 4: 60-80\n", "# Group ages to simplify machine learning algorithms. 0: 0-5, 1: 6-10, 2: 11-15, 3: 16-59 and 4: 60-80\n",
"df['AgeGroup'] = np.nan\n", "df['AgeGroup'] = 0\n",
"df.loc[(df.Age<6),'AgeGroup'] = 0\n", "df.loc[(.Age<6),'AgeGroup'] = 0\n",
"df.loc[(df.Age>=6) & (df.Age < 11),'AgeGroup'] = 1\n", "df.loc[(df.Age>=6) & (df.Age < 11),'AgeGroup'] = 1\n",
"df.loc[(df.Age>=11) & (df.Age < 16),'AgeGroup'] = 2\n", "df.loc[(df.Age>=11) & (df.Age < 16),'AgeGroup'] = 2\n",
"df.loc[(df.Age>=16) & (df.Age < 60),'AgeGroup'] = 3\n", "df.loc[(df.Age>=16) & (df.Age < 60),'AgeGroup'] = 3\n",
@ -720,7 +395,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": null,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -729,8 +404,8 @@
" if np.isnan(big_string):\n", " if np.isnan(big_string):\n",
" return 'X'\n", " return 'X'\n",
" for substring in substrings:\n", " for substring in substrings:\n",
" if substring in big_string:\n", " if big_string.find(substring) != 1:\n",
" return substring[0::]\n", " return substring\n",
" print(big_string)\n", " print(big_string)\n",
" return 'X'\n", " return 'X'\n",
" \n", " \n",
@ -803,15 +478,6 @@
} }
], ],
"metadata": { "metadata": {
"datacleaner": {
"position": {
"top": "50px"
},
"python": {
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
},
"window_display": false
},
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
"language": "python", "language": "python",
@ -827,7 +493,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.9" "version": "3.7.1"
}, },
"latex_envs": { "latex_envs": {
"LaTeX_envs_menu_present": true, "LaTeX_envs_menu_present": true,

View File

@ -56,7 +56,7 @@
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Genetic Algorithms\n", "# Genetic Algorithms\n",
"In this section we are going to use the library DEAP [[References](#References)] for implementing a genetic algorithms.\n", "In this section we are going to use the library DEAP [References](#References) for implementing a genetic algorithms.\n",
"\n", "\n",
"We are going to implement the OneMax problem as seen in class.\n", "We are going to implement the OneMax problem as seen in class.\n",
"\n", "\n",
@ -200,13 +200,11 @@
"source": [ "source": [
"## Optimizing ML hyperparameters\n", "## Optimizing ML hyperparameters\n",
"\n", "\n",
"One of the applications of Genetic Algorithms is the optimization of ML hyperparameters. Previously we have used GridSearch from Scikit. Using (sklearn-deap)[[References](#References)], optimize the Titatic hyperparameters using both GridSearch and Genetic Algorithms. \n", "One of the applications of Genetic Algorithms is the optimization of ML hyperparameters. Previously we have used GridSearch from Scikit. Using (sklearn-deap)[#References], optimize the Titatic hyperparameters using both GridSearch and Genetic Algorithms. \n",
"\n", "\n",
"The same exercise (using the digits dataset) can be found in this [notebook](https://github.com/rsteca/sklearn-deap/blob/master/test.ipynb).\n", "The same exercise (using the digits dataset) can be found in this [notebook](https://github.com/rsteca/sklearn-deap/blob/master/test.ipynb).\n",
"\n", "\n",
"Submit a notebook where you include well-crafted conclusions about the exercises, discussing the pros and cons of using genetic algorithms for this purpose.\n", "Submit a notebook where you include well-crafted conclusions about the exercises, discussing the pros and cons of using genetic algorithms for this purpose.\n"
"\n",
"Note: There is a problem with the version 0.24 of scikit. Just comment the different approaches."
] ]
}, },
{ {
@ -263,15 +261,6 @@
} }
], ],
"metadata": { "metadata": {
"datacleaner": {
"position": {
"top": "50px"
},
"python": {
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
},
"window_display": false
},
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
"language": "python", "language": "python",
@ -287,7 +276,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.9" "version": "3.7.1"
}, },
"latex_envs": { "latex_envs": {
"LaTeX_envs_menu_present": true, "LaTeX_envs_menu_present": true,

View File

@ -97,19 +97,16 @@
"source": [ "source": [
"import gym\n", "import gym\n",
"\n", "\n",
"env = gym.make(\"CartPole-v1\")\n", "env = gym.make('CartPole-v0')\n",
"#env = gym.make('MountainCar-v0')\n", "#env = gym.make('MountainCar-v0')\n",
"#env = gym.make('Taxi-v2')\n", "#env = gym.make('Taxi-v2')\n",
"\n", "\n",
"observation = env.reset()\n", "#env = gym.make('Jamesbond-ram-v0')\n",
"for _ in range(1000):\n",
" env.render()\n",
" action = env.action_space.sample() # your agent here (this takes random actions)\n",
" observation, reward, done, info = env.step(action)\n",
"\n", "\n",
" if done:\n", "env.reset()\n",
" observation = env.reset()\n", "for _ in range(1000):\n",
"env.close()" " env.render()\n",
" env.step(env.action_space.sample()) # take a random action"
] ]
}, },
{ {
@ -406,15 +403,6 @@
} }
], ],
"metadata": { "metadata": {
"datacleaner": {
"position": {
"top": "50px"
},
"python": {
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
},
"window_display": false
},
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
"language": "python", "language": "python",
@ -430,7 +418,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.9" "version": "3.5.5"
}, },
"latex_envs": { "latex_envs": {
"LaTeX_envs_menu_present": true, "LaTeX_envs_menu_present": true,

View File

@ -76,7 +76,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 33, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -85,7 +85,7 @@
"(2034, 2807)" "(2034, 2807)"
] ]
}, },
"execution_count": 33, "execution_count": 1,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -126,15 +126,12 @@
"source": [ "source": [
"Although scikit-learn provides an LDA implementation, it is more popular the package *gensim*, which also provides an LSI implementation, as well as other functionalities. Fortunately, scikit-learn sparse matrices can be used in Gensim using the function *matutils.Sparse2Corpus()*. Anyway, if you are using intensively LDA,it can be convenient to create the corpus with their functions.\n", "Although scikit-learn provides an LDA implementation, it is more popular the package *gensim*, which also provides an LSI implementation, as well as other functionalities. Fortunately, scikit-learn sparse matrices can be used in Gensim using the function *matutils.Sparse2Corpus()*. Anyway, if you are using intensively LDA,it can be convenient to create the corpus with their functions.\n",
"\n", "\n",
"You should install first:\n", "You should install first *gensim*. Run 'conda install -c anaconda gensim=0.12.4' in a terminal."
"\n",
"* *gensim*. Run 'conda install gensim' in a terminal.\n",
"* *python-Levenshtein*. Run 'conda install python-Levenshtein' in a terminal"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 34, "execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -162,7 +159,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 60, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -176,23 +173,23 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 61, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"[(0,\n", "[(0,\n",
" '0.011*\"baptist\" + 0.010*\"koresh\" + 0.009*\"bible\" + 0.006*\"reality\" + 0.006*\"virtual\" + 0.005*\"scarlet\" + 0.005*\"shag\" + 0.004*\"tootsie\" + 0.004*\"kinda\" + 0.004*\"captain\"'),\n", " '0.007*\"car\" + 0.006*\"increased\" + 0.006*\"closely\" + 0.006*\"groups\" + 0.006*\"center\" + 0.006*\"88\" + 0.006*\"offer\" + 0.005*\"archie\" + 0.005*\"beginning\" + 0.005*\"comets\"'),\n",
" (1,\n", " (1,\n",
" '0.010*\"targa\" + 0.008*\"thanks\" + 0.008*\"moon\" + 0.007*\"craig\" + 0.007*\"zoroastrians\" + 0.006*\"yayayay\" + 0.005*\"unfortunately\" + 0.005*\"windows\" + 0.005*\"rayshade\" + 0.004*\"tdb\"'),\n", " '0.005*\"allow\" + 0.005*\"discuss\" + 0.005*\"condition\" + 0.004*\"certain\" + 0.004*\"member\" + 0.004*\"manipulation\" + 0.004*\"little\" + 0.003*\"proposal\" + 0.003*\"heavily\" + 0.003*\"obvious\"'),\n",
" (2,\n", " (2,\n",
" '0.009*\"mary\" + 0.007*\"whatever\" + 0.006*\"god\" + 0.005*\"ns\" + 0.005*\"lucky\" + 0.005*\"joseph\" + 0.005*\"ssrt\" + 0.005*\"samaritan\" + 0.005*\"crusades\" + 0.004*\"phobos\"'),\n", " '0.002*\"led\" + 0.002*\"mechanism\" + 0.002*\"frank\" + 0.002*\"platform\" + 0.002*\"mormons\" + 0.002*\"concepts\" + 0.002*\"proton\" + 0.002*\"aeronautics\" + 0.002*\"header\" + 0.002*\"foreign\"'),\n",
" (3,\n", " (3,\n",
" '0.009*\"islam\" + 0.008*\"western\" + 0.008*\"plane\" + 0.008*\"jeff\" + 0.007*\"cheers\" + 0.007*\"kent\" + 0.007*\"joy\" + 0.007*\"khomeini\" + 0.007*\"davidian\" + 0.006*\"basically\"')]" " '0.004*\"objects\" + 0.003*\"activity\" + 0.003*\"manhattan\" + 0.003*\"obtained\" + 0.003*\"eyes\" + 0.003*\"education\" + 0.003*\"netters\" + 0.003*\"complex\" + 0.003*\"europe\" + 0.002*\"missions\"')]"
] ]
}, },
"execution_count": 61, "execution_count": 4,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -211,7 +208,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 62, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -243,7 +240,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 63, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -256,14 +253,14 @@
], ],
"source": [ "source": [
"# You can save the dictionary\n", "# You can save the dictionary\n",
"dictionary.save('newsgroup.dict.texts')\n", "dictionary.save('newsgroup.dict')\n",
"\n", "\n",
"print(dictionary)" "print(dictionary)"
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 64, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -274,7 +271,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 65, "execution_count": 8,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -286,7 +283,28 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 71, "execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING:root:random_state not set so using default value\n",
"WARNING:root:failed to load state from newsgroups.dict.state: [Errno 2] No such file or directory: 'newsgroups.dict.state'\n"
]
}
],
"source": [
"# You can optionally save the dictionary \n",
"\n",
"dictionary.save('newsgroups.dict')\n",
"lda = LdaModel.load('newsgroups.dict')"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -305,7 +323,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 72, "execution_count": 17,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -315,7 +333,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 73, "execution_count": 18,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -328,7 +346,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 74, "execution_count": 19,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -346,7 +364,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 75, "execution_count": 20,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -359,23 +377,23 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 76, "execution_count": 21,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"[(0,\n", "[(0,\n",
" '0.009*\"whatever\" + 0.007*\"plane\" + 0.007*\"ns\" + 0.007*\"joy\" + 0.006*\"happy\" + 0.005*\"bob\" + 0.004*\"phil\" + 0.004*\"nasa\" + 0.003*\"purdue\" + 0.003*\"neie\"'),\n", " '0.011*\"thanks\" + 0.010*\"targa\" + 0.008*\"mary\" + 0.008*\"western\" + 0.007*\"craig\" + 0.007*\"jeff\" + 0.006*\"yayayay\" + 0.006*\"phobos\" + 0.005*\"unfortunately\" + 0.005*\"martian\"'),\n",
" (1,\n", " (1,\n",
" '0.009*\"god\" + 0.008*\"mary\" + 0.008*\"targa\" + 0.007*\"baptist\" + 0.007*\"thanks\" + 0.007*\"koresh\" + 0.006*\"really\" + 0.006*\"bible\" + 0.005*\"lot\" + 0.005*\"lucky\"'),\n", " '0.007*\"islam\" + 0.006*\"koresh\" + 0.006*\"moon\" + 0.006*\"bible\" + 0.006*\"plane\" + 0.006*\"ns\" + 0.005*\"zoroastrians\" + 0.005*\"joy\" + 0.005*\"lucky\" + 0.005*\"ssrt\"'),\n",
" (2,\n", " (2,\n",
" '0.010*\"moon\" + 0.007*\"phobos\" + 0.006*\"unfortunately\" + 0.006*\"martian\" + 0.006*\"russian\" + 0.005*\"rayshade\" + 0.005*\"anybody\" + 0.005*\"perturbations\" + 0.005*\"thanks\" + 0.004*\"apollo\"'),\n", " '0.009*\"whatever\" + 0.009*\"baptist\" + 0.007*\"cheers\" + 0.007*\"kent\" + 0.006*\"khomeini\" + 0.006*\"davidian\" + 0.005*\"gerald\" + 0.005*\"bull\" + 0.005*\"sorry\" + 0.005*\"jesus\"'),\n",
" (3,\n", " (3,\n",
" '0.008*\"islam\" + 0.008*\"western\" + 0.007*\"jeff\" + 0.007*\"zoroastrians\" + 0.006*\"davidian\" + 0.006*\"basically\" + 0.005*\"bull\" + 0.005*\"gerald\" + 0.005*\"sorry\" + 0.004*\"kent\"')]" " '0.005*\"pd\" + 0.004*\"baltimore\" + 0.004*\"also\" + 0.003*\"ipx\" + 0.003*\"dam\" + 0.003*\"feiner\" + 0.003*\"foley\" + 0.003*\"ideally\" + 0.003*\"srgp\" + 0.003*\"thank\"')]"
] ]
}, },
"execution_count": 76, "execution_count": 21,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -387,14 +405,14 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 77, "execution_count": 22,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"[(0, 0.7154438), (1, 0.10569019), (2, 0.09522807), (3, 0.08363795)]\n" "[(0, 0.09401487), (1, 0.08991001), (2, 0.08514047), (3, 0.7309346)]\n"
] ]
} }
], ],
@ -406,7 +424,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 78, "execution_count": 24,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -427,14 +445,14 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 79, "execution_count": 25,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"[(0, 0.06320839), (1, 0.80878526), (2, 0.06274223), (3, 0.065264106)]\n" "[(0, 0.06678458), (1, 0.8006135), (2, 0.06974816), (3, 0.062853776)]\n"
] ]
} }
], ],
@ -446,14 +464,14 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 80, "execution_count": 26,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"0.009*\"god\" + 0.008*\"mary\" + 0.008*\"targa\" + 0.007*\"baptist\" + 0.007*\"thanks\" + 0.007*\"koresh\" + 0.006*\"really\" + 0.006*\"bible\" + 0.005*\"lot\" + 0.005*\"lucky\"\n" "0.007*\"islam\" + 0.006*\"koresh\" + 0.006*\"moon\" + 0.006*\"bible\" + 0.006*\"plane\" + 0.006*\"ns\" + 0.005*\"zoroastrians\" + 0.005*\"joy\" + 0.005*\"lucky\" + 0.005*\"ssrt\"\n"
] ]
} }
], ],
@ -464,15 +482,15 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 81, "execution_count": 27,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"[(0, 0.10564032), (1, 0.67894983), (2, 0.104482815), (3, 0.11092702)]\n", "[(0, 0.110989906), (1, 0.670005), (2, 0.11422917), (3, 0.10477593)]\n",
"0.009*\"god\" + 0.008*\"mary\" + 0.008*\"targa\" + 0.007*\"baptist\" + 0.007*\"thanks\" + 0.007*\"koresh\" + 0.006*\"really\" + 0.006*\"bible\" + 0.005*\"lot\" + 0.005*\"lucky\"\n" "0.007*\"islam\" + 0.006*\"koresh\" + 0.006*\"moon\" + 0.006*\"bible\" + 0.006*\"plane\" + 0.006*\"ns\" + 0.005*\"zoroastrians\" + 0.005*\"joy\" + 0.005*\"lucky\" + 0.005*\"ssrt\"\n"
] ]
} }
], ],
@ -492,7 +510,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 82, "execution_count": 28,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -508,23 +526,23 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 83, "execution_count": 29,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"[(0,\n", "[(0,\n",
" '0.769*\"god\" + 0.346*\"jesus\" + 0.235*\"bible\" + 0.204*\"christian\" + 0.148*\"christians\" + 0.107*\"christ\" + 0.090*\"well\" + 0.085*\"koresh\" + 0.081*\"kent\" + 0.080*\"christianity\"'),\n", " '0.769*\"god\" + 0.345*\"jesus\" + 0.235*\"bible\" + 0.203*\"christian\" + 0.149*\"christians\" + 0.108*\"christ\" + 0.089*\"well\" + 0.085*\"koresh\" + 0.081*\"kent\" + 0.080*\"christianity\"'),\n",
" (1,\n", " (1,\n",
" '-0.863*\"thanks\" + -0.255*\"please\" + -0.159*\"hello\" + -0.152*\"hi\" + 0.124*\"god\" + -0.111*\"sorry\" + -0.088*\"could\" + -0.074*\"windows\" + -0.067*\"jpeg\" + -0.063*\"gif\"'),\n", " '-0.863*\"thanks\" + -0.255*\"please\" + -0.160*\"hello\" + -0.153*\"hi\" + 0.123*\"god\" + -0.112*\"sorry\" + -0.088*\"could\" + -0.075*\"windows\" + -0.068*\"jpeg\" + -0.062*\"gif\"'),\n",
" (2,\n", " (2,\n",
" '-0.780*\"well\" + 0.229*\"god\" + -0.165*\"yes\" + 0.154*\"thanks\" + -0.133*\"ico\" + -0.133*\"tek\" + -0.130*\"queens\" + -0.130*\"bronx\" + -0.130*\"beauchaine\" + -0.130*\"manhattan\"'),\n", " '-0.779*\"well\" + 0.229*\"god\" + -0.164*\"yes\" + 0.153*\"thanks\" + -0.135*\"ico\" + -0.135*\"tek\" + -0.132*\"beauchaine\" + -0.132*\"queens\" + -0.132*\"bronx\" + -0.131*\"manhattan\"'),\n",
" (3,\n", " (3,\n",
" '-0.338*\"well\" + 0.336*\"ico\" + 0.334*\"tek\" + 0.328*\"bronx\" + 0.328*\"beauchaine\" + 0.328*\"queens\" + 0.326*\"manhattan\" + 0.305*\"com\" + 0.305*\"bob\" + 0.072*\"god\"')]" " '0.343*\"well\" + -0.335*\"ico\" + -0.334*\"tek\" + -0.328*\"bronx\" + -0.328*\"beauchaine\" + -0.328*\"queens\" + -0.325*\"manhattan\" + -0.305*\"com\" + -0.303*\"bob\" + -0.073*\"god\"')]"
] ]
}, },
"execution_count": 83, "execution_count": 29,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@ -536,7 +554,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 84, "execution_count": 30,
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
@ -585,15 +603,6 @@
} }
], ],
"metadata": { "metadata": {
"datacleaner": {
"position": {
"top": "50px"
},
"python": {
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
},
"window_display": false
},
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
"language": "python", "language": "python",
@ -609,7 +618,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.8.8" "version": "3.7.1"
}, },
"latex_envs": { "latex_envs": {
"LaTeX_envs_menu_present": true, "LaTeX_envs_menu_present": true,