1
0
mirror of https://github.com/gsi-upm/sitc synced 2025-01-09 12:31:27 +00:00

Compare commits

..

No commits in common. "44aa3d24fb81002f1eb0342bed92dea016c8cfc7" and "b43125ca59f7a1f70fcc1a0bb2a76c4d6a71695f" have entirely different histories.

4 changed files with 261 additions and 80 deletions

File diff suppressed because one or more lines are too long

View File

@ -74,7 +74,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 1,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
@ -124,9 +124,25 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 2,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"data": {
"text/plain": [
"DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,\n",
" max_features=None, max_leaf_nodes=None,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=1, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, presort=False, random_state=1,\n",
" splitter='best')"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [ "source": [
"from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.tree import DecisionTreeClassifier\n",
"import numpy as np\n", "import numpy as np\n",
@ -145,9 +161,24 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 3,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prediction [1 0 1 1 1 0 0 1 0 2 0 0 1 2 0 1 2 2 1 1 0 0 2 0 0 2 1 1 2 2 2 2 0 0 1 1 0\n",
" 1 2 1 2 0 2 0 1 0 2 1 0 2 2 0 0 2 0 0 0 2 2 0 1 0 1 0 1 1 1 1 1 0 1 0 1 2\n",
" 0 0 0 0 2 2 0 1 1 2 1 0 0 2 1 1 0 1 1 0 2 1 2 1 2 0 1 0 0 0 2 1 2 1 2 1 2\n",
" 0]\n",
"Expected [1 0 1 1 1 0 0 1 0 2 0 0 1 2 0 1 2 2 1 1 0 0 2 0 0 2 1 1 2 2 2 2 0 0 1 1 0\n",
" 1 2 1 2 0 2 0 1 0 2 1 0 2 2 0 0 2 0 0 0 2 2 0 1 0 1 0 1 1 1 1 1 0 1 0 1 2\n",
" 0 0 0 0 2 2 0 1 1 2 1 0 0 1 1 1 0 1 1 0 2 2 2 1 2 0 1 0 0 0 2 1 2 1 2 1 2\n",
" 0]\n"
]
}
],
"source": [ "source": [
"print(\"Prediction \", model.predict(x_train))\n", "print(\"Prediction \", model.predict(x_train))\n",
"print(\"Expected \", y_train)" "print(\"Expected \", y_train)"
@ -162,9 +193,26 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 4,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Predicted probabilities [[0. 0.97368421 0.02631579]\n",
" [1. 0. 0. ]\n",
" [0. 0.97368421 0.02631579]\n",
" [0. 0.97368421 0.02631579]\n",
" [0. 0.97368421 0.02631579]\n",
" [1. 0. 0. ]\n",
" [1. 0. 0. ]\n",
" [0. 0.97368421 0.02631579]\n",
" [1. 0. 0. ]\n",
" [0. 0. 1. ]]\n"
]
}
],
"source": [ "source": [
"# Print the \n", "# Print the \n",
"print(\"Predicted probabilities\", model.predict_proba(x_train[:10]))" "print(\"Predicted probabilities\", model.predict_proba(x_train[:10]))"
@ -172,9 +220,17 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 5,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy in training 0.9821428571428571\n"
]
}
],
"source": [ "source": [
"# Evaluate Accuracy in training\n", "# Evaluate Accuracy in training\n",
"\n", "\n",
@ -185,9 +241,17 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 6,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy in testing 0.9210526315789473\n"
]
}
],
"source": [ "source": [
"# Now we evaluate error in testing\n", "# Now we evaluate error in testing\n",
"y_test_pred = model.predict(x_test)\n", "y_test_pred = model.predict(x_test)\n",
@ -209,12 +273,24 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": null, "execution_count": 7,
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [
{
"ename": "ModuleNotFoundError",
"evalue": "No module named 'pydotplus'",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-7-1bf5ec7fb043>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mIPython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdisplay\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexternals\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msix\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mStringIO\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mpydotplus\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mpydot\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdot_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mStringIO\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'pydotplus'"
]
}
],
"source": [ "source": [
"from IPython.display import Image \n", "from IPython.display import Image \n",
"from six import StringIO\n", "from sklearn.externals.six import StringIO\n",
"import pydotplus as pydot\n", "import pydotplus as pydot\n",
"\n", "\n",
"dot_data = StringIO() \n", "dot_data = StringIO() \n",
@ -453,15 +529,6 @@
} }
], ],
"metadata": { "metadata": {
"datacleaner": {
"position": {
"top": "50px"
},
"python": {
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
},
"window_display": false
},
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
"language": "python", "language": "python",
@ -477,7 +544,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.9" "version": "3.7.1"
}, },
"latex_envs": { "latex_envs": {
"LaTeX_envs_menu_present": true, "LaTeX_envs_menu_present": true,

View File

@ -117,7 +117,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"# save model\n", "# save model\n",
"import joblib\n", "from sklearn.externals import joblib\n",
"joblib.dump(model, 'filename.pkl') \n", "joblib.dump(model, 'filename.pkl') \n",
"\n", "\n",
"#load model\n", "#load model\n",
@ -151,15 +151,6 @@
} }
], ],
"metadata": { "metadata": {
"datacleaner": {
"position": {
"top": "50px"
},
"python": {
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
},
"window_display": false
},
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
"language": "python", "language": "python",
@ -175,7 +166,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.7.9" "version": "3.6.7"
}, },
"latex_envs": { "latex_envs": {
"LaTeX_envs_menu_present": true, "LaTeX_envs_menu_present": true,

View File

@ -2,7 +2,6 @@ import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets from sklearn import neighbors, datasets
import seaborn as sns
from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import KNeighborsClassifier
# Taken from http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html # Taken from http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
@ -20,9 +19,9 @@ def plot_classification_iris():
h = .02 # step size in the mesh h = .02 # step size in the mesh
n_neighbors = 15 n_neighbors = 15
# Create color maps # Create color maps
cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue']) cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ['darkorange', 'c', 'darkblue'] cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
for weights in ['uniform', 'distance']: for weights in ['uniform', 'distance']:
# we create an instance of Neighbours Classifier and fit the data. # we create an instance of Neighbours Classifier and fit the data.
@ -30,7 +29,7 @@ def plot_classification_iris():
clf.fit(X, y) clf.fit(X, y)
# Plot the decision boundary. For that, we will assign a color to each # Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max]. # point in the mesh [x_min, m_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
@ -39,17 +38,14 @@ def plot_classification_iris():
# Put the result into a color plot # Put the result into a color plot
Z = Z.reshape(xx.shape) Z = Z.reshape(xx.shape)
plt.figure(figsize=(8, 6)) plt.figure()
plt.contourf(xx, yy, Z, cmap=cmap_light) plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot also the training points # Plot also the training points
sns.scatterplot(x=X[:, 0], y=X[:, 1], hue=iris.target_names[y], plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
palette=cmap_bold, alpha=1.0, edgecolor="black")
plt.xlim(xx.min(), xx.max()) plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max()) plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i, weights = '%s')" plt.title("3-Class classification (k = %i, weights = '%s')"
% (n_neighbors, weights)) % (n_neighbors, weights))
plt.xlabel(iris.feature_names[0])
plt.ylabel(iris.feature_names[1])
plt.show() plt.show()