mirror of
https://github.com/gsi-upm/sitc
synced 2025-01-09 20:41:27 +00:00
Compare commits
No commits in common. "44aa3d24fb81002f1eb0342bed92dea016c8cfc7" and "b43125ca59f7a1f70fcc1a0bb2a76c4d6a71695f" have entirely different histories.
44aa3d24fb
...
b43125ca59
File diff suppressed because one or more lines are too long
@ -74,7 +74,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 1,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@ -124,9 +124,25 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 2,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,\n",
|
||||||
|
" max_features=None, max_leaf_nodes=None,\n",
|
||||||
|
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
|
||||||
|
" min_samples_leaf=1, min_samples_split=2,\n",
|
||||||
|
" min_weight_fraction_leaf=0.0, presort=False, random_state=1,\n",
|
||||||
|
" splitter='best')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"from sklearn.tree import DecisionTreeClassifier\n",
|
"from sklearn.tree import DecisionTreeClassifier\n",
|
||||||
"import numpy as np\n",
|
"import numpy as np\n",
|
||||||
@ -145,9 +161,24 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 3,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Prediction [1 0 1 1 1 0 0 1 0 2 0 0 1 2 0 1 2 2 1 1 0 0 2 0 0 2 1 1 2 2 2 2 0 0 1 1 0\n",
|
||||||
|
" 1 2 1 2 0 2 0 1 0 2 1 0 2 2 0 0 2 0 0 0 2 2 0 1 0 1 0 1 1 1 1 1 0 1 0 1 2\n",
|
||||||
|
" 0 0 0 0 2 2 0 1 1 2 1 0 0 2 1 1 0 1 1 0 2 1 2 1 2 0 1 0 0 0 2 1 2 1 2 1 2\n",
|
||||||
|
" 0]\n",
|
||||||
|
"Expected [1 0 1 1 1 0 0 1 0 2 0 0 1 2 0 1 2 2 1 1 0 0 2 0 0 2 1 1 2 2 2 2 0 0 1 1 0\n",
|
||||||
|
" 1 2 1 2 0 2 0 1 0 2 1 0 2 2 0 0 2 0 0 0 2 2 0 1 0 1 0 1 1 1 1 1 0 1 0 1 2\n",
|
||||||
|
" 0 0 0 0 2 2 0 1 1 2 1 0 0 1 1 1 0 1 1 0 2 2 2 1 2 0 1 0 0 0 2 1 2 1 2 1 2\n",
|
||||||
|
" 0]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"print(\"Prediction \", model.predict(x_train))\n",
|
"print(\"Prediction \", model.predict(x_train))\n",
|
||||||
"print(\"Expected \", y_train)"
|
"print(\"Expected \", y_train)"
|
||||||
@ -162,9 +193,26 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 4,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Predicted probabilities [[0. 0.97368421 0.02631579]\n",
|
||||||
|
" [1. 0. 0. ]\n",
|
||||||
|
" [0. 0.97368421 0.02631579]\n",
|
||||||
|
" [0. 0.97368421 0.02631579]\n",
|
||||||
|
" [0. 0.97368421 0.02631579]\n",
|
||||||
|
" [1. 0. 0. ]\n",
|
||||||
|
" [1. 0. 0. ]\n",
|
||||||
|
" [0. 0.97368421 0.02631579]\n",
|
||||||
|
" [1. 0. 0. ]\n",
|
||||||
|
" [0. 0. 1. ]]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"# Print the \n",
|
"# Print the \n",
|
||||||
"print(\"Predicted probabilities\", model.predict_proba(x_train[:10]))"
|
"print(\"Predicted probabilities\", model.predict_proba(x_train[:10]))"
|
||||||
@ -172,9 +220,17 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 5,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Accuracy in training 0.9821428571428571\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"# Evaluate Accuracy in training\n",
|
"# Evaluate Accuracy in training\n",
|
||||||
"\n",
|
"\n",
|
||||||
@ -185,9 +241,17 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 6,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Accuracy in testing 0.9210526315789473\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"# Now we evaluate error in testing\n",
|
"# Now we evaluate error in testing\n",
|
||||||
"y_test_pred = model.predict(x_test)\n",
|
"y_test_pred = model.predict(x_test)\n",
|
||||||
@ -209,12 +273,24 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": null,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"ename": "ModuleNotFoundError",
|
||||||
|
"evalue": "No module named 'pydotplus'",
|
||||||
|
"output_type": "error",
|
||||||
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"\u001b[0;32m<ipython-input-7-1bf5ec7fb043>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mIPython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdisplay\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexternals\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msix\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mStringIO\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mpydotplus\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mpydot\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdot_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mStringIO\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||||
|
"\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'pydotplus'"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"from IPython.display import Image \n",
|
"from IPython.display import Image \n",
|
||||||
"from six import StringIO\n",
|
"from sklearn.externals.six import StringIO\n",
|
||||||
"import pydotplus as pydot\n",
|
"import pydotplus as pydot\n",
|
||||||
"\n",
|
"\n",
|
||||||
"dot_data = StringIO() \n",
|
"dot_data = StringIO() \n",
|
||||||
@ -453,15 +529,6 @@
|
|||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"datacleaner": {
|
|
||||||
"position": {
|
|
||||||
"top": "50px"
|
|
||||||
},
|
|
||||||
"python": {
|
|
||||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
|
||||||
},
|
|
||||||
"window_display": false
|
|
||||||
},
|
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3",
|
"display_name": "Python 3",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
@ -477,7 +544,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.7.9"
|
"version": "3.7.1"
|
||||||
},
|
},
|
||||||
"latex_envs": {
|
"latex_envs": {
|
||||||
"LaTeX_envs_menu_present": true,
|
"LaTeX_envs_menu_present": true,
|
||||||
|
@ -117,7 +117,7 @@
|
|||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# save model\n",
|
"# save model\n",
|
||||||
"import joblib\n",
|
"from sklearn.externals import joblib\n",
|
||||||
"joblib.dump(model, 'filename.pkl') \n",
|
"joblib.dump(model, 'filename.pkl') \n",
|
||||||
"\n",
|
"\n",
|
||||||
"#load model\n",
|
"#load model\n",
|
||||||
@ -151,15 +151,6 @@
|
|||||||
}
|
}
|
||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"datacleaner": {
|
|
||||||
"position": {
|
|
||||||
"top": "50px"
|
|
||||||
},
|
|
||||||
"python": {
|
|
||||||
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
|
||||||
},
|
|
||||||
"window_display": false
|
|
||||||
},
|
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3",
|
"display_name": "Python 3",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
@ -175,7 +166,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.7.9"
|
"version": "3.6.7"
|
||||||
},
|
},
|
||||||
"latex_envs": {
|
"latex_envs": {
|
||||||
"LaTeX_envs_menu_present": true,
|
"LaTeX_envs_menu_present": true,
|
||||||
|
@ -2,7 +2,6 @@ import numpy as np
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from matplotlib.colors import ListedColormap
|
from matplotlib.colors import ListedColormap
|
||||||
from sklearn import neighbors, datasets
|
from sklearn import neighbors, datasets
|
||||||
import seaborn as sns
|
|
||||||
from sklearn.neighbors import KNeighborsClassifier
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
|
||||||
# Taken from http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
|
# Taken from http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
|
||||||
@ -21,8 +20,8 @@ def plot_classification_iris():
|
|||||||
n_neighbors = 15
|
n_neighbors = 15
|
||||||
|
|
||||||
# Create color maps
|
# Create color maps
|
||||||
cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
|
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
|
||||||
cmap_bold = ['darkorange', 'c', 'darkblue']
|
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
|
||||||
|
|
||||||
for weights in ['uniform', 'distance']:
|
for weights in ['uniform', 'distance']:
|
||||||
# we create an instance of Neighbours Classifier and fit the data.
|
# we create an instance of Neighbours Classifier and fit the data.
|
||||||
@ -30,7 +29,7 @@ def plot_classification_iris():
|
|||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
|
|
||||||
# Plot the decision boundary. For that, we will assign a color to each
|
# Plot the decision boundary. For that, we will assign a color to each
|
||||||
# point in the mesh [x_min, x_max]x[y_min, y_max].
|
# point in the mesh [x_min, m_max]x[y_min, y_max].
|
||||||
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
|
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
|
||||||
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
|
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
|
||||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
|
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
|
||||||
@ -39,17 +38,14 @@ def plot_classification_iris():
|
|||||||
|
|
||||||
# Put the result into a color plot
|
# Put the result into a color plot
|
||||||
Z = Z.reshape(xx.shape)
|
Z = Z.reshape(xx.shape)
|
||||||
plt.figure(figsize=(8, 6))
|
plt.figure()
|
||||||
plt.contourf(xx, yy, Z, cmap=cmap_light)
|
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
|
||||||
|
|
||||||
# Plot also the training points
|
# Plot also the training points
|
||||||
sns.scatterplot(x=X[:, 0], y=X[:, 1], hue=iris.target_names[y],
|
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
|
||||||
palette=cmap_bold, alpha=1.0, edgecolor="black")
|
|
||||||
plt.xlim(xx.min(), xx.max())
|
plt.xlim(xx.min(), xx.max())
|
||||||
plt.ylim(yy.min(), yy.max())
|
plt.ylim(yy.min(), yy.max())
|
||||||
plt.title("3-Class classification (k = %i, weights = '%s')"
|
plt.title("3-Class classification (k = %i, weights = '%s')"
|
||||||
% (n_neighbors, weights))
|
% (n_neighbors, weights))
|
||||||
plt.xlabel(iris.feature_names[0])
|
|
||||||
plt.ylabel(iris.feature_names[1])
|
|
||||||
|
|
||||||
plt.show()
|
plt.show()
|
Loading…
Reference in New Issue
Block a user