mirror of
https://github.com/gsi-upm/sitc
synced 2025-01-05 02:41:29 +00:00
Compare commits
5 Commits
3fac9c6f78
...
743c57691f
Author | SHA1 | Date | |
---|---|---|---|
|
743c57691f | ||
|
2c53b81299 | ||
|
dd6c053109 | ||
|
e35e0a11e9 | ||
|
7315b681e4 |
@ -1,7 +1,7 @@
|
|||||||
# sitc
|
# sitc
|
||||||
Exercises for Intelligent Systems Course at Universidad Politécnica de Madrid, Telecommunication Engineering School. This material is used in the subjects
|
Exercises for Intelligent Systems Course at Universidad Politécnica de Madrid, Telecommunication Engineering School. This material is used in the subjects
|
||||||
- SITC (Sistemas Inteligentes y Tecnologías del Conocimiento) - Master Universitario de Ingeniería de Telecomunicación (MUIT)
|
- CDAW (Ciencia de datos y aprendizaje en automático en la web de datos) - Master Universitario de Ingeniería de Telecomunicación (MUIT)
|
||||||
- TIAD (Tecnologías Inteligentes de Análisis de Datos) - Master Universitario en Ingeniera de Redes y Servicios Telemáticos)
|
- ABID (Analítica de Big Data) - Master Universitario en Ingeniera de Redes y Servicios Telemáticos)
|
||||||
|
|
||||||
For following this course:
|
For following this course:
|
||||||
- Follow the instructions to install the environment: https://github.com/gsi-upm/sitc/blob/master/python/1_1_Notebooks.ipynb (Just install 'conda')
|
- Follow the instructions to install the environment: https://github.com/gsi-upm/sitc/blob/master/python/1_1_Notebooks.ipynb (Just install 'conda')
|
||||||
@ -9,11 +9,13 @@ For following this course:
|
|||||||
- Run in a terminal in the folder sitc: jupyter notebook (and enjoy)
|
- Run in a terminal in the folder sitc: jupyter notebook (and enjoy)
|
||||||
|
|
||||||
Topics
|
Topics
|
||||||
* Python: quick introduction to Python
|
* Python: a quick introduction to Python
|
||||||
* ML-1: introduction to machine learning with scikit-learn
|
* ML-1: introduction to machine learning with scikit-learn
|
||||||
* ML-2: introduction to machine learning with pandas and scikit-learn
|
* ML-2: introduction to machine learning with pandas and scikit-learn
|
||||||
|
* ML-21: preprocessing and visualizatoin
|
||||||
* ML-3: introduction to machine learning. Neural Computing
|
* ML-3: introduction to machine learning. Neural Computing
|
||||||
* ML-4: introduction to Evolutionary Computing
|
* ML-4: introduction to Evolutionary Computing
|
||||||
* ML-5: introduction to Reinforcement Learning
|
* ML-5: introduction to Reinforcement Learning
|
||||||
* NLP: introduction to NLP
|
* NLP: introduction to NLP
|
||||||
* LOD: Linked Open Data, exercises and example code
|
* LOD: Linked Open Data, exercises and example code
|
||||||
|
* SNA: Social Network Analysis
|
||||||
|
154
sna/0_Intro_Network_Analysis.ipynb
Normal file
154
sna/0_Intro_Network_Analysis.ipynb
Normal file
@ -0,0 +1,154 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "skip"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "skip"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# Course Notes for Learning Intelligent Systems"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "skip"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "slide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# Introduction to Network Analysis\n",
|
||||||
|
" \n",
|
||||||
|
"In this session, we are going to get more insight regarding how to analyze and visualize social networks.\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "slide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# Objectives\n",
|
||||||
|
"\n",
|
||||||
|
"The main objectives of this session are:\n",
|
||||||
|
"* Understanding why networks are important in data science\n",
|
||||||
|
"* Experimenting with network analysis with networkx."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "slide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# Table of Contents"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"1. [Home](0_Intro_Network_Analysis.ipynb)\n",
|
||||||
|
"2. [First Steps](1_First_Steps.ipynb)\n",
|
||||||
|
"3. [Working_with_Graphs](2_Working_with_Graphs.ipynb)\n",
|
||||||
|
"4. [Network Analysis](3_Network_Analysis.ipynb)\n",
|
||||||
|
"5. [Social Networks](4_Social_Networks.ipynb)\n",
|
||||||
|
"6. [Pandas integration](5_Pandas.ipynb)\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "skip"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Licence\n",
|
||||||
|
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||||
|
"\n",
|
||||||
|
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"celltoolbar": "Slideshow",
|
||||||
|
"datacleaner": {
|
||||||
|
"position": {
|
||||||
|
"top": "50px"
|
||||||
|
},
|
||||||
|
"python": {
|
||||||
|
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
|
||||||
|
},
|
||||||
|
"window_display": false
|
||||||
|
},
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.7"
|
||||||
|
},
|
||||||
|
"latex_envs": {
|
||||||
|
"LaTeX_envs_menu_present": true,
|
||||||
|
"autocomplete": true,
|
||||||
|
"bibliofile": "biblio.bib",
|
||||||
|
"cite_by": "apalike",
|
||||||
|
"current_citInitial": 1,
|
||||||
|
"eqLabelWithNumbers": true,
|
||||||
|
"eqNumInitial": 1,
|
||||||
|
"hotkeys": {
|
||||||
|
"equation": "Ctrl-E",
|
||||||
|
"itemize": "Ctrl-I"
|
||||||
|
},
|
||||||
|
"labels_anchors": false,
|
||||||
|
"latex_user_defs": false,
|
||||||
|
"report_style_numbering": false,
|
||||||
|
"user_envs_cfg": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
1301
sna/1_First_Steps.ipynb
Normal file
1301
sna/1_First_Steps.ipynb
Normal file
File diff suppressed because one or more lines are too long
1013
sna/2_Working_with_Graphs.ipynb
Normal file
1013
sna/2_Working_with_Graphs.ipynb
Normal file
File diff suppressed because one or more lines are too long
374
sna/2a_Florentine_Families_Star_Wars.ipynb
Normal file
374
sna/2a_Florentine_Families_Star_Wars.ipynb
Normal file
@ -0,0 +1,374 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "skip"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"![](images/EscUpmPolit_p.gif \"UPM\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "skip"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# Course Notes for Learning Intelligent Systems"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "skip"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "skip"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## [Introduction to Network Analysis](0_Intro_Network_Analysis.ipynb)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Exercise: Florentine families"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import networkx as nx\n",
|
||||||
|
"import warnings\n",
|
||||||
|
"warnings.simplefilter(action='ignore', category=FutureWarning)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"G_florentine = nx.florentine_families_graph()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "slide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"# Exercise: Star Wars"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import networkx as nx\n",
|
||||||
|
"\n",
|
||||||
|
"# Taken from https://gist.github.com/codingthat/be03565bd97e789a3835b50235ad562f\n",
|
||||||
|
"# The original dataset is from:\n",
|
||||||
|
"# Gabasova, E. (2016). Star Wars social network. DOI: https://doi.org/10.5281/zenodo.1411479\n",
|
||||||
|
"# \n",
|
||||||
|
"# Simplified by Federico Albanese.\n",
|
||||||
|
"\n",
|
||||||
|
"characters = [\"R2-D2\",\n",
|
||||||
|
" \"CHEWBACCA\",\n",
|
||||||
|
" \"C-3PO\",\n",
|
||||||
|
" \"LUKE\",\n",
|
||||||
|
" \"DARTH VADER\",\n",
|
||||||
|
" \"CAMIE\",\n",
|
||||||
|
" \"BIGGS\",\n",
|
||||||
|
" \"LEIA\",\n",
|
||||||
|
" \"BERU\",\n",
|
||||||
|
" \"OWEN\",\n",
|
||||||
|
" \"OBI-WAN\",\n",
|
||||||
|
" \"MOTTI\",\n",
|
||||||
|
" \"TARKIN\",\n",
|
||||||
|
" \"HAN\",\n",
|
||||||
|
" \"DODONNA\",\n",
|
||||||
|
" \"GOLD LEADER\",\n",
|
||||||
|
" \"WEDGE\",\n",
|
||||||
|
" \"RED LEADER\",\n",
|
||||||
|
" \"RED TEN\"]\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"edges = [(\"CHEWBACCA\", \"R2-D2\"),\n",
|
||||||
|
" (\"C-3PO\",\"R2-D2\"),\n",
|
||||||
|
" (\"BERU\", \"R2-D2\"),\n",
|
||||||
|
" (\"LUKE\", \"R2-D2\"),\n",
|
||||||
|
" (\"OWEN\", \"R2-D2\"),\n",
|
||||||
|
" (\"OBI-WAN\", \"R2-D2\"),\n",
|
||||||
|
" (\"LEIA\", \"R2-D2\"),\n",
|
||||||
|
" (\"BIGGS\", \"R2-D2\"),\n",
|
||||||
|
" (\"HAN\", \"R2-D2\"),\n",
|
||||||
|
" (\"CHEWBACCA\", \"OBI-WAN\"),\n",
|
||||||
|
" (\"C-3PO\", \"CHEWBACCA\"),\n",
|
||||||
|
" (\"CHEWBACCA\", \"LUKE\"),\n",
|
||||||
|
" (\"CHEWBACCA\", \"HAN\"),\n",
|
||||||
|
" (\"CHEWBACCA\", \"LEIA\"),\n",
|
||||||
|
" (\"CAMIE\", \"LUKE\"),\n",
|
||||||
|
" (\"BIGGS\", \"CAMIE\"),\n",
|
||||||
|
" (\"BIGGS\", \"LUKE\"),\n",
|
||||||
|
" (\"DARTH VADER\", \"LEIA\"),\n",
|
||||||
|
" (\"BERU\", \"LUKE\"),\n",
|
||||||
|
" (\"BERU\", \"OWEN\"),\n",
|
||||||
|
" (\"BERU\", \"C-3PO\"),\n",
|
||||||
|
" (\"LUKE\", \"OWEN\"),\n",
|
||||||
|
" (\"C-3PO\", \"LUKE\"),\n",
|
||||||
|
" (\"C-3PO\", \"OWEN\"),\n",
|
||||||
|
" (\"C-3PO\", \"LEIA\"),\n",
|
||||||
|
" (\"LEIA\", \"LUKE\"),\n",
|
||||||
|
" (\"BERU\", \"LEIA\"),\n",
|
||||||
|
" (\"LUKE\", \"OBI-WAN\"),\n",
|
||||||
|
" (\"C-3PO\", \"OBI-WAN\"),\n",
|
||||||
|
" (\"LEIA\", \"OBI-WAN\"),\n",
|
||||||
|
" (\"MOTTI\", \"TARKIN\"),\n",
|
||||||
|
" (\"DARTH VADER\", \"MOTTI\"),\n",
|
||||||
|
" (\"DARTH VADER\", \"TARKIN\"),\n",
|
||||||
|
" (\"HAN\", \"OBI-WAN\"),\n",
|
||||||
|
" (\"HAN\", \"LUKE\"),\n",
|
||||||
|
" (\"C-3PO\", \"HAN\"),\n",
|
||||||
|
" (\"LEIA\", \"MOTT\"),\n",
|
||||||
|
" (\"LEIA\", \"TARKIN\"),\n",
|
||||||
|
" (\"HAN\", \"LEIA\"),\n",
|
||||||
|
" (\"DARTH VADER\", \"OBI-WAN\"),\n",
|
||||||
|
" (\"DODONNA\", \"GOLD LEADER\"),\n",
|
||||||
|
" (\"DODONNA\", \"WEDGE\"),\n",
|
||||||
|
" (\"DODONNA\", \"LUKE\"),\n",
|
||||||
|
" (\"GOLD LEADER\", \"WEDGE\"),\n",
|
||||||
|
" (\"GOLD LEADER\", \"LUKE\"),\n",
|
||||||
|
" (\"LUKE\", \"WEDGE\"),\n",
|
||||||
|
" (\"BIGGS\", \"LEIA\"),\n",
|
||||||
|
" (\"LEIA\", \"RED LEADER\"),\n",
|
||||||
|
" (\"LUKE\", \"RED LEADER\"),\n",
|
||||||
|
" (\"BIGGS\", \"RED LEADER\"),\n",
|
||||||
|
" (\"BIGGS\", \"C-3PO\"),\n",
|
||||||
|
" (\"C-3PO\", \"RED LEADER\"),\n",
|
||||||
|
" (\"RED LEADER\", \"WEDGE\"),\n",
|
||||||
|
" (\"GOLD LEADER\", \"RED LEADER\"),\n",
|
||||||
|
" (\"BIGGS\", \"WEDGE\"),\n",
|
||||||
|
" (\"RED LEADER\", \"RED TEN\"),\n",
|
||||||
|
" (\"BIGGS\", \"GOLD LEADER\"),\n",
|
||||||
|
" (\"LUKE\", \"RED TEN\")]\n",
|
||||||
|
"\n",
|
||||||
|
"G_starWars = nx.Graph()\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"G_starWars.add_nodes_from(characters)\n",
|
||||||
|
"G_starWars.add_edges_from(edges)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Exercise\n",
|
||||||
|
"In this exercise we are going to practice some of the concepts of the session.\n",
|
||||||
|
"\n",
|
||||||
|
"Answer the following questions using the object *G_starWars* and *G_florentine*."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Number of nodes"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Number of edges"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Get the list of nodes"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Get the list of edges"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Draw the graph\n",
|
||||||
|
"\n",
|
||||||
|
"Hint. Use different layouts (circular, spring, ...)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Think of interesting micro, meso and macro metrics"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Analyze ego networks of interesting nodes."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Analyze communities"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "skip"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Licence"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "skip"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||||
|
"\n",
|
||||||
|
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"celltoolbar": "Slideshow",
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.11.7"
|
||||||
|
},
|
||||||
|
"latex_envs": {
|
||||||
|
"LaTeX_envs_menu_present": true,
|
||||||
|
"autocomplete": true,
|
||||||
|
"bibliofile": "biblio.bib",
|
||||||
|
"cite_by": "apalike",
|
||||||
|
"current_citInitial": 1,
|
||||||
|
"eqLabelWithNumbers": true,
|
||||||
|
"eqNumInitial": 1,
|
||||||
|
"hotkeys": {
|
||||||
|
"equation": "Ctrl-E",
|
||||||
|
"itemize": "Ctrl-I"
|
||||||
|
},
|
||||||
|
"labels_anchors": false,
|
||||||
|
"latex_user_defs": false,
|
||||||
|
"report_style_numbering": false,
|
||||||
|
"user_envs_cfg": false
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
2230
sna/3_Network_Analysis.ipynb
Normal file
2230
sna/3_Network_Analysis.ipynb
Normal file
File diff suppressed because one or more lines are too long
865
sna/4_Social_Networks.ipynb
Normal file
865
sna/4_Social_Networks.ipynb
Normal file
File diff suppressed because one or more lines are too long
472
sna/5_Pandas.ipynb
Normal file
472
sna/5_Pandas.ipynb
Normal file
File diff suppressed because one or more lines are too long
BIN
sna/images/EscUpmPolit_p.gif
Normal file
BIN
sna/images/EscUpmPolit_p.gif
Normal file
Binary file not shown.
After Width: | Height: | Size: 3.1 KiB |
Loading…
Reference in New Issue
Block a user