mirror of
https://github.com/gsi-upm/sitc
synced 2026-02-08 23:58:17 +00:00
Update README.md
This commit is contained in:
committed by
GitHub
parent
def1c06604
commit
feb60748f4
18
README.md
18
README.md
@@ -1,7 +1,7 @@
|
|||||||
# sitc
|
# sitc
|
||||||
Exercises for Intelligent Systems Course at Universidad Politécnica de Madrid, Telecommunication Engineering School. This material is used in the subjects
|
Exercises for Intelligent Systems Course at Universidad Politécnica de Madrid, Telecommunication Engineering School. This material is used in the subjects
|
||||||
- CDAW (Ciencia de datos y aprendizaje en automático en la web de datos) - Master Universitario de Ingeniería de Telecomunicación (MUIT)
|
- CDAW (Ciencia de datos y aprendizaje en automático en la web de datos) - Máster Universitario de Ingeniería de Telecomunicación (MUIT)
|
||||||
- ABID (Analítica de Big Data) - Master Universitario en Ingeniera de Redes y Servicios Telemáticos)
|
- ABID (Analítica de Big Data) - Máster Universitario en Ingeniería de Redes y Servicios Telemáticos)
|
||||||
|
|
||||||
For following this course:
|
For following this course:
|
||||||
- Follow the instructions to install the environment: https://github.com/gsi-upm/sitc/blob/master/python/1_1_Notebooks.ipynb (Just install 'conda')
|
- Follow the instructions to install the environment: https://github.com/gsi-upm/sitc/blob/master/python/1_1_Notebooks.ipynb (Just install 'conda')
|
||||||
@@ -10,12 +10,12 @@ For following this course:
|
|||||||
|
|
||||||
Topics
|
Topics
|
||||||
* Python: a quick introduction to Python
|
* Python: a quick introduction to Python
|
||||||
* ML-1: introduction to machine learning with scikit-learn
|
* ML-1: Introduction to machine learning with scikit-learn
|
||||||
* ML-2: introduction to machine learning with pandas and scikit-learn
|
* ML-2: Introduction to machine learning with pandas and scikit-learn
|
||||||
* ML-21: preprocessing and visualizatoin
|
* ML-21: Preprocessing and visualization
|
||||||
* ML-3: introduction to machine learning. Neural Computing
|
* ML-3: Introduction to machine learning. Neural Computing
|
||||||
* ML-4: introduction to Evolutionary Computing
|
* ML-4: Introduction to Evolutionary Computing
|
||||||
* ML-5: introduction to Reinforcement Learning
|
* ML-5: Introduction to Reinforcement Learning
|
||||||
* NLP: introduction to NLP
|
* NLP: Introduction to NLP
|
||||||
* LOD: Linked Open Data, exercises and example code
|
* LOD: Linked Open Data, exercises and example code
|
||||||
* SNA: Social Network Analysis
|
* SNA: Social Network Analysis
|
||||||
|
|||||||
Reference in New Issue
Block a user