mirror of
				https://github.com/gsi-upm/sitc
				synced 2025-10-31 15:38:18 +00:00 
			
		
		
		
	Actualizada bibliografía
This commit is contained in:
		| @@ -74,7 +74,7 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": null, |    "execution_count": 1, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [], | ||||||
|    "source": [ |    "source": [ | ||||||
| @@ -124,9 +124,20 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": null, |    "execution_count": 2, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "data": { | ||||||
|  |       "text/plain": [ | ||||||
|  |        "DecisionTreeClassifier(max_depth=3, random_state=1)" | ||||||
|  |       ] | ||||||
|  |      }, | ||||||
|  |      "execution_count": 2, | ||||||
|  |      "metadata": {}, | ||||||
|  |      "output_type": "execute_result" | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|    "source": [ |    "source": [ | ||||||
|     "from sklearn.tree import DecisionTreeClassifier\n", |     "from sklearn.tree import DecisionTreeClassifier\n", | ||||||
|     "import numpy as np\n", |     "import numpy as np\n", | ||||||
| @@ -145,9 +156,24 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": null, |    "execution_count": 3, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "name": "stdout", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "Prediction  [1 0 1 1 1 0 0 1 0 2 0 0 1 2 0 1 2 2 1 1 0 0 2 0 0 2 1 1 2 2 2 2 0 0 1 1 0\n", | ||||||
|  |       " 1 2 1 2 0 2 0 1 0 2 1 0 2 2 0 0 2 0 0 0 2 2 0 1 0 1 0 1 1 1 1 1 0 1 0 1 2\n", | ||||||
|  |       " 0 0 0 0 2 2 0 1 1 2 1 0 0 2 1 1 0 1 1 0 2 1 2 1 2 0 1 0 0 0 2 1 2 1 2 1 2\n", | ||||||
|  |       " 0]\n", | ||||||
|  |       "Expected  [1 0 1 1 1 0 0 1 0 2 0 0 1 2 0 1 2 2 1 1 0 0 2 0 0 2 1 1 2 2 2 2 0 0 1 1 0\n", | ||||||
|  |       " 1 2 1 2 0 2 0 1 0 2 1 0 2 2 0 0 2 0 0 0 2 2 0 1 0 1 0 1 1 1 1 1 0 1 0 1 2\n", | ||||||
|  |       " 0 0 0 0 2 2 0 1 1 2 1 0 0 1 1 1 0 1 1 0 2 2 2 1 2 0 1 0 0 0 2 1 2 1 2 1 2\n", | ||||||
|  |       " 0]\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|    "source": [ |    "source": [ | ||||||
|     "print(\"Prediction \", model.predict(x_train))\n", |     "print(\"Prediction \", model.predict(x_train))\n", | ||||||
|     "print(\"Expected \", y_train)" |     "print(\"Expected \", y_train)" | ||||||
| @@ -162,9 +188,26 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": null, |    "execution_count": 4, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "name": "stdout", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "Predicted probabilities [[0.         0.97368421 0.02631579]\n", | ||||||
|  |       " [1.         0.         0.        ]\n", | ||||||
|  |       " [0.         0.97368421 0.02631579]\n", | ||||||
|  |       " [0.         0.97368421 0.02631579]\n", | ||||||
|  |       " [0.         0.97368421 0.02631579]\n", | ||||||
|  |       " [1.         0.         0.        ]\n", | ||||||
|  |       " [1.         0.         0.        ]\n", | ||||||
|  |       " [0.         0.97368421 0.02631579]\n", | ||||||
|  |       " [1.         0.         0.        ]\n", | ||||||
|  |       " [0.         0.         1.        ]]\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|    "source": [ |    "source": [ | ||||||
|     "# Print the \n", |     "# Print the \n", | ||||||
|     "print(\"Predicted probabilities\", model.predict_proba(x_train[:10]))" |     "print(\"Predicted probabilities\", model.predict_proba(x_train[:10]))" | ||||||
| @@ -172,9 +215,17 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": null, |    "execution_count": 5, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "name": "stdout", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "Accuracy in training 0.9821428571428571\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|    "source": [ |    "source": [ | ||||||
|     "# Evaluate Accuracy in training\n", |     "# Evaluate Accuracy in training\n", | ||||||
|     "\n", |     "\n", | ||||||
| @@ -185,9 +236,17 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": null, |    "execution_count": 6, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "name": "stdout", | ||||||
|  |      "output_type": "stream", | ||||||
|  |      "text": [ | ||||||
|  |       "Accuracy in testing  0.9210526315789473\n" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|    "source": [ |    "source": [ | ||||||
|     "# Now we evaluate error in testing\n", |     "# Now we evaluate error in testing\n", | ||||||
|     "y_test_pred = model.predict(x_test)\n", |     "y_test_pred = model.predict(x_test)\n", | ||||||
| @@ -209,9 +268,24 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": null, |    "execution_count": 7, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [ | ||||||
|  |     { | ||||||
|  |      "ename": "InvocationException", | ||||||
|  |      "evalue": "GraphViz's executables not found", | ||||||
|  |      "output_type": "error", | ||||||
|  |      "traceback": [ | ||||||
|  |       "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | ||||||
|  |       "\u001b[0;31mInvocationException\u001b[0m                       Traceback (most recent call last)", | ||||||
|  |       "\u001b[0;32m/tmp/ipykernel_47326/3723147494.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     13\u001b[0m \u001b[0mgraph\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpydot\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgraph_from_dot_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdot_data\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetvalue\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0mgraph\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_png\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'iris-tree.png'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     15\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgraph\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_png\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||||||
|  |       "\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/pydotplus/graphviz.py\u001b[0m in \u001b[0;36m<lambda>\u001b[0;34m(path, f, prog)\u001b[0m\n\u001b[1;32m   1808\u001b[0m                 \u001b[0;32mlambda\u001b[0m \u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1809\u001b[0m                 \u001b[0mf\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mfrmt\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1810\u001b[0;31m                 \u001b[0mprog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprog\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprog\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mprog\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1811\u001b[0m             )\n\u001b[1;32m   1812\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | ||||||
|  |       "\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/pydotplus/graphviz.py\u001b[0m in \u001b[0;36mwrite\u001b[0;34m(self, path, prog, format)\u001b[0m\n\u001b[1;32m   1916\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1917\u001b[0m             \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1918\u001b[0;31m                 \u001b[0mfobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprog\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mformat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1919\u001b[0m         \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1920\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0mclose\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | ||||||
|  |       "\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/pydotplus/graphviz.py\u001b[0m in \u001b[0;36mcreate\u001b[0;34m(self, prog, format)\u001b[0m\n\u001b[1;32m   1957\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprogs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfind_graphviz\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1958\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprogs\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1959\u001b[0;31m                 raise InvocationException(\n\u001b[0m\u001b[1;32m   1960\u001b[0m                     'GraphViz\\'s executables not found')\n\u001b[1;32m   1961\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | ||||||
|  |       "\u001b[0;31mInvocationException\u001b[0m: GraphViz's executables not found" | ||||||
|  |      ] | ||||||
|  |     } | ||||||
|  |    ], | ||||||
|    "source": [ |    "source": [ | ||||||
|     "from IPython.display import Image \n", |     "from IPython.display import Image \n", | ||||||
|     "from six import StringIO\n", |     "from six import StringIO\n", | ||||||
|   | |||||||
| @@ -517,9 +517,9 @@ | |||||||
|    "cell_type": "markdown", |    "cell_type": "markdown", | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "source": [ |    "source": [ | ||||||
|     "* [Plot the decision surface of a decision tree on the iris dataset](http://scikit-learn.org/stable/auto_examples/tree/plot_iris.html)\n", |     "* [Plot the decision surface of a decision tree on the iris dataset](https://scikit-learn.org/stable/auto_examples/tree/plot_iris_dtc.html)\n", | ||||||
|     "* [Learning scikit-learn: Machine Learning in Python](http://proquest.safaribooksonline.com/book/programming/python/9781783281930/1dot-machine-learning-a-gentle-introduction/ch01s02_html), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2013.\n", |     "* [scikit-learn : Machine Learning Simplified](https://learning.oreilly.com/library/view/scikit-learn-machine/9781788833479/), Raúl Garreta; Guillermo Moncecchi, Packt Publishing, 2017.\n", | ||||||
|     "* [Python Machine Learning](http://proquest.safaribooksonline.com/book/programming/python/9781783555130), Sebastian Raschka, Packt Publishing, 2015.\n", |     "* [Python Machine Learning](https://learning.oreilly.com/library/view/python-machine-learning/9781789955750/), Sebastian Raschka, Packt Publishing, 2019.\n", | ||||||
|     "* [Parameter estimation using grid search with cross-validation](http://scikit-learn.org/stable/auto_examples/model_selection/grid_search_digits.html)\n", |     "* [Parameter estimation using grid search with cross-validation](http://scikit-learn.org/stable/auto_examples/model_selection/grid_search_digits.html)\n", | ||||||
|     "* [Decision trees in python with scikit-learn and pandas](http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html)" |     "* [Decision trees in python with scikit-learn and pandas](http://chrisstrelioff.ws/sandbox/2015/06/08/decision_trees_in_python_with_scikit_learn_and_pandas.html)" | ||||||
|    ] |    ] | ||||||
| @@ -543,7 +543,7 @@ | |||||||
|  ], |  ], | ||||||
|  "metadata": { |  "metadata": { | ||||||
|   "kernelspec": { |   "kernelspec": { | ||||||
|    "display_name": "Python 3", |    "display_name": "Python 3 (ipykernel)", | ||||||
|    "language": "python", |    "language": "python", | ||||||
|    "name": "python3" |    "name": "python3" | ||||||
|   }, |   }, | ||||||
| @@ -557,7 +557,7 @@ | |||||||
|    "name": "python", |    "name": "python", | ||||||
|    "nbconvert_exporter": "python", |    "nbconvert_exporter": "python", | ||||||
|    "pygments_lexer": "ipython3", |    "pygments_lexer": "ipython3", | ||||||
|    "version": "3.8.6" |    "version": "3.8.12" | ||||||
|   }, |   }, | ||||||
|   "latex_envs": { |   "latex_envs": { | ||||||
|    "LaTeX_envs_menu_present": true, |    "LaTeX_envs_menu_present": true, | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user