mirror of
https://github.com/gsi-upm/sitc
synced 2025-08-24 10:32:20 +00:00
Added preprocessing notebooks
This commit is contained in:
committed by
GitHub
parent
1a3f618995
commit
86114b4a56
502
ml21/preprocessing/5_Duplicated_Values.ipynb
Normal file
502
ml21/preprocessing/5_Duplicated_Values.ipynb
Normal file
@@ -0,0 +1,502 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Course Notes for Learning Intelligent Systems"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## [Introduction to Preprocessing](00_Intro_Preprocessing.ipynb)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Duplicated values\n",
|
||||
"\n",
|
||||
"There are two possible approaches: **remove** these rows or **filling** them. It depends on every case.\n",
|
||||
"\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Filling NaN values\n",
|
||||
"If we need to fill errors or blanks, we can use the methods **fillna()** or **dropna()**.\n",
|
||||
"\n",
|
||||
"* For **string** fields, we can fill NaN with **' '**.\n",
|
||||
"\n",
|
||||
"* For **numbers**, we can fill with the **mean** or **median** value. \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# Fill NaN with ' '\n",
|
||||
"df['col'] = df['col'].fillna(' ')\n",
|
||||
"# Fill NaN with 99\n",
|
||||
"df['col'] = df['col'].fillna(99)\n",
|
||||
"# Fill NaN with the mean of the column\n",
|
||||
"df['col'] = df['col'].fillna(df['col'].mean())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Propagate non-null values forward or backwards\n",
|
||||
"You can also propagate non-null values forward or backwards by putting\n",
|
||||
"method=’pad’ as the method argument. It will fill the next value in the\n",
|
||||
"dataframe with the previous non-NaN value. Maybe you just want to fill one\n",
|
||||
"value ( limit=1 )or you want to fill all the values."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"df = pd.DataFrame(data={'col1':[np.nan, np.nan, 2,3,4, np.nan, np.nan]})"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>col1</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>6</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" col1\n",
|
||||
"0 NaN\n",
|
||||
"1 NaN\n",
|
||||
"2 2.0\n",
|
||||
"3 3.0\n",
|
||||
"4 4.0\n",
|
||||
"5 NaN\n",
|
||||
"6 NaN"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"df"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>col1</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>6</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" col1\n",
|
||||
"0 NaN\n",
|
||||
"1 NaN\n",
|
||||
"2 2.0\n",
|
||||
"3 3.0\n",
|
||||
"4 4.0\n",
|
||||
"5 4.0\n",
|
||||
"6 NaN"
|
||||
]
|
||||
},
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# We fill forward the value 4.0 and fill the next one (limit = 1)\n",
|
||||
"df.fillna(method='pad', limit=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "subslide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"We can also backfilling with **bfill**."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>col1</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>2.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>3.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>4.0</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>5</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>6</th>\n",
|
||||
" <td>NaN</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" col1\n",
|
||||
"0 2.0\n",
|
||||
"1 2.0\n",
|
||||
"2 2.0\n",
|
||||
"3 3.0\n",
|
||||
"4 4.0\n",
|
||||
"5 NaN\n",
|
||||
"6 NaN"
|
||||
]
|
||||
},
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Fill the first two NaN values with the first available value\n",
|
||||
"df.fillna(method='bfill')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "slide"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Removing NaN values\n",
|
||||
"We can remove them by row or column."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "fragment"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"/# Drop any rows which have any nans\n",
|
||||
"df.dropna()\n",
|
||||
"/# Drop columns that have any nans\n",
|
||||
"df.dropna(axis=1)\n",
|
||||
"/# Only drop columns which have at least 90% non-NaNs\n",
|
||||
"df.dropna(thresh=int(df.shape[0] * .9), axis=1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"# References\n",
|
||||
"* [Cleaning and Prepping Data with Python for Data Science — Best Practices and Helpful Packages](https://medium.com/@rrfd/cleaning-and-prepping-data-with-python-for-data-science-best-practices-and-helpful-packages-af1edfbe2a3), DeFilippi, 2019, \n",
|
||||
"* [Data Preprocessing for Machine learning in Python, GeeksForGeeks](https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {
|
||||
"slideshow": {
|
||||
"slide_type": "skip"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"## Licence\n",
|
||||
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
|
||||
"\n",
|
||||
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"celltoolbar": "Slideshow",
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.4"
|
||||
},
|
||||
"latex_envs": {
|
||||
"LaTeX_envs_menu_present": true,
|
||||
"autocomplete": true,
|
||||
"bibliofile": "biblio.bib",
|
||||
"cite_by": "apalike",
|
||||
"current_citInitial": 1,
|
||||
"eqLabelWithNumbers": true,
|
||||
"eqNumInitial": 1,
|
||||
"hotkeys": {
|
||||
"equation": "Ctrl-E",
|
||||
"itemize": "Ctrl-I"
|
||||
},
|
||||
"labels_anchors": false,
|
||||
"latex_user_defs": false,
|
||||
"report_style_numbering": false,
|
||||
"user_envs_cfg": false
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
Reference in New Issue
Block a user