mirror of
https://github.com/gsi-upm/sitc
synced 2024-11-22 06:22:29 +00:00
adapted some calls to new scikit version
This commit is contained in:
parent
a8355e1ee6
commit
6d38d96f16
@ -56,9 +56,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 1,
|
"execution_count": 1,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": true
|
|
||||||
},
|
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from sklearn import datasets\n",
|
"from sklearn import datasets\n",
|
||||||
@ -83,13 +81,11 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 2,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"from sklearn.cross_validation import train_test_split\n",
|
"from sklearn.model_selection import train_test_split\n",
|
||||||
"x_iris, y_iris = iris.data, iris.target\n",
|
"x_iris, y_iris = iris.data, iris.target\n",
|
||||||
"# Test set will be the 25% taken randomly\n",
|
"# Test set will be the 25% taken randomly\n",
|
||||||
"x_train, x_test, y_train, y_test = train_test_split(x_iris, y_iris, test_size=0.25, random_state=33)"
|
"x_train, x_test, y_train, y_test = train_test_split(x_iris, y_iris, test_size=0.25, random_state=33)"
|
||||||
@ -98,9 +94,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 4,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@ -118,9 +112,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 5,
|
"execution_count": 5,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@ -191,9 +183,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 10,
|
"execution_count": 10,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# Standardize the features\n",
|
"# Standardize the features\n",
|
||||||
@ -206,9 +196,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 11,
|
"execution_count": 11,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@ -306,9 +294,9 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.5.1+"
|
"version": "3.6.3"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
"nbformat_minor": 0
|
"nbformat_minor": 1
|
||||||
}
|
}
|
||||||
|
@ -71,10 +71,8 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 1,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": true
|
|
||||||
},
|
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"# library for displaying plots\n",
|
"# library for displaying plots\n",
|
||||||
@ -86,10 +84,8 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 2,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"## First, we repeat the load and preprocessing steps\n",
|
"## First, we repeat the load and preprocessing steps\n",
|
||||||
@ -99,7 +95,7 @@
|
|||||||
"iris = datasets.load_iris()\n",
|
"iris = datasets.load_iris()\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Training and test spliting\n",
|
"# Training and test spliting\n",
|
||||||
"from sklearn.cross_validation import train_test_split\n",
|
"from sklearn.model_selection import train_test_split\n",
|
||||||
"\n",
|
"\n",
|
||||||
"x_iris, y_iris = iris.data, iris.target\n",
|
"x_iris, y_iris = iris.data, iris.target\n",
|
||||||
"\n",
|
"\n",
|
||||||
@ -139,10 +135,8 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 5,
|
"execution_count": 3,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
@ -152,7 +146,7 @@
|
|||||||
" weights='uniform')"
|
" weights='uniform')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 5,
|
"execution_count": 3,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
@ -170,10 +164,8 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 6,
|
"execution_count": 4,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@ -198,9 +190,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 7,
|
"execution_count": 7,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@ -221,9 +211,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 8,
|
"execution_count": 8,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@ -251,9 +239,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 12,
|
"execution_count": 12,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
@ -309,9 +295,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 14,
|
"execution_count": 14,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@ -349,9 +333,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 15,
|
"execution_count": 15,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@ -369,9 +351,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"source": [
|
"source": [
|
||||||
"We see we classify well all the 'setosa' and 'versicolor' samples. "
|
"We see we classify well all the 'setosa' and 'versicolor' samples. "
|
||||||
]
|
]
|
||||||
@ -392,10 +372,8 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 16,
|
"execution_count": 8,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@ -407,7 +385,7 @@
|
|||||||
}
|
}
|
||||||
],
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"from sklearn.cross_validation import cross_val_score, KFold\n",
|
"from sklearn.model_selection import cross_val_score, KFold\n",
|
||||||
"from sklearn.pipeline import Pipeline\n",
|
"from sklearn.pipeline import Pipeline\n",
|
||||||
"from sklearn.preprocessing import StandardScaler\n",
|
"from sklearn.preprocessing import StandardScaler\n",
|
||||||
"\n",
|
"\n",
|
||||||
@ -418,8 +396,7 @@
|
|||||||
"])\n",
|
"])\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# create a k-fold cross validation iterator of k=10 folds\n",
|
"# create a k-fold cross validation iterator of k=10 folds\n",
|
||||||
"\n",
|
"cv = KFold(10, shuffle=True, random_state=33)\n",
|
||||||
"cv = KFold(x_iris.shape[0], 10, shuffle=True, random_state=33)\n",
|
|
||||||
"\n",
|
"\n",
|
||||||
"# by default the score used is the one returned by score method of the estimator (accuracy)\n",
|
"# by default the score used is the one returned by score method of the estimator (accuracy)\n",
|
||||||
"scores = cross_val_score(model, x_iris, y_iris, cv=cv)\n",
|
"scores = cross_val_score(model, x_iris, y_iris, cv=cv)\n",
|
||||||
@ -437,10 +414,8 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 17,
|
"execution_count": 9,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"name": "stdout",
|
"name": "stdout",
|
||||||
@ -481,9 +456,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 18,
|
"execution_count": 18,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
@ -568,9 +541,9 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.5.1+"
|
"version": "3.6.3"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
"nbformat_minor": 0
|
"nbformat_minor": 1
|
||||||
}
|
}
|
||||||
|
File diff suppressed because one or more lines are too long
File diff suppressed because it is too large
Load Diff
@ -56,9 +56,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 1,
|
"execution_count": 1,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
@ -79,7 +77,7 @@
|
|||||||
"iris = datasets.load_iris()\n",
|
"iris = datasets.load_iris()\n",
|
||||||
"\n",
|
"\n",
|
||||||
"# Training and test spliting\n",
|
"# Training and test spliting\n",
|
||||||
"from sklearn.cross_validation import train_test_split\n",
|
"from sklearn.model_selection import train_test_split\n",
|
||||||
"x_iris, y_iris = iris.data, iris.target\n",
|
"x_iris, y_iris = iris.data, iris.target\n",
|
||||||
"# Test set will be the 25% taken randomly\n",
|
"# Test set will be the 25% taken randomly\n",
|
||||||
"x_train, x_test, y_train, y_test = train_test_split(x_iris, y_iris, test_size=0.25, random_state=33)\n",
|
"x_train, x_test, y_train, y_test = train_test_split(x_iris, y_iris, test_size=0.25, random_state=33)\n",
|
||||||
@ -109,9 +107,7 @@
|
|||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": 2,
|
||||||
"metadata": {
|
"metadata": {},
|
||||||
"collapsed": false
|
|
||||||
},
|
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
@ -196,9 +192,9 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.5.1+"
|
"version": "3.6.3"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
"nbformat_minor": 0
|
"nbformat_minor": 1
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user