mirror of
https://github.com/gsi-upm/sitc
synced 2024-11-24 07:22:29 +00:00
Updated util_knn.py to new version of scikit
This commit is contained in:
parent
5144b7f228
commit
2f7cbe9e45
@ -2,6 +2,7 @@ import numpy as np
|
|||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from matplotlib.colors import ListedColormap
|
from matplotlib.colors import ListedColormap
|
||||||
from sklearn import neighbors, datasets
|
from sklearn import neighbors, datasets
|
||||||
|
import seaborn as sns
|
||||||
from sklearn.neighbors import KNeighborsClassifier
|
from sklearn.neighbors import KNeighborsClassifier
|
||||||
|
|
||||||
# Taken from http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
|
# Taken from http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
|
||||||
@ -20,8 +21,8 @@ def plot_classification_iris():
|
|||||||
n_neighbors = 15
|
n_neighbors = 15
|
||||||
|
|
||||||
# Create color maps
|
# Create color maps
|
||||||
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
|
cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
|
||||||
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
|
cmap_bold = ['darkorange', 'c', 'darkblue']
|
||||||
|
|
||||||
for weights in ['uniform', 'distance']:
|
for weights in ['uniform', 'distance']:
|
||||||
# we create an instance of Neighbours Classifier and fit the data.
|
# we create an instance of Neighbours Classifier and fit the data.
|
||||||
@ -29,7 +30,7 @@ def plot_classification_iris():
|
|||||||
clf.fit(X, y)
|
clf.fit(X, y)
|
||||||
|
|
||||||
# Plot the decision boundary. For that, we will assign a color to each
|
# Plot the decision boundary. For that, we will assign a color to each
|
||||||
# point in the mesh [x_min, m_max]x[y_min, y_max].
|
# point in the mesh [x_min, x_max]x[y_min, y_max].
|
||||||
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
|
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
|
||||||
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
|
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
|
||||||
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
|
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
|
||||||
@ -38,14 +39,17 @@ def plot_classification_iris():
|
|||||||
|
|
||||||
# Put the result into a color plot
|
# Put the result into a color plot
|
||||||
Z = Z.reshape(xx.shape)
|
Z = Z.reshape(xx.shape)
|
||||||
plt.figure()
|
plt.figure(figsize=(8, 6))
|
||||||
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
|
plt.contourf(xx, yy, Z, cmap=cmap_light)
|
||||||
|
|
||||||
# Plot also the training points
|
# Plot also the training points
|
||||||
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
|
sns.scatterplot(x=X[:, 0], y=X[:, 1], hue=iris.target_names[y],
|
||||||
|
palette=cmap_bold, alpha=1.0, edgecolor="black")
|
||||||
plt.xlim(xx.min(), xx.max())
|
plt.xlim(xx.min(), xx.max())
|
||||||
plt.ylim(yy.min(), yy.max())
|
plt.ylim(yy.min(), yy.max())
|
||||||
plt.title("3-Class classification (k = %i, weights = '%s')"
|
plt.title("3-Class classification (k = %i, weights = '%s')"
|
||||||
% (n_neighbors, weights))
|
% (n_neighbors, weights))
|
||||||
|
plt.xlabel(iris.feature_names[0])
|
||||||
|
plt.ylabel(iris.feature_names[1])
|
||||||
|
|
||||||
plt.show()
|
plt.show()
|
Loading…
Reference in New Issue
Block a user