mirror of
				https://github.com/gsi-upm/sitc
				synced 2025-11-04 01:18:16 +00:00 
			
		
		
		
	Updated util_knn.py to new version of scikit
This commit is contained in:
		@@ -2,6 +2,7 @@ import numpy as np
 | 
				
			|||||||
import matplotlib.pyplot as plt
 | 
					import matplotlib.pyplot as plt
 | 
				
			||||||
from matplotlib.colors import ListedColormap
 | 
					from matplotlib.colors import ListedColormap
 | 
				
			||||||
from sklearn import neighbors, datasets
 | 
					from sklearn import neighbors, datasets
 | 
				
			||||||
 | 
					import seaborn as sns
 | 
				
			||||||
from sklearn.neighbors import KNeighborsClassifier
 | 
					from sklearn.neighbors import KNeighborsClassifier
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Taken from http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
 | 
					# Taken from http://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html
 | 
				
			||||||
@@ -20,8 +21,8 @@ def plot_classification_iris():
 | 
				
			|||||||
    n_neighbors = 15
 | 
					    n_neighbors = 15
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  # Create color maps
 | 
					  # Create color maps
 | 
				
			||||||
    cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
 | 
					    cmap_light = ListedColormap(['orange', 'cyan', 'cornflowerblue'])
 | 
				
			||||||
    cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])
 | 
					    cmap_bold = ['darkorange', 'c', 'darkblue']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    for weights in ['uniform', 'distance']:
 | 
					    for weights in ['uniform', 'distance']:
 | 
				
			||||||
        # we create an instance of Neighbours Classifier and fit the data.
 | 
					        # we create an instance of Neighbours Classifier and fit the data.
 | 
				
			||||||
@@ -29,7 +30,7 @@ def plot_classification_iris():
 | 
				
			|||||||
        clf.fit(X, y)
 | 
					        clf.fit(X, y)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # Plot the decision boundary. For that, we will assign a color to each
 | 
					        # Plot the decision boundary. For that, we will assign a color to each
 | 
				
			||||||
        # point in the mesh [x_min, m_max]x[y_min, y_max].
 | 
					        # point in the mesh [x_min, x_max]x[y_min, y_max].
 | 
				
			||||||
        x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 | 
					        x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 | 
				
			||||||
        y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 | 
					        y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 | 
				
			||||||
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
 | 
					        xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
 | 
				
			||||||
@@ -38,14 +39,17 @@ def plot_classification_iris():
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
        # Put the result into a color plot
 | 
					        # Put the result into a color plot
 | 
				
			||||||
        Z = Z.reshape(xx.shape)
 | 
					        Z = Z.reshape(xx.shape)
 | 
				
			||||||
        plt.figure()
 | 
					        plt.figure(figsize=(8, 6))
 | 
				
			||||||
        plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
 | 
					        plt.contourf(xx, yy, Z, cmap=cmap_light)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # Plot also the training points
 | 
					        # Plot also the training points
 | 
				
			||||||
        plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
 | 
					        sns.scatterplot(x=X[:, 0], y=X[:, 1], hue=iris.target_names[y],
 | 
				
			||||||
 | 
					                        palette=cmap_bold, alpha=1.0, edgecolor="black")
 | 
				
			||||||
        plt.xlim(xx.min(), xx.max())
 | 
					        plt.xlim(xx.min(), xx.max())
 | 
				
			||||||
        plt.ylim(yy.min(), yy.max())
 | 
					        plt.ylim(yy.min(), yy.max())
 | 
				
			||||||
        plt.title("3-Class classification (k = %i, weights = '%s')"
 | 
					        plt.title("3-Class classification (k = %i, weights = '%s')"
 | 
				
			||||||
                  % (n_neighbors, weights))
 | 
					                  % (n_neighbors, weights))
 | 
				
			||||||
 | 
					        plt.xlabel(iris.feature_names[0])
 | 
				
			||||||
 | 
					        plt.ylabel(iris.feature_names[1])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    plt.show()
 | 
					plt.show()
 | 
				
			||||||
		Reference in New Issue
	
	Block a user