1
0
mirror of https://github.com/gsi-upm/sitc synced 2024-12-22 11:48:12 +00:00
sitc/ml21/preprocessing/04_Unknown_Values.ipynb

592 lines
13 KiB
Plaintext
Raw Permalink Normal View History

2024-04-03 20:50:36 +00:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"![](images/EscUpmPolit_p.gif \"UPM\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"# Course Notes for Learning Intelligent Systems"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"Department of Telematic Engineering Systems, Universidad Politécnica de Madrid, © Carlos A. Iglesias"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"## [Introduction to Preprocessing](00_Intro_Preprocessing.ipynb)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Unknown values\n",
"\n",
"Two possible approaches are **remove** these rows or **fill** them. It depends on every case."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Filling NaN values\n",
"If we need to fill errors or blanks, we can use the methods **fillna()** or **dropna()**.\n",
"\n",
"* For **string** fields, we can fill NaN with **' '**.\n",
"\n",
"* For **numbers**, we can fill with the **mean** or **median** value. \n"
]
},
{
"cell_type": "raw",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"# Fill NaN with ' '\n",
"df['col'] = df['col'].fillna(' ')\n",
"# Fill NaN with 99\n",
"df['col'] = df['col'].fillna(99)\n",
"# Fill NaN with the mean of the column\n",
"df['col'] = df['col'].fillna(df['col'].mean())"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Propagate non-null values forward or backward\n",
"You can also **propagate** non-null values with these methods:\n",
"\n",
"* **ffill**: Fill values by propagating the last valid observation to the next valid.\n",
"* **bfill**: Fill values using the following valid observation to fill the gap.\n",
"* **interpolate**: Fill NaN values using interpolation.\n",
"\n",
"It will fill the next value in the dataframe with the previous non-NaN value. \n",
"\n",
"You may want to fill in one value (**limit=1**) or all the values. You can also indicate inplace=True to fill in-place."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [],
"source": [
"df = pd.DataFrame(data={'col1':[np.nan, np.nan, 2,3,4, np.nan, np.nan]})"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>col1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" col1\n",
"0 NaN\n",
"1 NaN\n",
"2 2.0\n",
"3 3.0\n",
"4 4.0\n",
"5 NaN\n",
"6 NaN"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We fill forward the value 4.0 and fill the next one (limit = 1)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>col1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" col1\n",
"0 NaN\n",
"1 NaN\n",
"2 2.0\n",
"3 3.0\n",
"4 4.0\n",
"5 4.0\n",
"6 NaN"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
" df.ffill(limit = 1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.ffill()"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "subslide"
}
},
"source": [
"We can also backfilling with **bfill**. Since we do not include *limit*, we fill all the values."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>col1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" col1\n",
"0 2.0\n",
"1 2.0\n",
"2 2.0\n",
"3 3.0\n",
"4 4.0\n",
"5 NaN\n",
"6 NaN"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.bfill()"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"## Removing NaN values\n",
"We can remove them by row or column (use inplace=True if you want to modify the DataFrame)."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"slideshow": {
"slide_type": "fragment"
}
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>col1</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" col1\n",
"2 2.0\n",
"3 3.0\n",
"4 4.0"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Drop any rows which have any nans\n",
"df1 = df.dropna()\n",
"# Drop columns that have any nans (axis = 1 -> drop columns, axis = 0 -> drop rows)\n",
"df2 = df.dropna(axis=1)\n",
"# Only drop columns which have at least 90% non-NaNs \n",
"df3 = df.dropna(thresh=int(df.shape[0] * .9), axis=1)\n",
"df1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"# References\n",
"* [Cleaning and Prepping Data with Python for Data Science — Best Practices and Helpful Packages](https://medium.com/@rrfd/cleaning-and-prepping-data-with-python-for-data-science-best-practices-and-helpful-packages-af1edfbe2a3), DeFilippi, 2019, \n",
"* [Data Preprocessing for Machine learning in Python, GeeksForGeeks](https://www.geeksforgeeks.org/data-preprocessing-machine-learning-python/)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"## Licence\n",
"The notebook is freely licensed under under the [Creative Commons Attribution Share-Alike license](https://creativecommons.org/licenses/by/2.0/). \n",
"\n",
"© Carlos A. Iglesias, Universidad Politécnica de Madrid."
]
}
],
"metadata": {
"celltoolbar": "Slideshow",
"datacleaner": {
"position": {
"top": "50px"
},
"python": {
"varRefreshCmd": "try:\n print(_datacleaner.dataframe_metadata())\nexcept:\n print([])"
},
"window_display": false
},
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"latex_envs": {
"LaTeX_envs_menu_present": true,
"autocomplete": true,
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 1,
"hotkeys": {
"equation": "Ctrl-E",
"itemize": "Ctrl-I"
},
"labels_anchors": false,
"latex_user_defs": false,
"report_style_numbering": false,
"user_envs_cfg": false
}
},
"nbformat": 4,
"nbformat_minor": 4
}