mirror of
https://github.com/gsi-upm/senpy
synced 2024-10-31 23:41:41 +00:00
.makefiles | ||
docs | ||
img | ||
k8s | ||
senpy | ||
tests | ||
.drone.yml | ||
.gitignore | ||
.gitlab-ci.yml | ||
.pre-commit-config.yaml | ||
.travis.yml | ||
config.py | ||
dev-requirements.txt | ||
Dockerfile.template | ||
LICENSE.txt | ||
Makefile | ||
MANIFEST.in | ||
NOTICE | ||
Procfile | ||
README.rst | ||
requirements.txt | ||
setup.cfg | ||
setup.py | ||
supervisord.conf | ||
test-requirements.txt |
.. image:: img/header.png :height: 6em :target: http://demos.gsi.dit.upm.es/senpy .. image:: https://travis-ci.org/gsi-upm/senpy.svg?branch=master :target: https://travis-ci.org/gsi-upm/senpy Senpy lets you create sentiment analysis web services easily, fast and using a well known API. As a bonus, senpy services use semantic vocabularies (e.g. `NIF <http://persistence.uni-leipzig.org/nlp2rdf/>`_, `Marl <http://www.gsi.dit.upm.es/ontologies/marl>`_, `Onyx <http://www.gsi.dit.upm.es/ontologies/onyx>`_) and formats (turtle, JSON-LD, xml-rdf). Have you ever wanted to turn your sentiment analysis algorithms into a service? With senpy, now you can. It provides all the tools so you just have to worry about improving your algorithms: `See it in action. <http://senpy.cluster.gsi.dit.upm.es/>`_ Installation ------------ The stable version can be installed in three ways. Through PIP *********** .. code:: bash pip install -U --user senpy Alternatively, you can use the development version: .. code:: bash git clone http://github.com/gsi-upm/senpy cd senpy pip install --user . If you want to install senpy globally, use sudo instead of the ``--user`` flag. Docker Image ************ Build the image or use the pre-built one: ``docker run -ti -p 5000:5000 gsiupm/senpy --default-plugins``. To add custom plugins, add a volume and tell senpy where to find the plugins: ``docker run -ti -p 5000:5000 -v <PATH OF PLUGINS>:/plugins gsiupm/senpy --default-plugins -f /plugins`` Developing ---------- Developing/debugging ******************** This command will run the senpy container using the latest image available, mounting your current folder so you get your latest code: .. code:: bash # Python 3.5 make dev # Python 2.7 make dev-2.7 Building a docker image *********************** .. code:: bash # Python 3.5 make build-3.5 # Python 2.7 make build-2.7 Testing ******* .. code:: bash make test Running ******* This command will run the senpy server listening on localhost:5000 .. code:: bash # Python 3.5 make run-3.5 # Python 2.7 make run-2.7 Usage ----- However, the easiest and recommended way is to just use the command-line tool to load your plugins and launch the server. .. code:: bash senpy or, alternatively: .. code:: bash python -m senpy This will create a server with any modules found in the current path. For more options, see the `--help` page. Alternatively, you can use the modules included in senpy to build your own application. Deploying on Heroku ------------------- Use a free heroku instance to share your service with the world. Just use the example Procfile in this repository, or build your own. `DEMO on heroku <http://senpy.herokuapp.com>`_ For more information, check out the `documentation <http://senpy.readthedocs.org>`_. ------------------------------------------------------------------------------------ Acknowledgement --------------- This development has been partially funded by the European Union through the MixedEmotions Project (project number H2020 655632), as part of the `RIA ICT 15 Big data and Open Data Innovation and take-up` programme. .. image:: img/me.png :target: http://mixedemotions-project.eu :height: 100px :alt: MixedEmotions Logo .. image:: img/eu-flag.jpg :height: 100px :target: http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/index.html