mirror of
https://github.com/gsi-upm/senpy
synced 2024-11-24 09:02:28 +00:00
19d12a74cd
We're experiencing significant delays when we have large objects as plugin instance variables. This edit seems to fix the problem. It looks like the plugin instance is passed (inside the response object) as-is to flask: perhaps flask is walking through it or duplicating it in memory or some such? Not sure... There may be a better way? |
||
---|---|---|
docs | ||
img | ||
senpy | ||
tests | ||
.drone.yml | ||
.gitignore | ||
.travis.yml | ||
app.py | ||
config.py | ||
dev-requirements.txt | ||
Dockerfile-2.7 | ||
Dockerfile-3.4 | ||
Dockerfile.deps | ||
Dockerfile.template | ||
LICENSE.txt | ||
Makefile | ||
MANIFEST.in | ||
NOTICE | ||
Procfile | ||
README.rst | ||
requirements.txt | ||
setup.cfg | ||
setup.py | ||
supervisord.conf | ||
test-requirements.txt |
.. image:: img/header.png :height: 6em :target: http://demos.gsi.dit.upm.es/senpy .. image:: https://travis-ci.org/gsi-upm/senpy.svg?branch=master :target: https://travis-ci.org/gsi-upm/senpy Senpy lets you create sentiment analysis web services easily, fast and using a well known API. As a bonus, senpy services use semantic vocabularies (e.g. `NIF <http://persistence.uni-leipzig.org/nlp2rdf/>`_, `Marl <http://www.gsi.dit.upm.es/ontologies/marl>`_, `Onyx <http://www.gsi.dit.upm.es/ontologies/onyx>`_) and formats (turtle, JSON-LD, xml-rdf). Have you ever wanted to turn your sentiment analysis algorithms into a service? With senpy, now you can. It provides all the tools so you just have to worry about improving your algorithms: `See it in action. <http://senpy.cluster.gsi.dit.upm.es/>`_ Installation ------------ The stable version can be installed in three ways. Through PIP *********** .. code:: bash pip install --user senpy Alternatively, you can use the development version: .. code:: bash git clone http://github.com/gsi-upm/senpy cd senpy pip install --user . If you want to install senpy globally, use sudo instead of the ``--user`` flag. Docker Image ************ Build the image or use the pre-built one: ``docker run -ti -p 5000:5000 gsiupm/senpy --host 0.0.0.0 --default-plugins``. To add custom plugins, add a volume and tell senpy where to find the plugins: ``docker run -ti -p 5000:5000 -v <PATH OF PLUGINS>:/plugins gsiupm/senpy --host 0.0.0.0 --default-plugins -f /plugins`` Usage ----- However, the easiest and recommended way is to just use the command-line tool to load your plugins and launch the server. .. code:: bash senpy or, alternatively: .. code:: bash python -m senpy This will create a server with any modules found in the current path. For more options, see the `--help` page. Alternatively, you can use the modules included in senpy to build your own application. Deploying on Heroku ------------------- Use a free heroku instance to share your service with the world. Just use the example Procfile in this repository, or build your own. `DEMO on heroku <http://senpy.herokuapp.com>`_ For more information, check out the `documentation <http://senpy.readthedocs.org>`_. ------------------------------------------------------------------------------------ Acknowledgement --------------- This development has been partially funded by the European Union through the MixedEmotions Project (project number H2020 655632), as part of the `RIA ICT 15 Big data and Open Data Innovation and take-up` programme. .. image:: img/me.png :target: http://mixedemotions-project.eu :height: 100px :alt: MixedEmotions Logo .. image:: img/eu-flag.jpg :height: 100px :target: http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/index.html