1
0
mirror of https://github.com/gsi-upm/senpy synced 2025-04-19 19:29:07 +00:00

Compare commits

..

No commits in common. "master" and "0.3.0" have entirely different histories.

249 changed files with 852 additions and 38238 deletions

View File

@ -1,9 +0,0 @@
build:
image: python:$$PYTHON_VERSION
commands:
- python setup.py test
matrix:
PYTHON_VERSION:
- 2.7
- 3.4

11
.gitignore vendored
View File

@ -1,11 +0,0 @@
*.pyc
.*
*egg-info
dist
build
README.html
__pycache__
VERSION
Dockerfile-*
Dockerfile
senpy_data

View File

@ -1,133 +0,0 @@
# Uncomment if you want to use docker-in-docker
# image: gsiupm/dockermake:latest
# services:
# - docker:dind
# When using dind, it's wise to use the overlayfs driver for
# improved performance.
stages:
- test
- publish
- test_image
- deploy
variables:
KUBENS: senpy
LATEST_IMAGE: "${HUB_REPO}:${CI_COMMIT_SHORT_SHA}"
SENPY_DATA: "/senpy-data/" # This is configured in the CI job
NLTK_DATA: "/senpy-data/nltk_data" # Store NLTK downloaded data
docker:
stage: publish
image:
name: gcr.io/kaniko-project/executor:debug
entrypoint: [""]
variables:
PYTHON_VERSION: "3.10"
tags:
- docker
script:
- echo $CI_COMMIT_TAG > senpy/VERSION
- sed "s/{{PYVERSION}}/$PYTHON_VERSION/" Dockerfile.template > Dockerfile
- echo "{\"auths\":{\"$CI_REGISTRY\":{\"username\":\"$CI_REGISTRY_USER\",\"password\":\"$CI_REGISTRY_PASSWORD\"},\"https://index.docker.io/v1/\":{\"auth\":\"$HUB_AUTH\"}}}" > /kaniko/.docker/config.json
# The skip-tls-verify flag is there because our registry certificate is self signed
- /kaniko/executor --context $CI_PROJECT_DIR --skip-tls-verify --dockerfile $CI_PROJECT_DIR/Dockerfile --destination $CI_REGISTRY_IMAGE:$CI_COMMIT_TAG --destination $HUB_REPO:$CI_COMMIT_TAG
only:
- tags
docker-latest:
stage: publish
image:
name: gcr.io/kaniko-project/executor:debug
entrypoint: [""]
variables:
PYTHON_VERSION: "3.10"
tags:
- docker
script:
- echo git.${CI_COMMIT_SHORT_SHA} > senpy/VERSION
- sed "s/{{PYVERSION}}/$PYTHON_VERSION/" Dockerfile.template > Dockerfile
- echo "{\"auths\":{\"$CI_REGISTRY\":{\"username\":\"$CI_REGISTRY_USER\",\"password\":\"$CI_REGISTRY_PASSWORD\"},\"https://index.docker.io/v1/\":{\"auth\":\"$HUB_AUTH\"}}}" > /kaniko/.docker/config.json
# The skip-tls-verify flag is there because our registry certificate is self signed
- /kaniko/executor --context $CI_PROJECT_DIR --skip-tls-verify --dockerfile $CI_PROJECT_DIR/Dockerfile --destination $LATEST_IMAGE --destination "${HUB_REPO}:latest"
only:
refs:
- master
testimage:
only:
- tags
tags:
- docker
stage: test_image
image: "$CI_REGISTRY_IMAGE:$CI_COMMIT_TAG"
script:
- python -m senpy --no-run --test
testpy37:
tags:
- docker
variables:
SENPY_STRICT: "false"
image: python:3.7
stage: test
script:
- pip install -r requirements.txt -r test-requirements.txt
- python setup.py test
testpy310:
tags:
- docker
variables:
SENPY_STRICT: "true"
image: python:3.10
stage: test
script:
- pip install -r requirements.txt -r test-requirements.txt -r extra-requirements.txt
- python setup.py test
push_pypi:
only:
- tags
tags:
- docker
image: python:3.10
stage: publish
script:
- echo $CI_COMMIT_TAG > senpy/VERSION
- pip install twine
- python setup.py sdist bdist_wheel
- TWINE_PASSWORD=$PYPI_PASSWORD TWINE_USERNAME=$PYPI_USERNAME python -m twine upload dist/*
check_pypi:
only:
- tags
tags:
- docker
image: python:3.10
stage: deploy
script:
- pip install senpy==$CI_COMMIT_TAG
# Allow PYPI to update its index before we try to install
when: delayed
start_in: 10 minutes
latest-demo:
only:
refs:
- master
tags:
- docker
image: alpine/k8s:1.22.6
stage: deploy
environment: production
variables:
KUBECONFIG: "/kubeconfig"
# Same image as docker-latest
IMAGEWTAG: "${LATEST_IMAGE}"
KUBEAPP: "senpy"
script:
- echo "${KUBECONFIG_RAW}" > $KUBECONFIG
- kubectl --kubeconfig $KUBECONFIG version
- cd k8s/
- cat *.yaml *.tmpl 2>/dev/null | envsubst | kubectl --kubeconfig $KUBECONFIG apply --namespace ${KUBENS:-default} -f -
- kubectl --kubeconfig $KUBECONFIG get all,ing -l app=${KUBEAPP} --namespace=${KUBENS:-default}

View File

@ -1,27 +0,0 @@
These makefiles are recipes for several common tasks in different types of projects.
To add them to your project, simply do:
```
git remote add makefiles ssh://git@lab.gsi.upm.es:2200/docs/templates/makefiles.git
git subtree add --prefix=.makefiles/ makefiles master
touch Makefile
echo "include .makefiles/base.mk" >> Makefile
```
Now you can take advantage of the recipes.
For instance, to add useful targets for a python project, just add this to your Makefile:
```
include .makefiles/python.mk
```
You may need to set special variables like the name of your project or the python versions you're targetting.
Take a look at each specific `.mk` file for more information, and the `Makefile` in the [senpy](https://lab.gsi.upm.es/senpy/senpy) project for a real use case.
If you update the makefiles from your repository, make sure to push the changes for review in upstream (this repository):
```
make makefiles-push
```
It will automatically commit all unstaged changes in the .makefiles folder.

View File

@ -1,36 +0,0 @@
export
NAME ?= $(shell basename $(CURDIR))
VERSION ?= $(shell git describe --tags --dirty 2>/dev/null)
ifeq ($(VERSION),)
VERSION:=unknown
endif
# Get the location of this makefile.
MK_DIR := $(dir $(abspath $(lastword $(MAKEFILE_LIST))))
-include .env
-include ../.env
help: ## Show this help.
@fgrep -h "##" $(MAKEFILE_LIST) | fgrep -v fgrep | sed -e 's/\\$$//' | sed -e 's/\(.*:\)[^#]*##\s*\(.*\)/\1\t\2/' | column -t -s " "
config: ## Load config from the environment. You should run it once in every session before other tasks. Run: eval $(make config)
@awk '{ print "export " $$0}' ../.env
@awk '{ print "export " $$0}' .env
@echo "# Please, run: "
@echo "# eval \$$(make config)"
# If you need to run a command on the key/value pairs, use this:
# @awk '{ split($$0, a, "="); "echo " a[2] " | base64 -w 0" |& getline b64; print "export " a[1] "=" a[2]; print "export " a[1] "_BASE64=" b64}' .env
ci: ## Run a task using gitlab-runner. Only use to debug problems in the CI pipeline
gitlab-runner exec shell --builds-dir '.builds' --env CI_PROJECT_NAME=$(NAME) ${action}
include $(MK_DIR)/makefiles.mk
include $(MK_DIR)/docker.mk
include $(MK_DIR)/git.mk
info:: ## List all variables
env
.PHONY:: config help ci

View File

@ -1,51 +0,0 @@
ifndef IMAGENAME
ifdef CI_REGISTRY_IMAGE
IMAGENAME=$(CI_REGISTRY_IMAGE)
else
IMAGENAME=$(NAME)
endif
endif
IMAGEWTAG?=$(IMAGENAME):$(VERSION)
DOCKER_FLAGS?=$(-ti)
DOCKER_CMD?=
docker-login: ## Log in to the registry. It will only be used in the server, or when running a CI task locally (if CI_BUILD_TOKEN is set).
ifeq ($(CI_BUILD_TOKEN),)
@echo "Not logging in to the docker registry" "$(CI_REGISTRY)"
else
@docker login -u gitlab-ci-token -p $(CI_BUILD_TOKEN) $(CI_REGISTRY)
endif
ifeq ($(HUB_USER),)
@echo "Not logging in to global the docker registry"
else
@docker login -u $(HUB_USER) -p $(HUB_PASSWORD)
endif
docker-clean: ## Remove docker credentials
ifeq ($(HUB_USER),)
else
@docker logout
endif
docker-run: ## Build a generic docker image
docker run $(DOCKER_FLAGS) $(IMAGEWTAG) $(DOCKER_CMD)
docker-build: ## Build a generic docker image
docker build . -t $(IMAGEWTAG)
docker-push: docker-login ## Push a generic docker image
docker push $(IMAGEWTAG)
docker-latest-push: docker-login ## Push the latest image
docker tag $(IMAGEWTAG) $(IMAGENAME)
docker push $(IMAGENAME)
login:: docker-login
clean:: docker-clean
docker-info:
@echo IMAGEWTAG=${IMAGEWTAG}
.PHONY:: docker-login docker-clean login clean

View File

@ -1,25 +0,0 @@
commit:
git commit -a
tag:
git tag ${VERSION}
git-push::
git push --tags -u origin HEAD
git-pull:
git pull --all
push-github: ## Push the code to github. You need to set up GITHUB_DEPLOY_KEY
ifeq ($(GITHUB_DEPLOY_KEY),)
else
$(eval KEY_FILE := "$(shell mktemp)")
@printf '%b' '$(GITHUB_DEPLOY_KEY)' > $(KEY_FILE)
@git remote rm github-deploy || true
git remote add github-deploy $(GITHUB_REPO)
-@GIT_SSH_COMMAND="ssh -i $(KEY_FILE)" git fetch github-deploy $(CI_COMMIT_REF_NAME)
@GIT_SSH_COMMAND="ssh -i $(KEY_FILE)" git push github-deploy HEAD:$(CI_COMMIT_REF_NAME)
rm $(KEY_FILE)
endif
.PHONY:: commit tag git-push git-pull push-github

View File

@ -1,51 +0,0 @@
# Deployment with Kubernetes
# KUBE_CA_PEM_FILE is the path of a certificate file. It automatically set by GitLab
# if you enable Kubernetes integration in a project.
#
# As of this writing, Kubernetes integration can not be set on a group level, so it has to
# be manually set in every project.
# Alternatively, we use a custom KUBE_CA_BUNDLE environment variable, which can be set at
# the group level. In this case, the variable contains the whole content of the certificate,
# which we dump to a temporary file
#
# Check if the KUBE_CA_PEM_FILE exists. Otherwise, create it from KUBE_CA_BUNDLE
KUBE_CA_TEMP=false
ifndef KUBE_CA_PEM_FILE
KUBE_CA_PEM_FILE:=$$PWD/.ca.crt
CREATED:=$(shell printf '%b\n' '$(KUBE_CA_BUNDLE)' > $(KUBE_CA_PEM_FILE))
endif
KUBE_TOKEN?=""
KUBE_NAMESPACE?=$(NAME)
KUBECTL=docker run --rm -v $(KUBE_CA_PEM_FILE):/tmp/ca.pem -i lachlanevenson/k8s-kubectl --server="$(KUBE_URL)" --token="$(KUBE_TOKEN)" --certificate-authority="/tmp/ca.pem" -n $(KUBE_NAMESPACE)
CI_COMMIT_REF_NAME?=master
info:: ## Print variables. Useful for debugging.
@echo "#KUBERNETES"
@echo KUBE_URL=$(KUBE_URL)
@echo KUBE_CA_PEM_FILE=$(KUBE_CA_PEM_FILE)
@echo KUBE_CA_BUNDLE=$$KUBE_CA_BUNDLE
@echo KUBE_TOKEN=$(KUBE_TOKEN)
@echo KUBE_NAMESPACE=$(KUBE_NAMESPACE)
@echo KUBECTL=$(KUBECTL)
@echo "#CI"
@echo CI_PROJECT_NAME=$(CI_PROJECT_NAME)
@echo CI_REGISTRY=$(CI_REGISTRY)
@echo CI_REGISTRY_USER=$(CI_REGISTRY_USER)
@echo CI_COMMIT_REF_NAME=$(CI_COMMIT_REF_NAME)
@echo "CREATED=$(CREATED)"
#
# Deployment and advanced features
#
deploy: ## Deploy to kubernetes using the credentials in KUBE_CA_PEM_FILE (or KUBE_CA_BUNDLE ) and TOKEN
@ls k8s/*.yaml k8s/*.yml k8s/*.tmpl 2>/dev/null || true
@cat k8s/*.yaml k8s/*.yml k8s/*.tmpl 2>/dev/null | envsubst | $(KUBECTL) apply -f -
deploy-check: ## Get the deployed configuration.
@$(KUBECTL) get deploy,pods,svc,ingress
.PHONY:: info deploy deploy-check

View File

@ -1,15 +0,0 @@
makefiles-remote:
git ls-remote --exit-code makefiles 2> /dev/null || git remote add makefiles ssh://git@lab.gsi.upm.es:2200/docs/templates/makefiles.git
makefiles-commit: makefiles-remote
git add -f .makefiles
git commit -em "Updated makefiles from ${NAME}"
makefiles-push:
git fetch makefiles $(NAME)
git subtree push --prefix=.makefiles/ makefiles $(NAME)
makefiles-pull: makefiles-remote
git subtree pull --prefix=.makefiles/ makefiles master --squash
.PHONY:: makefiles-remote makefiles-commit makefiles-push makefiles-pull

View File

@ -1,5 +0,0 @@
init: ## Init pre-commit hooks (i.e. enforcing format checking before allowing a commit)
pip install --user pre-commit
pre-commit install
.PHONY:: init

View File

@ -1,101 +0,0 @@
PYVERSIONS ?= 3.5
PYMAIN ?= $(firstword $(PYVERSIONS))
TARNAME ?= $(NAME)-$(VERSION).tar.gz
VERSIONFILE ?= $(NAME)/VERSION
DEVPORT ?= 6000
.FORCE:
version: .FORCE
@echo $(VERSION) > $(VERSIONFILE)
@echo $(VERSION)
yapf: ## Format python code
yapf -i -r $(NAME)
yapf -i -r tests
dockerfiles: $(addprefix Dockerfile-,$(PYVERSIONS)) ## Generate dockerfiles for each python version
@unlink Dockerfile >/dev/null
ln -s Dockerfile-$(PYMAIN) Dockerfile
Dockerfile-%: Dockerfile.template ## Generate a specific dockerfile (e.g. Dockerfile-2.7)
sed "s/{{PYVERSION}}/$*/" Dockerfile.template > Dockerfile-$*
quick_build: $(addprefix build-, $(PYMAIN))
build: $(addprefix build-, $(PYVERSIONS)) ## Build all images / python versions
docker tag $(IMAGEWTAG)-python$(PYMAIN) $(IMAGEWTAG)
build-%: version Dockerfile-% ## Build a specific version (e.g. build-2.7)
docker build --pull -t '$(IMAGEWTAG)-python$*' -f Dockerfile-$* .;
dev-%: ## Launch a specific development environment using docker (e.g. dev-2.7)
@docker start $(NAME)-dev$* || (\
$(MAKE) build-$*; \
docker run -d -w /usr/src/app/ -p $(DEVPORT):5000 -v $$PWD:/usr/src/app --entrypoint=/bin/bash -ti --name $(NAME)-dev$* '$(IMAGEWTAG)-python$*'; \
)\
docker exec -ti $(NAME)-dev$* bash
dev: dev-$(PYMAIN) ## Launch a development environment using docker, using the default python version
quick_test: test-$(PYMAIN)
test-%: build-% ## Run setup.py from in an isolated container, built from the base image. (e.g. test-2.7)
# This speeds tests up because the image has most (if not all) of the dependencies already.
docker rm $(NAME)-test-$* || true
docker create -ti --name $(NAME)-test-$* --entrypoint="" -w /usr/src/app/ $(IMAGEWTAG)-python$* python setup.py test
docker cp . $(NAME)-test-$*:/usr/src/app
docker start -a $(NAME)-test-$*
test: $(addprefix test-,$(PYVERSIONS)) ## Run the tests with the main python version
run-%: build-%
docker run --rm -p $(DEVPORT):5000 -ti '$(IMAGEWTAG)-python$(PYMAIN)' --default-plugins
run: run-$(PYMAIN)
# Pypy - Upload a package
dist/$(TARNAME): version
python setup.py sdist;
sdist: dist/$(TARNAME) ## Generate the distribution file (wheel)
pip_test-%: sdist ## Test the distribution file using pip install and a specific python version (e.g. pip_test-2.7)
docker run --rm -v $$PWD/dist:/dist/ python:$* pip install /dist/$(TARNAME);
pip_test: $(addprefix pip_test-,$(PYVERSIONS)) ## Test pip installation with the main python version
pip_upload: pip_test ## Upload package to pip
python setup.py sdist upload ;
# Pushing to docker
push-latest: $(addprefix push-latest-,$(PYVERSIONS)) ## Push the "latest" tag to dockerhub
docker tag '$(IMAGEWTAG)-python$(PYMAIN)' '$(IMAGEWTAG)'
docker tag '$(IMAGEWTAG)-python$(PYMAIN)' '$(IMAGENAME):latest'
docker push '$(IMAGENAME):latest'
docker push '$(IMAGEWTAG)'
push-latest-%: build-% ## Push the latest image for a specific python version
docker tag $(IMAGENAME):$(VERSION)-python$* $(IMAGENAME):python$*
docker push $(IMAGENAME):$(VERSION)-python$*
docker push $(IMAGENAME):python$*
push-%: build-% ## Push the image of the current version (tagged). e.g. push-2.7
docker push $(IMAGENAME):$(VERSION)-python$*
push:: $(addprefix push-,$(PYVERSIONS)) ## Push an image with the current version for every python version
docker tag '$(IMAGEWTAG)-python$(PYMAIN)' '$(IMAGEWTAG)'
docker push $(IMAGENAME):$(VERSION)
clean:: ## Clean older docker images and containers related to this project and dev environments
@docker stop $(addprefix $(NAME)-dev,$(PYVERSIONS)) 2>/dev/null || true
@docker rm $(addprefix $(NAME)-dev,$(PYVERSIONS)) 2>/dev/null || true
@docker ps -a | grep $(IMAGENAME) | awk '{ split($$2, vers, "-"); if(vers[0] != "${VERSION}"){ print $$1;}}' | xargs docker rm -v 2>/dev/null|| true
@docker images | grep $(IMAGENAME) | awk '{ split($$2, vers, "-"); if(vers[0] != "${VERSION}"){ print $$1":"$$2;}}' | xargs docker rmi 2>/dev/null|| true
.PHONY:: yapf dockerfiles Dockerfile-% quick_build build build-% dev-% quick-dev test quick_test push-latest push-latest-% push-% push version .FORCE

View File

@ -1,5 +0,0 @@
- repo: git://github.com/pre-commit/pre-commit-hooks
sha: e626cd57090d8df0be21e4df0f4e55cc3511d6ab
hooks:
- id: flake8
- id: check-json

View File

@ -1,22 +0,0 @@
# See https://docs.readthedocs.io/en/stable/config-file/v2.html for details
version: 2
# Set the OS, Python version and other tools you might need
build:
os: ubuntu-22.04
tools:
python: "3.10"
# Build documentation in the "docs/" directory with Sphinx
sphinx:
configuration: docs/conf.py
# formats:
# - pdf
# - epub
python:
install:
- requirements: docs/requirements.txt

View File

@ -1,43 +0,0 @@
sudo: required
matrix:
allow_failures:
# Windows is experimental in Travis.
# As of this writing, senpy installs but hangs on tests that use the flask test client (e.g. blueprints)
- os: windows
include:
- os: linux
language: python
python: 3.4
before_install:
- pip install --upgrade --force-reinstall pandas
- os: linux
language: python
python: 3.5
- os: linux
language: python
python: 3.6
- os: linux
language: python
python: 3.7
- os: osx
language: generic
addons:
homebrew:
# update: true
packages: python3
before_install:
- python3 -m pip install --upgrade virtualenv
- virtualenv -p python3 --system-site-packages "$HOME/venv"
- source "$HOME/venv/bin/activate"
- os: windows
language: bash
before_install:
- choco install -y python3
- python -m pip install --upgrade pip
env: PATH=/c/Python37:/c/Python37/Scripts:$PATH
# command to run tests
# 'python' points to Python 2.7 on macOS but points to Python 3.7 on Linux and Windows
# 'python3' is a 'command not found' error on Windows but 'py' works on Windows only
script:
- python3 setup.py test || python setup.py test

View File

@ -1,81 +0,0 @@
# Changelog
All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [Unreleased]
### Added
* The code of many senpy community plugins have been included by default. However, additional files (e.g., licensed data) and/or installing additional dependencies may be necessary for some plugins. Read each plugin's documentation for more information.
* `--strict` flag, to fail and not start when a
* `optional` attribute in plugins. Optional plugins may fail to load or activate but the server will be started regardless, unless running in strict mode
* Option in shelf plugins to ignore pickling errors
### Removed
* `--only-install`, `--only-test` and `--only-list` flags were removed in favor of `--no-run` + `--install`/`--test`/`--dependencies`
### Changed
* data directory selection logic is slightly modified, and will choose one of the following (in this order): `data_folder` (argument), `$SENPY_DATA` or `$CWD`
## [1.0.6]
### Fixed
* Plugins now get activated for testing
## [1.0.1]
### Added
* License headers
* Description for PyPI (setup.py)
### Changed
* The evaluation tab shows datasets inline, and a tooltip shows the number of instances
* The docs should be clearer now
## [1.0.0]
### Fixed
* Restored hash changing function in `main.js`
## 0.20
### Added
* Objects can control the keys that will be used in `serialize`/`jsonld`/`as_dict` by specifying a list of keys in `terse_keys`.
e.g.
```python
>>> class MyModel(senpy.models.BaseModel):
... _terse_keys = ['visible']
... invisible = 5
... visible = 1
...
>>> m = MyModel(id='testing')
>>> m.jsonld()
{'invisible': 5, 'visible': 1, '@id': 'testing'}
>>> m.jsonld(verbose=False)
{'visible': 1}
```
* Configurable logging format.
* Added default terse keys for the most common classes (entry, sentiment, emotion...).
* Flag parameters (boolean) are set to true even when no value is added (e.g. `&verbose` is the same as `&verbose=true`).
* Plugin and parameter descriptions are now formatted with (showdown)[https://github.com/showdownjs/showdown].
* The web UI requests extra_parameters from the server. This is useful for pipelines. See #52
* First batch of semantic tests (using SPARQL)
* `Plugin.path()` method to get a file path from a relative path (using the senpy data folder)
### Changed
* `install_deps` now checks what requirements are already met before installing with pip.
* Help is now provided verbosely by default
* Other outputs are terse by default. This means some properties are now hidden unless verbose is set.
* `sentiments` and `emotions` are now `marl:hasOpinion` and `onyx:hasEmotionSet`, respectively.
* Nicer logging format
* Context aliases (e.g. `sentiments` and `emotions` properties) have been replaced with the original properties (e.g. `marl:hasOpinion` and `onyx:hasEmotionSet**), to use aliases, pass the `aliases** parameter.
* Several UI improvements
* Dedicated tab to show the list of plugins
* URLs in plugin descriptions are shown as links
* The format of the response is selected by clicking on a tab instead of selecting from a drop-down
* list of examples
* Bootstrap v4
* RandEmotion and RandSentiment are no longer included in the base set of plugins
* The `--plugin-folder` option can be used more than once, and every folder will be added to the app.
### Deprecated
### Removed
* Python 2.7 is no longer test or officially supported
### Fixed
* Plugin descriptions are now dedented when they are extracted from the docstring.
### Security

View File

@ -1,25 +0,0 @@
from python:{{PYVERSION}}
MAINTAINER J. Fernando Sánchez <jf.sanchez@upm.es>
RUN apt-get update && apt-get install -y \
libblas-dev liblapack-dev liblapacke-dev gfortran \
&& rm -rf /var/lib/apt/lists/*
RUN mkdir -p /cache/ /senpy-plugins /data/
VOLUME /data/
ENV PIP_CACHE_DIR=/cache/ SENPY_DATA=/data
WORKDIR /usr/src/app
COPY test-requirements.txt requirements.txt extra-requirements.txt /usr/src/app/
RUN pip install --no-cache-dir -r test-requirements.txt -r requirements.txt -r extra-requirements.txt
COPY . /usr/src/app/
RUN pip install --no-cache-dir --no-index --no-deps --editable .
ONBUILD COPY . /senpy-plugins/
ONBUILD RUN python -m senpy -i --no-run -f /senpy-plugins
ONBUILD WORKDIR /senpy-plugins/
ENTRYPOINT ["python", "-m", "senpy", "-f", "/senpy-plugins/", "--host", "0.0.0.0"]

View File

@ -1,11 +1,4 @@
include requirements.txt
include test-requirements.txt
include extra-requirements.txt
include README.rst
include LICENSE.txt
include senpy/VERSION
graft senpy/plugins
graft senpy/schemas
graft senpy/templates
graft senpy/static
graft img
include README.md
include senpy/context.jsonld
recursive-include *.senpy

View File

@ -1,17 +0,0 @@
NAME=senpy
GITHUB_REPO=git@github.com:gsi-upm/senpy.git
IMAGENAME=gsiupm/senpy
# The first version is the main one (used for quick builds)
# See .makefiles/python.mk for more info
PYVERSIONS ?= 3.10 3.7
DEVPORT=5000
action="test-${PYMAIN}"
GITHUB_REPO=git@github.com:gsi-upm/senpy.git
include .makefiles/base.mk
include .makefiles/k8s.mk
include .makefiles/python.mk

View File

@ -1 +1 @@
web: python -m senpy --host 0.0.0.0 --port $PORT
web: gunicorn app:app --log-file=-

19
README.md Normal file
View File

@ -0,0 +1,19 @@
![GSI Logo](logo.png)
[Senpy](http://senpy.herokuapp.com)
=========================================
Example endpoint that yields results compatible with the EUROSENTIMENT format and exposes the NIF API.
It can be used as a template to adapt existing services to EUROSENTIMENT or to create new services.
[DEMO on Heroku](http://eurosentiment-endpoint.herokuapp.com)
This endpoint serves as bootcampt for any developer wishing to build applications that use the EUROSENTIMENT services.
Acknowledgement
---------------
EUROSENTIMENT PROJECT
Grant Agreement no: 296277
Starting date: 01/09/2012
Project duration: 24 months
![Eurosentiment Logo](logo_grande.png)
![FP7 logo](logo_fp7.gif)

View File

@ -1,181 +0,0 @@
.. image:: img/header.png
:width: 100%
:target: http://senpy.gsi.upm.es
.. image:: https://readthedocs.org/projects/senpy/badge/?version=latest
:target: http://senpy.readthedocs.io/en/latest/
.. image:: https://badge.fury.io/py/senpy.svg
:target: https://badge.fury.io/py/senpy
.. image:: https://travis-ci.org/gsi-upm/senpy.svg
:target: https://github.com/gsi-upm/senpy/senpy/tree/master
.. image:: https://img.shields.io/pypi/l/requests.svg
:target: https://lab.gsi.upm.es/senpy/senpy/
Senpy lets you create sentiment analysis web services easily, fast and using a well known API.
As a bonus, Senpy services use semantic vocabularies (e.g. `NIF <http://persistence.uni-leipzig.org/nlp2rdf/>`_, `Marl <http://www.gsi.upm.es/ontologies/marl>`_, `Onyx <http://www.gsi.upm.es/ontologies/onyx>`_) and formats (turtle, JSON-LD, xml-rdf).
Have you ever wanted to turn your sentiment analysis algorithms into a service?
With Senpy, now you can.
It provides all the tools so you just have to worry about improving your algorithms:
`See it in action. <http://senpy.gsi.upm.es/>`_
Installation
------------
The stable version can be installed in three ways.
Through PIP
***********
.. code:: bash
pip install -U --user senpy
Alternatively, you can use the development version:
.. code:: bash
git clone http://github.com/gsi-upm/senpy
cd senpy
pip install --user .
If you want to install Senpy globally, use sudo instead of the ``--user`` flag.
Docker Image
************
Build the image or use the pre-built one: ``docker run -ti -p 5000:5000 gsiupm/senpy``.
To add custom plugins, add a volume and tell Senpy where to find the plugins: ``docker run -ti -p 5000:5000 -v <PATH OF PLUGINS>:/plugins gsiupm/senpy -f /plugins``
Compatibility
-------------
Senpy should run on any major operating system.
Its code is pure Python, and the only limitations are imposed by its dependencies (e.g., nltk, pandas).
Currently, the CI/CD pipeline tests the code on:
* GNU/Linux with Python versions 3.7+ (3.10+ recommended for all plugins)
* MacOS and homebrew's python3
* Windows 10 and chocolatey's python3
The latest PyPI package is verified to install on Ubuntu, Debian and Arch Linux.
If you have trouble installing Senpy on your platform, see `Having problems?`_.
Developing
----------
Running/debugging
*****************
This command will run the senpy container using the latest image available, mounting your current folder so you get your latest code:
.. code:: bash
# Python 3.5
make dev
# Python 2.7
make dev-2.7
Building a docker image
***********************
.. code:: bash
# Python 3.5
make build-3.5
# Python 2.7
make build-2.7
Testing
*******
.. code:: bash
make test
Running
*******
This command will run the senpy server listening on localhost:5000
.. code:: bash
# Python 3.5
make run-3.5
# Python 2.7
make run-2.7
Usage
-----
However, the easiest and recommended way is to just use the command-line tool to load your plugins and launch the server.
.. code:: bash
senpy
or, alternatively:
.. code:: bash
python -m senpy
This will create a server with any modules found in the current path.
For more options, see the `--help` page.
Alternatively, you can use the modules included in Senpy to build your own application.
Deploying on Heroku
-------------------
Use a free heroku instance to share your service with the world.
Just use the example Procfile in this repository, or build your own.
For more information, check out the `documentation <http://senpy.readthedocs.org>`_.
------------------------------------------------------------------------------------
Python 2.x compatibility
------------------------
Keeping compatibility between python 2.7 and 3.x is not always easy, especially for a framework that deals both with text and web requests.
Hence, starting February 2019, this project will no longer make efforts to support python 2.7, which will reach its end of life in 2020.
Most of the functionality should still work, and the compatibility shims will remain for now, but we cannot make any guarantees at this point.
Instead, the maintainers will focus their efforts on keeping the codebase compatible across different Python 3.3+ versions, including upcoming ones.
We apologize for the inconvenience.
Having problems?
----------------
Please, file a new issue `on GitHub <https://github.com/gsi-upm/senpy/issues>`_ including enough details to reproduce the bug, including:
* Operating system
* Version of Senpy (or docker tag)
* Installed libraries
* Relevant logs
* A simple code example
Acknowledgement
---------------
This development has been partially funded by the European Union through the MixedEmotions Project (project number H2020 655632), as part of the `RIA ICT 15 Big data and Open Data Innovation and take-up` programme.
.. image:: img/me.png
:target: http://mixedemotions-project.eu
:height: 100px
:alt: MixedEmotions Logo
.. image:: img/eu-flag.jpg
:height: 100px
:target: http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/index.html

43
app.py Normal file
View File

@ -0,0 +1,43 @@
#!/usr/bin/python
# -*- coding: utf-8 -*-
# Copyright 2014 J. Fernando Sánchez Rada - Grupo de Sistemas Inteligentes
# DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Simple Sentiment Analysis server for EUROSENTIMENT
This class shows how to use the nif_server module to create custom services.
"""
from gevent.monkey import patch_all; patch_all()
import gevent
import config
from flask import Flask
from senpy.extensions import Senpy
import logging
import os
from gevent.wsgi import WSGIServer
logging.basicConfig(level=logging.DEBUG)
app = Flask(__name__)
mypath = os.path.dirname(os.path.realpath(__file__))
sp = Senpy(app, os.path.join(mypath, "plugins"))
sp.activate_all()
if __name__ == '__main__':
import logging
logging.basicConfig(level=config.DEBUG)
app.debug = config.DEBUG
http_server = WSGIServer(('', 5000), app)
http_server.serve_forever()

4
config.py Normal file
View File

@ -0,0 +1,4 @@
import os
SERVER_PORT = os.environ.get("SERVER_PORT", 5000)
DEBUG = os.environ.get("DEBUG", True)

View File

@ -1,10 +0,0 @@
version: '3'
services:
senpy:
image: "${IMAGENAME-gsiupm/senpy}:${VERSION-latest}"
entrypoint: ["/bin/bash"]
working_dir: "/senpy-plugins"
ports:
- 5000:5000
volumes:
- ".:/usr/src/app/"

View File

@ -1,9 +0,0 @@
version: '3'
services:
test:
image: "${IMAGENAME-gsiupm/senpy}:${VERSION-dev}"
entrypoint: ["py.test"]
volumes:
- ".:/usr/src/app/"
command:
[]

View File

@ -1,11 +0,0 @@
version: '3'
services:
senpy:
image: "${IMAGENAME-gsiupm/senpy}:${VERSION-dev}"
build:
context: .
dockerfile: Dockerfile${PYVERSION--2.7}
ports:
- 5001:5000
volumes:
- "./data:/data"

1
docs/.gitignore vendored
View File

@ -1 +0,0 @@
_build

File diff suppressed because it is too large Load Diff

View File

@ -1,592 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Evaluating Services"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sentiment analysis plugins can also be evaluated on a series of pre-defined datasets.\n",
"This can be done in three ways: through the Web UI (playground), through the web API and programmatically.\n",
"\n",
"Regardless of the way you perform the evaluation, you will need to specify a plugin (service) that you want to evaluate, and a series of datasets on which it should be evaluated.\n",
"\n",
"to evaluate a plugin on a dataset, senpy use the plugin to predict the sentiment in each entry in the dataset.\n",
"These predictions are compared with the expected values to produce several metrics, such as: accuracy, precision and f1-score.\n",
"\n",
"**note**: the evaluation process might take long for plugins that use external services, such as `sentiment140`.\n",
"\n",
"**note**: plugins are assumed to be pre-trained and invariant. i.e., the prediction for an entry should "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Web UI (Playground)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The playground should contain a tab for Evaluation, where you can select any plugin that can be evaluated, and the set of datasets that you want to test the plugin on.\n",
"\n",
"For example, the image below shows the results of the `sentiment-vader` plugin on the `vader` and `sts` datasets:\n",
"\n",
"\n",
"![](eval_table.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Web API"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The api exposes an endpoint (`/evaluate`), which accents the plugin and the set of datasets on which it should be evaluated."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The following code is not necessary, but it will display the results better:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here is a simple call using the requests library:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>.output_html .hll { background-color: #ffffcc }\n",
".output_html { background: #f8f8f8; }\n",
".output_html .c { color: #408080; font-style: italic } /* Comment */\n",
".output_html .err { border: 1px solid #FF0000 } /* Error */\n",
".output_html .k { color: #008000; font-weight: bold } /* Keyword */\n",
".output_html .o { color: #666666 } /* Operator */\n",
".output_html .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
".output_html .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
".output_html .cp { color: #BC7A00 } /* Comment.Preproc */\n",
".output_html .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
".output_html .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
".output_html .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
".output_html .gd { color: #A00000 } /* Generic.Deleted */\n",
".output_html .ge { font-style: italic } /* Generic.Emph */\n",
".output_html .gr { color: #FF0000 } /* Generic.Error */\n",
".output_html .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
".output_html .gi { color: #00A000 } /* Generic.Inserted */\n",
".output_html .go { color: #888888 } /* Generic.Output */\n",
".output_html .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
".output_html .gs { font-weight: bold } /* Generic.Strong */\n",
".output_html .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
".output_html .gt { color: #0044DD } /* Generic.Traceback */\n",
".output_html .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
".output_html .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
".output_html .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
".output_html .kp { color: #008000 } /* Keyword.Pseudo */\n",
".output_html .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
".output_html .kt { color: #B00040 } /* Keyword.Type */\n",
".output_html .m { color: #666666 } /* Literal.Number */\n",
".output_html .s { color: #BA2121 } /* Literal.String */\n",
".output_html .na { color: #7D9029 } /* Name.Attribute */\n",
".output_html .nb { color: #008000 } /* Name.Builtin */\n",
".output_html .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
".output_html .no { color: #880000 } /* Name.Constant */\n",
".output_html .nd { color: #AA22FF } /* Name.Decorator */\n",
".output_html .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
".output_html .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
".output_html .nf { color: #0000FF } /* Name.Function */\n",
".output_html .nl { color: #A0A000 } /* Name.Label */\n",
".output_html .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
".output_html .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
".output_html .nv { color: #19177C } /* Name.Variable */\n",
".output_html .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
".output_html .w { color: #bbbbbb } /* Text.Whitespace */\n",
".output_html .mb { color: #666666 } /* Literal.Number.Bin */\n",
".output_html .mf { color: #666666 } /* Literal.Number.Float */\n",
".output_html .mh { color: #666666 } /* Literal.Number.Hex */\n",
".output_html .mi { color: #666666 } /* Literal.Number.Integer */\n",
".output_html .mo { color: #666666 } /* Literal.Number.Oct */\n",
".output_html .sa { color: #BA2121 } /* Literal.String.Affix */\n",
".output_html .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
".output_html .sc { color: #BA2121 } /* Literal.String.Char */\n",
".output_html .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
".output_html .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
".output_html .s2 { color: #BA2121 } /* Literal.String.Double */\n",
".output_html .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
".output_html .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
".output_html .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
".output_html .sx { color: #008000 } /* Literal.String.Other */\n",
".output_html .sr { color: #BB6688 } /* Literal.String.Regex */\n",
".output_html .s1 { color: #BA2121 } /* Literal.String.Single */\n",
".output_html .ss { color: #19177C } /* Literal.String.Symbol */\n",
".output_html .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
".output_html .fm { color: #0000FF } /* Name.Function.Magic */\n",
".output_html .vc { color: #19177C } /* Name.Variable.Class */\n",
".output_html .vg { color: #19177C } /* Name.Variable.Global */\n",
".output_html .vi { color: #19177C } /* Name.Variable.Instance */\n",
".output_html .vm { color: #19177C } /* Name.Variable.Magic */\n",
".output_html .il { color: #666666 } /* Literal.Number.Integer.Long */</style><div class=\"highlight\"><pre><span></span><span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@context&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;http://senpy.gsi.upm.es/api/contexts/YXBpL2V2YWx1YXRlLz9hbGdvPXNlbnRpbWVudC12YWRlciZkYXRhc2V0PXZhZGVyJTJDc3RzJm91dGZvcm1hdD1qc29uLWxkIw%3D%3D&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;AggregatedEvaluation&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;senpy:evaluations&quot;</span><span class=\"p\">:</span> <span class=\"p\">[</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;Evaluation&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;evaluates&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;endpoint:plugins/sentiment-vader_0.1.1__vader&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;evaluatesOn&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;vader&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;metrics&quot;</span><span class=\"p\">:</span> <span class=\"p\">[</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;Accuracy&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.6907142857142857</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;Precision_macro&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.34535714285714286</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;Recall_macro&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.5</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;F1_macro&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.40853400929446554</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;F1_weighted&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.5643605528396403</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;F1_micro&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.6907142857142857</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;F1_macro&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.40853400929446554</span>\n",
" <span class=\"p\">}</span>\n",
" <span class=\"p\">]</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;Evaluation&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;evaluates&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;endpoint:plugins/sentiment-vader_0.1.1__sts&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;evaluatesOn&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;sts&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;metrics&quot;</span><span class=\"p\">:</span> <span class=\"p\">[</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;Accuracy&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.3107177974434612</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;Precision_macro&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.1553588987217306</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;Recall_macro&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.5</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;F1_macro&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.23705926481620407</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;F1_weighted&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.14731706525451424</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;F1_micro&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.3107177974434612</span>\n",
" <span class=\"p\">},</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"nt\">&quot;@type&quot;</span><span class=\"p\">:</span> <span class=\"s2\">&quot;F1_macro&quot;</span><span class=\"p\">,</span>\n",
" <span class=\"nt\">&quot;value&quot;</span><span class=\"p\">:</span> <span class=\"mf\">0.23705926481620407</span>\n",
" <span class=\"p\">}</span>\n",
" <span class=\"p\">]</span>\n",
" <span class=\"p\">}</span>\n",
" <span class=\"p\">]</span>\n",
"<span class=\"p\">}</span>\n",
"</pre></div>\n"
],
"text/latex": [
"\\begin{Verbatim}[commandchars=\\\\\\{\\}]\n",
"\\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@context\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}http://senpy.gsi.upm.es/api/contexts/YXBpL2V2YWx1YXRlLz9hbGdvPXNlbnRpbWVudC12YWRlciZkYXRhc2V0PXZhZGVyJTJDc3RzJm91dGZvcm1hdD1qc29uLWxkIw\\PYZpc{}3D\\PYZpc{}3D\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}AggregatedEvaluation\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}senpy:evaluations\\PYZdq{}}\\PY{p}{:} \\PY{p}{[}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}Evaluation\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}evaluates\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}endpoint:plugins/sentiment\\PYZhy{}vader\\PYZus{}0.1.1\\PYZus{}\\PYZus{}vader\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}evaluatesOn\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}vader\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}metrics\\PYZdq{}}\\PY{p}{:} \\PY{p}{[}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}Accuracy\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.6907142857142857}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}Precision\\PYZus{}macro\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.34535714285714286}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}Recall\\PYZus{}macro\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.5}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}F1\\PYZus{}macro\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.40853400929446554}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}F1\\PYZus{}weighted\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.5643605528396403}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}F1\\PYZus{}micro\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.6907142857142857}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}F1\\PYZus{}macro\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.40853400929446554}\n",
" \\PY{p}{\\PYZcb{}}\n",
" \\PY{p}{]}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}Evaluation\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}evaluates\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}endpoint:plugins/sentiment\\PYZhy{}vader\\PYZus{}0.1.1\\PYZus{}\\PYZus{}sts\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}evaluatesOn\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}sts\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}metrics\\PYZdq{}}\\PY{p}{:} \\PY{p}{[}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}Accuracy\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.3107177974434612}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}Precision\\PYZus{}macro\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.1553588987217306}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}Recall\\PYZus{}macro\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.5}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}F1\\PYZus{}macro\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.23705926481620407}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}F1\\PYZus{}weighted\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.14731706525451424}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}F1\\PYZus{}micro\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.3107177974434612}\n",
" \\PY{p}{\\PYZcb{}}\\PY{p}{,}\n",
" \\PY{p}{\\PYZob{}}\n",
" \\PY{n+nt}{\\PYZdq{}@type\\PYZdq{}}\\PY{p}{:} \\PY{l+s+s2}{\\PYZdq{}F1\\PYZus{}macro\\PYZdq{}}\\PY{p}{,}\n",
" \\PY{n+nt}{\\PYZdq{}value\\PYZdq{}}\\PY{p}{:} \\PY{l+m+mf}{0.23705926481620407}\n",
" \\PY{p}{\\PYZcb{}}\n",
" \\PY{p}{]}\n",
" \\PY{p}{\\PYZcb{}}\n",
" \\PY{p}{]}\n",
"\\PY{p}{\\PYZcb{}}\n",
"\\end{Verbatim}\n"
],
"text/plain": [
"{\n",
" \"@context\": \"http://senpy.gsi.upm.es/api/contexts/YXBpL2V2YWx1YXRlLz9hbGdvPXNlbnRpbWVudC12YWRlciZkYXRhc2V0PXZhZGVyJTJDc3RzJm91dGZvcm1hdD1qc29uLWxkIw%3D%3D\",\n",
" \"@type\": \"AggregatedEvaluation\",\n",
" \"senpy:evaluations\": [\n",
" {\n",
" \"@type\": \"Evaluation\",\n",
" \"evaluates\": \"endpoint:plugins/sentiment-vader_0.1.1__vader\",\n",
" \"evaluatesOn\": \"vader\",\n",
" \"metrics\": [\n",
" {\n",
" \"@type\": \"Accuracy\",\n",
" \"value\": 0.6907142857142857\n",
" },\n",
" {\n",
" \"@type\": \"Precision_macro\",\n",
" \"value\": 0.34535714285714286\n",
" },\n",
" {\n",
" \"@type\": \"Recall_macro\",\n",
" \"value\": 0.5\n",
" },\n",
" {\n",
" \"@type\": \"F1_macro\",\n",
" \"value\": 0.40853400929446554\n",
" },\n",
" {\n",
" \"@type\": \"F1_weighted\",\n",
" \"value\": 0.5643605528396403\n",
" },\n",
" {\n",
" \"@type\": \"F1_micro\",\n",
" \"value\": 0.6907142857142857\n",
" },\n",
" {\n",
" \"@type\": \"F1_macro\",\n",
" \"value\": 0.40853400929446554\n",
" }\n",
" ]\n",
" },\n",
" {\n",
" \"@type\": \"Evaluation\",\n",
" \"evaluates\": \"endpoint:plugins/sentiment-vader_0.1.1__sts\",\n",
" \"evaluatesOn\": \"sts\",\n",
" \"metrics\": [\n",
" {\n",
" \"@type\": \"Accuracy\",\n",
" \"value\": 0.3107177974434612\n",
" },\n",
" {\n",
" \"@type\": \"Precision_macro\",\n",
" \"value\": 0.1553588987217306\n",
" },\n",
" {\n",
" \"@type\": \"Recall_macro\",\n",
" \"value\": 0.5\n",
" },\n",
" {\n",
" \"@type\": \"F1_macro\",\n",
" \"value\": 0.23705926481620407\n",
" },\n",
" {\n",
" \"@type\": \"F1_weighted\",\n",
" \"value\": 0.14731706525451424\n",
" },\n",
" {\n",
" \"@type\": \"F1_micro\",\n",
" \"value\": 0.3107177974434612\n",
" },\n",
" {\n",
" \"@type\": \"F1_macro\",\n",
" \"value\": 0.23705926481620407\n",
" }\n",
" ]\n",
" }\n",
" ]\n",
"}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import requests\n",
"from IPython.display import Code\n",
"\n",
"endpoint = 'http://senpy.gsi.upm.es/api'\n",
"res = requests.get(f'{endpoint}/evaluate',\n",
" params={\"algo\": \"sentiment-vader\",\n",
" \"dataset\": \"vader,sts\",\n",
" 'outformat': 'json-ld'\n",
" })\n",
"Code(res.text, language='json')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Programmatically (expert)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A third option is to evaluate plugins manually without launching the server.\n",
"\n",
"This option is particularly interesting for advanced users that want faster iterations and evaluation results, and for automation.\n",
"\n",
"We would first need an instance of a plugin.\n",
"In this example we will use the Sentiment140 plugin that is included in every senpy installation:"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"from senpy.plugins.sentiment import sentiment140_plugin"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"s140 = sentiment140_plugin.Sentiment140()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, we need to know what datasets are available.\n",
"We can list all datasets and basic stats (e.g., number of instances and labels used) like this:"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"vader {'instances': 4200, 'labels': [1, -1]}\n",
"sts {'instances': 4200, 'labels': [1, -1]}\n",
"imdb_unsup {'instances': 50000, 'labels': [1, -1]}\n",
"imdb {'instances': 50000, 'labels': [1, -1]}\n",
"sst {'instances': 11855, 'labels': [1, -1]}\n",
"multidomain {'instances': 38548, 'labels': [1, -1]}\n",
"sentiment140 {'instances': 1600000, 'labels': [1, -1]}\n",
"semeval07 {'instances': 'None', 'labels': [1, -1]}\n",
"semeval14 {'instances': 7838, 'labels': [1, -1]}\n",
"pl04 {'instances': 4000, 'labels': [1, -1]}\n",
"pl05 {'instances': 10662, 'labels': [1, -1]}\n",
"semeval13 {'instances': 6259, 'labels': [1, -1]}\n"
]
}
],
"source": [
"from senpy.gsitk_compat import datasets\n",
"for k, d in datasets.items():\n",
" print(k, d['stats'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we will evaluate our plugin in one of the smallest datasets, `sts`:"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"[{\n",
" \"@type\": \"Evaluation\",\n",
" \"evaluates\": \"endpoint:plugins/sentiment140_0.2\",\n",
" \"evaluatesOn\": \"sts\",\n",
" \"metrics\": [\n",
" {\n",
" \"@type\": \"Accuracy\",\n",
" \"value\": 0.872173058013766\n",
" },\n",
" {\n",
" \"@type\": \"Precision_macro\",\n",
" \"value\": 0.9035254323131467\n",
" },\n",
" {\n",
" \"@type\": \"Recall_macro\",\n",
" \"value\": 0.8021249029415483\n",
" },\n",
" {\n",
" \"@type\": \"F1_macro\",\n",
" \"value\": 0.8320673712021136\n",
" },\n",
" {\n",
" \"@type\": \"F1_weighted\",\n",
" \"value\": 0.8631351567604358\n",
" },\n",
" {\n",
" \"@type\": \"F1_micro\",\n",
" \"value\": 0.872173058013766\n",
" },\n",
" {\n",
" \"@type\": \"F1_macro\",\n",
" \"value\": 0.8320673712021136\n",
" }\n",
" ]\n",
" }]"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s140.evaluate(['sts', ])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
},
"toc": {
"colors": {
"hover_highlight": "#DAA520",
"running_highlight": "#FF0000",
"selected_highlight": "#FFD700"
},
"moveMenuLeft": true,
"nav_menu": {
"height": "68px",
"width": "252px"
},
"navigate_menu": true,
"number_sections": true,
"sideBar": true,
"threshold": 4,
"toc_cell": false,
"toc_section_display": "block",
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 1
}

View File

@ -1,181 +0,0 @@
# Makefile for Sphinx documentation
#
# You can set these variables from the command line.
SPHINXOPTS =
SPHINXBUILD = sphinx-build
PAPER =
BUILDDIR = _build
# User-friendly check for sphinx-build
ifeq ($(shell which $(SPHINXBUILD) >/dev/null 2>&1; echo $$?), 1)
$(error The '$(SPHINXBUILD)' command was not found. Make sure you have Sphinx installed, then set the SPHINXBUILD environment variable to point to the full path of the '$(SPHINXBUILD)' executable. Alternatively you can add the directory with the executable to your PATH. If you don't have Sphinx installed, grab it from http://sphinx-doc.org/)
endif
# Internal variables.
PAPEROPT_a4 = -D latex_paper_size=a4
PAPEROPT_letter = -D latex_paper_size=letter
ALLSPHINXOPTS = -d $(BUILDDIR)/doctrees $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .
# the i18n builder cannot share the environment and doctrees with the others
I18NSPHINXOPTS = $(PAPEROPT_$(PAPER)) $(SPHINXOPTS) .
.PHONY: help clean html dirhtml singlehtml pickle json htmlhelp qthelp devhelp epub latex latexpdf text man changes linkcheck doctest gettext
help:
@echo "Please use \`make <target>' where <target> is one of"
@echo " html to make standalone HTML files"
@echo " entr to watch for changes and continuously make HTML files"
@echo " dirhtml to make HTML files named index.html in directories"
@echo " singlehtml to make a single large HTML file"
@echo " pickle to make pickle files"
@echo " json to make JSON files"
@echo " htmlhelp to make HTML files and a HTML help project"
@echo " qthelp to make HTML files and a qthelp project"
@echo " devhelp to make HTML files and a Devhelp project"
@echo " epub to make an epub"
@echo " latex to make LaTeX files, you can set PAPER=a4 or PAPER=letter"
@echo " latexpdf to make LaTeX files and run them through pdflatex"
@echo " latexpdfja to make LaTeX files and run them through platex/dvipdfmx"
@echo " text to make text files"
@echo " man to make manual pages"
@echo " texinfo to make Texinfo files"
@echo " info to make Texinfo files and run them through makeinfo"
@echo " gettext to make PO message catalogs"
@echo " changes to make an overview of all changed/added/deprecated items"
@echo " xml to make Docutils-native XML files"
@echo " pseudoxml to make pseudoxml-XML files for display purposes"
@echo " linkcheck to check all external links for integrity"
@echo " doctest to run all doctests embedded in the documentation (if enabled)"
clean:
rm -rf $(BUILDDIR)/*
entr:
while true; do ag -g rst | entr -d make html; done
html:
$(SPHINXBUILD) -b html $(ALLSPHINXOPTS) $(BUILDDIR)/html
@echo
@echo "Build finished. The HTML pages are in $(BUILDDIR)/html."
dirhtml:
$(SPHINXBUILD) -b dirhtml $(ALLSPHINXOPTS) $(BUILDDIR)/dirhtml
@echo
@echo "Build finished. The HTML pages are in $(BUILDDIR)/dirhtml."
singlehtml:
$(SPHINXBUILD) -b singlehtml $(ALLSPHINXOPTS) $(BUILDDIR)/singlehtml
@echo
@echo "Build finished. The HTML page is in $(BUILDDIR)/singlehtml."
pickle:
$(SPHINXBUILD) -b pickle $(ALLSPHINXOPTS) $(BUILDDIR)/pickle
@echo
@echo "Build finished; now you can process the pickle files."
json:
$(SPHINXBUILD) -b json $(ALLSPHINXOPTS) $(BUILDDIR)/json
@echo
@echo "Build finished; now you can process the JSON files."
htmlhelp:
$(SPHINXBUILD) -b htmlhelp $(ALLSPHINXOPTS) $(BUILDDIR)/htmlhelp
@echo
@echo "Build finished; now you can run HTML Help Workshop with the" \
".hhp project file in $(BUILDDIR)/htmlhelp."
qthelp:
$(SPHINXBUILD) -b qthelp $(ALLSPHINXOPTS) $(BUILDDIR)/qthelp
@echo
@echo "Build finished; now you can run "qcollectiongenerator" with the" \
".qhcp project file in $(BUILDDIR)/qthelp, like this:"
@echo "# qcollectiongenerator $(BUILDDIR)/qthelp/Senpy.qhcp"
@echo "To view the help file:"
@echo "# assistant -collectionFile $(BUILDDIR)/qthelp/Senpy.qhc"
devhelp:
$(SPHINXBUILD) -b devhelp $(ALLSPHINXOPTS) $(BUILDDIR)/devhelp
@echo
@echo "Build finished."
@echo "To view the help file:"
@echo "# mkdir -p $$HOME/.local/share/devhelp/Senpy"
@echo "# ln -s $(BUILDDIR)/devhelp $$HOME/.local/share/devhelp/Senpy"
@echo "# devhelp"
epub:
$(SPHINXBUILD) -b epub $(ALLSPHINXOPTS) $(BUILDDIR)/epub
@echo
@echo "Build finished. The epub file is in $(BUILDDIR)/epub."
latex:
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
@echo
@echo "Build finished; the LaTeX files are in $(BUILDDIR)/latex."
@echo "Run \`make' in that directory to run these through (pdf)latex" \
"(use \`make latexpdf' here to do that automatically)."
latexpdf:
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
@echo "Running LaTeX files through pdflatex..."
$(MAKE) -C $(BUILDDIR)/latex all-pdf
@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."
latexpdfja:
$(SPHINXBUILD) -b latex $(ALLSPHINXOPTS) $(BUILDDIR)/latex
@echo "Running LaTeX files through platex and dvipdfmx..."
$(MAKE) -C $(BUILDDIR)/latex all-pdf-ja
@echo "pdflatex finished; the PDF files are in $(BUILDDIR)/latex."
text:
$(SPHINXBUILD) -b text $(ALLSPHINXOPTS) $(BUILDDIR)/text
@echo
@echo "Build finished. The text files are in $(BUILDDIR)/text."
man:
$(SPHINXBUILD) -b man $(ALLSPHINXOPTS) $(BUILDDIR)/man
@echo
@echo "Build finished. The manual pages are in $(BUILDDIR)/man."
texinfo:
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
@echo
@echo "Build finished. The Texinfo files are in $(BUILDDIR)/texinfo."
@echo "Run \`make' in that directory to run these through makeinfo" \
"(use \`make info' here to do that automatically)."
info:
$(SPHINXBUILD) -b texinfo $(ALLSPHINXOPTS) $(BUILDDIR)/texinfo
@echo "Running Texinfo files through makeinfo..."
make -C $(BUILDDIR)/texinfo info
@echo "makeinfo finished; the Info files are in $(BUILDDIR)/texinfo."
gettext:
$(SPHINXBUILD) -b gettext $(I18NSPHINXOPTS) $(BUILDDIR)/locale
@echo
@echo "Build finished. The message catalogs are in $(BUILDDIR)/locale."
changes:
$(SPHINXBUILD) -b changes $(ALLSPHINXOPTS) $(BUILDDIR)/changes
@echo
@echo "The overview file is in $(BUILDDIR)/changes."
linkcheck:
$(SPHINXBUILD) -b linkcheck $(ALLSPHINXOPTS) $(BUILDDIR)/linkcheck
@echo
@echo "Link check complete; look for any errors in the above output " \
"or in $(BUILDDIR)/linkcheck/output.txt."
doctest:
$(SPHINXBUILD) -b doctest $(ALLSPHINXOPTS) $(BUILDDIR)/doctest
@echo "Testing of doctests in the sources finished, look at the " \
"results in $(BUILDDIR)/doctest/output.txt."
xml:
$(SPHINXBUILD) -b xml $(ALLSPHINXOPTS) $(BUILDDIR)/xml
@echo
@echo "Build finished. The XML files are in $(BUILDDIR)/xml."
pseudoxml:
$(SPHINXBUILD) -b pseudoxml $(ALLSPHINXOPTS) $(BUILDDIR)/pseudoxml
@echo
@echo "Build finished. The pseudo-XML files are in $(BUILDDIR)/pseudoxml."

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 208 KiB

View File

@ -1 +0,0 @@
../../senpy/schemas/

View File

@ -1,208 +0,0 @@
NIF API
-------
.. http:get:: /api
Basic endpoint for sentiment/emotion analysis.
**Example request**:
.. sourcecode:: http
GET /api?input=I%20love%20GSI HTTP/1.1
Host: localhost
Accept: application/json, text/javascript
**Example response**:
.. sourcecode:: http
HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript
{
"@context":"http://127.0.0.1/api/contexts/Results.jsonld",
"@id":"_:Results_11241245.22",
"@type":"results"
"activities": [
"plugins/sentiment-140_0.1"
],
"entries": [
{
"@id": "_:Entry_11241245.22"
"@type":"entry",
"emotions": [],
"entities": [],
"sentiments": [
{
"@id": "Sentiment0",
"@type": "sentiment",
"marl:hasPolarity": "marl:Negative",
"marl:polarityValue": 0,
"prefix": ""
}
],
"suggestions": [],
"text": "This text makes me sad.\nwhilst this text makes me happy and surprised at the same time.\nI cannot believe it!",
"topics": []
}
]
}
:query i input: No default. Depends on informat and intype
:query f informat: one of `turtle` (default), `text`, `json-ld`
:query t intype: one of `direct` (default), `url`
:query o outformat: one of `turtle` (default), `text`, `json-ld`
:query p prefix: prefix for the URIs
:query algo algorithm: algorithm/plugin to use for the analysis. For a list of options, see :http:get:`/api/plugins`. If not provided, the default plugin will be used (:http:get:`/api/plugins/default`).
:query algo emotionModel: desired emotion model in the results. If the requested algorithm does not use that emotion model, there are conversion plugins specifically for this. If none of the plugins match, an error will be returned, which includes the results *as is*.
:reqheader Accept: the response content type depends on
:mailheader:`Accept` header
:resheader Content-Type: this depends on :mailheader:`Accept`
header of request
:statuscode 200: no error
:statuscode 404: service not found
:statuscode 400: error while processing the request
.. http:post:: /api
The same as :http:get:`/api`.
.. http:get:: /api/plugins
Returns a list of installed plugins.
**Example request and response**:
.. sourcecode:: http
GET /api/plugins HTTP/1.1
Host: localhost
Accept: application/json, text/javascript
{
"@id": "plugins/sentiment-140_0.1",
"@type": "sentimentPlugin",
"author": "@balkian",
"description": "Sentiment classifier using rule-based classification for English and Spanish. This plugin uses sentiment140 data to perform classification. For more information: http://help.sentiment140.com/for-students/",
"extra_params": {
"language": {
"@id": "lang_sentiment140",
"aliases": [
"language",
"l"
],
"options": [
"es",
"en",
"auto"
],
"required": false
}
},
"is_activated": true,
"maxPolarityValue": 1.0,
"minPolarityValue": 0.0,
"module": "sentiment-140",
"name": "sentiment-140",
"requirements": {},
"version": "0.1"
},
{
"@id": "plugins/ExamplePlugin_0.1",
"@type": "sentimentPlugin",
"author": "@balkian",
"custom_attribute": "42",
"description": "I am just an example",
"extra_params": {
"parameter": {
"@id": "parameter",
"aliases": [
"parameter",
"param"
],
"default": 42,
"required": true
}
},
"is_activated": true,
"maxPolarityValue": 1.0,
"minPolarityValue": 0.0,
"module": "example",
"name": "ExamplePlugin",
"requirements": "noop",
"version": "0.1"
}
.. http:get:: /api/plugins/<pluginname>
Returns the information of a specific plugin.
**Example request and response**:
.. sourcecode:: http
GET /api/plugins/sentiment-random/ HTTP/1.1
Host: localhost
Accept: application/json, text/javascript
{
"@context": "http://127.0.0.1/api/contexts/ExamplePlugin.jsonld",
"@id": "plugins/ExamplePlugin_0.1",
"@type": "sentimentPlugin",
"author": "@balkian",
"custom_attribute": "42",
"description": "I am just an example",
"extra_params": {
"parameter": {
"@id": "parameter",
"aliases": [
"parameter",
"param"
],
"default": 42,
"required": true
}
},
"is_activated": true,
"maxPolarityValue": 1.0,
"minPolarityValue": 0.0,
"module": "example",
"name": "ExamplePlugin",
"requirements": "noop",
"version": "0.1"
}
.. http:get:: /api/plugins/default
Return the information about the default plugin.

View File

@ -1,8 +0,0 @@
API and vocabularies
####################
.. toctree::
vocabularies.rst
api.rst
examples.rst

View File

@ -1,4 +0,0 @@
{
"@type": "plugins",
"plugins": {}
}

View File

@ -1,77 +0,0 @@
{
"@context": "http://mixedemotions-project.eu/ns/context.jsonld",
"@id": "me:Result1",
"@type": "results",
"activities": [
"me:SAnalysis1",
"me:SgAnalysis1",
"me:EmotionAnalysis1",
"me:NER1",
{
"description": "missing @id and @type"
}
],
"entries": [
{
"@id": "http://micro.blog/status1",
"@type": [
"nif:RFC5147String",
"nif:Context"
],
"nif:isString": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
"entities": [
{
"@id": "http://micro.blog/status1#char=5,13",
"nif:beginIndex": 5,
"nif:endIndex": 13,
"nif:anchorOf": "Microsoft",
"me:references": "http://dbpedia.org/page/Microsoft",
"prov:wasGeneratedBy": "me:NER1"
},
{
"@id": "http://micro.blog/status1#char=25,37",
"nif:beginIndex": 25,
"nif:endIndex": 37,
"nif:anchorOf": "Windows Phone",
"me:references": "http://dbpedia.org/page/Windows_Phone",
"prov:wasGeneratedBy": "me:NER1"
}
],
"suggestions": [
{
"@id": "http://micro.blog/status1#char=16,77",
"nif:beginIndex": 16,
"nif:endIndex": 77,
"nif:anchorOf": "put your Windows Phone on your newest #open technology program",
"prov:wasGeneratedBy": "me:SgAnalysis1"
}
],
"sentiments": [
{
"@id": "http://micro.blog/status1#char=80,97",
"nif:beginIndex": 80,
"nif:endIndex": 97,
"nif:anchorOf": "You'll be awesome.",
"marl:hasPolarity": "marl:Positive",
"marl:polarityValue": 0.9,
"prov:wasGeneratedBy": "me:SAnalysis1"
}
],
"emotions": [
{
"@id": "http://micro.blog/status1#char=0,109",
"nif:anchorOf": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
"prov:wasGeneratedBy": "me:EAnalysis1",
"onyx:hasEmotion": [
{
"onyx:hasEmotionCategory": "wna:liking"
},
{
"onyx:hasEmotionCategory": "wna:excitement"
}
]
}
]
}
]
}

View File

@ -1,14 +0,0 @@
{
"@context": "http://mixedemotions-project.eu/ns/context.jsonld",
"@id": "http://example.com#NIFExample",
"@type": "results",
"activities": [
],
"entries": [
{
"nif:beginIndex": 0,
"nif:endIndex": 40,
"text": "An entry should have a nif:isString key"
}
]
}

View File

@ -1,302 +0,0 @@
# -*- coding: utf-8 -*-
# flake8: noqa
#
# Senpy documentation build configuration file, created by
# sphinx-quickstart on Tue Feb 24 08:57:32 2015.
#
# This file is execfile()d with the current directory set to its
# containing dir.
#
# Note that not all possible configuration values are present in this
# autogenerated file.
#
# All configuration values have a default; values that are commented out
# serve to show the default.
import sys
import os
# If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here.
#sys.path.insert(0, os.path.abspath('.'))
# -- General configuration ------------------------------------------------
on_rtd = os.environ.get('READTHEDOCS', None) == 'True'
# If your documentation needs a minimal Sphinx version, state it here.
#needs_sphinx = '1.0'
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones.
extensions = [
'sphinx.ext.autodoc',
'sphinx.ext.doctest',
'sphinx.ext.todo',
'sphinxcontrib.httpdomain',
'sphinx.ext.coverage',
'sphinx.ext.autosectionlabel',
'nbsphinx',
'sphinx.ext.mathjax',
]
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix of source filenames.
source_suffix = '.rst'
# The encoding of source files.
#source_encoding = 'utf-8-sig'
# The master toctree document.
master_doc = 'index'
# General information about the project.
project = u'Senpy'
copyright = u'2019, J. Fernando Sánchez'
description = u'A framework for sentiment and emotion analysis services'
# The version info for the project you're documenting, acts as replacement for
# |version| and |release|, also used in various other places throughout the
# built documents.
#
# The short X.Y version.
# with open('../senpy/VERSION') as f:
# version = f.read().strip()
# The full version, including alpha/beta/rc tags.
# release = version
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
language = None
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
#today = ''
# Else, today_fmt is used as the format for a strftime call.
#today_fmt = '%B %d, %Y'
# List of patterns, relative to source directory, that match files and
# directories to ignore when looking for source files.
exclude_patterns = ['_build', '**.ipynb_checkpoints']
# The reST default role (used for this markup: `text`) to use for all
# documents.
#default_role = None
# If true, '()' will be appended to :func: etc. cross-reference text.
#add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
#add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
#show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
pygments_style = 'sphinx'
# A list of ignored prefixes for module index sorting.
#modindex_common_prefix = []
# If true, keep warnings as "system message" paragraphs in the built documents.
#keep_warnings = False
html_theme = 'alabaster'
# -- Options for HTML output ----------------------------------------------
# if not on_rtd: # only import and set the theme if we're building docs locally
# import sphinx_rtd_theme
# html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
# else:
# html_theme = 'default'
# The theme to use for HTML and HTML Help pages. See the documentation for
# a list of builtin themes.
# Theme options are theme-specific and customize the look and feel of a theme
# further. For a list of options available for each theme, see the
# documentation.
html_theme_options = {
'logo': 'header.png',
'github_user': 'gsi-upm',
'github_repo': 'senpy',
'github_banner': True,
'sidebar_collapse': True,
}
# Add any paths that contain custom themes here, relative to this directory.
#html_theme_path = []
# The name for this set of Sphinx documents. If None, it defaults to
# "<project> v<release> documentation".
#html_title = None
# A shorter title for the navigation bar. Default is the same as html_title.
#html_short_title = None
# The name of an image file (relative to this directory) to place at the top
# of the sidebar.
#html_logo = None
# The name of an image file (within the static path) to use as favicon of the
# docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32
# pixels large.
#html_favicon = None
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
# Add any extra paths that contain custom files (such as robots.txt or
# .htaccess) here, relative to this directory. These files are copied
# directly to the root of the documentation.
#html_extra_path = []
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
#html_last_updated_fmt = '%b %d, %Y'
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
#html_use_smartypants = True
# Custom sidebar templates, maps document names to template names.
html_sidebars = {
'**': [
'about.html',
'navigation.html',
'searchbox.html',
]
}
# Additional templates that should be rendered to pages, maps page names to
# template names.
#html_additional_pages = {}
# If false, no module index is generated.
#html_domain_indices = True
# If false, no index is generated.
#html_use_index = True
# If true, the index is split into individual pages for each letter.
#html_split_index = False
# If true, links to the reST sources are added to the pages.
#html_show_sourcelink = True
# If true, "Created using Sphinx" is shown in the HTML footer. Default is True.
#html_show_sphinx = True
# If true, "(C) Copyright ..." is shown in the HTML footer. Default is True.
#html_show_copyright = True
# If true, an OpenSearch description file will be output, and all pages will
# contain a <link> tag referring to it. The value of this option must be the
# base URL from which the finished HTML is served.
#html_use_opensearch = ''
# This is the file name suffix for HTML files (e.g. ".xhtml").
#html_file_suffix = None
# Output file base name for HTML help builder.
htmlhelp_basename = 'Senpydoc'
# -- Options for LaTeX output ---------------------------------------------
latex_elements = {
# The paper size ('letterpaper' or 'a4paper').
#'papersize': 'letterpaper',
# The font size ('10pt', '11pt' or '12pt').
#'pointsize': '10pt',
# Additional stuff for the LaTeX preamble.
#'preamble': '',
}
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title,
# author, documentclass [howto, manual, or own class]).
latex_documents = [
('index', 'Senpy.tex', u'Senpy Documentation',
u'J. Fernando Sánchez', 'manual'),
]
# The name of an image file (relative to this directory) to place at the top of
# the title page.
#latex_logo = None
# For "manual" documents, if this is true, then toplevel headings are parts,
# not chapters.
#latex_use_parts = False
# If true, show page references after internal links.
#latex_show_pagerefs = False
# If true, show URL addresses after external links.
#latex_show_urls = False
# Documents to append as an appendix to all manuals.
#latex_appendices = []
# If false, no module index is generated.
#latex_domain_indices = True
# -- Options for manual page output ---------------------------------------
# One entry per manual page. List of tuples
# (source start file, name, description, authors, manual section).
man_pages = [
('index', 'senpy', u'Senpy Documentation',
[u'J. Fernando Sánchez'], 1)
]
# If true, show URL addresses after external links.
#man_show_urls = False
# -- Options for Texinfo output -------------------------------------------
# Grouping the document tree into Texinfo files. List of tuples
# (source start file, target name, title, author,
# dir menu entry, description, category)
texinfo_documents = [
('index', 'Senpy', u'Senpy Documentation',
u'J. Fernando Sánchez', 'Senpy', 'One line description of project.',
'Miscellaneous'),
]
# Documents to append as an appendix to all manuals.
#texinfo_appendices = []
# If false, no module index is generated.
#texinfo_domain_indices = True
# How to display URL addresses: 'footnote', 'no', or 'inline'.
#texinfo_show_urls = 'footnote'
# If true, do not generate a @detailmenu in the "Top" node's menu.
#texinfo_no_detailmenu = False
nbsphinx_prolog = """
.. note:: This is an `auto-generated <https://nbsphinx.readthedocs.io>`_ static view of a Jupyter notebook.
To run the code examples in your computer, you may download the original notebook from the repository: https://github.com/gsi-upm/senpy/tree/master/docs/{{ env.doc2path(env.docname, base=None) }}
----
"""

View File

@ -1,177 +0,0 @@
Automatic Model Conversion
--------------------------
Senpy includes support for emotion and sentiment conversion.
When a user requests a specific model, senpy will choose a strategy to convert the model that the service usually outputs and the model requested by the user.
Out of the box, senpy can convert from the `emotionml:pad` (pleasure-arousal-dominance) dimensional model to `emoml:big6` (Ekman's big-6) categories, and vice versa.
This specific conversion uses a series of dimensional centroids (`emotionml:pad`) for each emotion category (`emotionml:big6`).
A dimensional value is converted to a category by looking for the nearest centroid.
The centroids are calculated according to this article:
.. code-block:: text
Kim, S. M., Valitutti, A., & Calvo, R. A. (2010, June).
Evaluation of unsupervised emotion models to textual affect recognition.
In Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text (pp. 62-70).
Association for Computational Linguistics.
It is possible to add new conversion strategies by `Developing a conversion plugin`_.
Use
===
Consider the following query to an emotion service: http://senpy.gsi.upm.es/api/emotion-anew?i=good
The requested plugin (emotion-random) returns emotions using the VAD space (FSRE dimensions in EmotionML):
.. code:: json
[
{
"@type": "EmotionSet",
"onyx:hasEmotion": [
{
"@type": "Emotion",
"emoml:pad-dimensions_arousal": 5.43,
"emoml:pad-dimensions_dominance": 6.41,
"emoml:pad-dimensions_pleasure": 7.47,
"prov:wasGeneratedBy": "prefix:Analysis_1562744784.8789825"
}
],
"prov:wasGeneratedBy": "prefix:Analysis_1562744784.8789825"
}
]
To get the equivalent of these emotions in Ekman's categories (i.e., Ekman's Big 6 in EmotionML), we'd do this:
http://senpy.gsi.upm.es/api/emotion-anew?i=good&emotion-model=emoml:big6
This call, provided there is a valid conversion plugin from Ekman's to VAD, would return something like this:
.. code:: json
[
{
"@type": "EmotionSet",
"onyx:hasEmotion": [
{
"@type": "Emotion",
"onyx:algorithmConfidence": 4.4979,
"onyx:hasEmotionCategory": "emoml:big6happiness"
}
],
"prov:wasDerivedFrom": {
"@id": "Emotions0",
"@type": "EmotionSet",
"onyx:hasEmotion": [
{
"@id": "Emotion0",
"@type": "Emotion",
"emoml:pad-dimensions_arousal": 5.43,
"emoml:pad-dimensions_dominance": 6.41,
"emoml:pad-dimensions_pleasure": 7.47,
"prov:wasGeneratedBy": "prefix:Analysis_1562745220.1553965"
}
],
"prov:wasGeneratedBy": "prefix:Analysis_1562745220.1553965"
},
"prov:wasGeneratedBy": "prefix:Analysis_1562745220.1570725"
}
]
That is called a *full* response, as it simply adds the converted emotion alongside.
It is also possible to get the original emotion nested within the new converted emotion, using the `conversion=nested` parameter:
http://senpy.gsi.upm.es/api/emotion-anew?i=good&emotion-model=emoml:big6&conversion=nested
.. code:: json
[
{
"@type": "EmotionSet",
"onyx:hasEmotion": [
{
"@type": "Emotion",
"onyx:algorithmConfidence": 4.4979,
"onyx:hasEmotionCategory": "emoml:big6happiness"
}
],
"prov:wasDerivedFrom": {
"@id": "Emotions0",
"@type": "EmotionSet",
"onyx:hasEmotion": [
{
"@id": "Emotion0",
"@type": "Emotion",
"emoml:pad-dimensions_arousal": 5.43,
"emoml:pad-dimensions_dominance": 6.41,
"emoml:pad-dimensions_pleasure": 7.47,
"prov:wasGeneratedBy": "prefix:Analysis_1562744962.896306"
}
],
"prov:wasGeneratedBy": "prefix:Analysis_1562744962.896306"
},
"prov:wasGeneratedBy": "prefix:Analysis_1562744962.8978968"
}
]
Lastly, `conversion=filtered` would only return the converted emotions.
.. code:: json
[
{
"@type": "EmotionSet",
"onyx:hasEmotion": [
{
"@type": "Emotion",
"onyx:algorithmConfidence": 4.4979,
"onyx:hasEmotionCategory": "emoml:big6happiness"
}
],
"prov:wasGeneratedBy": "prefix:Analysis_1562744925.7322266"
}
]
Developing a conversion plugin
==============================
Conversion plugins are discovered by the server just like any other plugin.
The difference is the slightly different API, and the need to specify the `source` and `target` of the conversion.
For instance, an emotion conversion plugin needs the following:
.. code:: yaml
---
onyx:doesConversion:
- onyx:conversionFrom: emoml:big6
onyx:conversionTo: emoml:fsre-dimensions
- onyx:conversionFrom: emoml:fsre-dimensions
onyx:conversionTo: emoml:big6
.. code:: python
class MyConversion(EmotionConversionPlugin):
def convert(self, emotionSet, fromModel, toModel, params):
pass
More implementation details are shown in the `centroids plugin <https://github.com/gsi-upm/senpy/blob/master/senpy/plugins/postprocessing/emotion/centroids.py>`_.

View File

@ -1,13 +0,0 @@
Demo
----
There is a demo available on http://senpy.gsi.upm.es/, where you can test a live instance of Senpy, with several open source plugins.
You can use the playground (a web interface) or the HTTP API.
.. image:: playground-0.20.png
:target: http://senpy.gsi.upm.es
:width: 800px
:align: center
The source code and description of the plugins used in the demo are available here: https://github.com/gsi-upm/senpy-plugins-community/.

View File

@ -1,25 +0,0 @@
Developing new services
-----------------------
Developing web services can be hard.
A text analysis service must implement all the typical features, such as: extraction of parameters, validation, format conversion, visualization...
Senpy implements all the common blocks, so developers can focus on what really matters: great analysis algorithms that solve real problems.
Among other things, Senpy takes care of these tasks:
* Interfacing with the user: parameter validation, error handling.
* Formatting: JSON-LD, Turtle/n-triples input and output, or simple text input
* Linked Data: senpy results are semantically annotated, using a series of well established vocabularies, and sane default URIs.
* User interface: a web UI where users can explore your service and test different settings
* A client to interact with the service. Currently only available in Python.
You only need to provide the algorithm to turn a piece of text into an annotation
Sharing your sentiment analysis with the world has never been easier!
.. toctree::
:maxdepth: 1
server-cli
plugins-quickstart
plugins-faq
plugins-definition

Binary file not shown.

Before

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

View File

@ -1,45 +0,0 @@
Examples
--------
All the examples in this page use the :download:`the main schema <_static/schemas/definitions.json>`.
Simple NIF annotation
.....................
Description
,,,,,,,,,,,
This example covers the basic example in the NIF documentation: `<http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html>`_.
Representation
,,,,,,,,,,,,,,
.. literalinclude:: examples/results/example-basic.json
:language: json-ld
Sentiment Analysis
.....................
Description
,,,,,,,,,,,
This annotation corresponds to the sentiment analysis of an input. The example shows the sentiment represented according to Marl format.
The sentiments detected are contained in the Sentiments array with their related part of the text.
Representation
,,,,,,,,,,,,,,
.. literalinclude:: examples/results/example-sentiment.json
:emphasize-lines: 5-11,20-30
:language: json-ld
Emotion Analysis
................
Description
,,,,,,,,,,,
This annotation represents the emotion analysis of an input to Senpy. The emotions are contained in the emotions section with the text that refers to following Onyx format and the emotion model defined beforehand.
Representation
,,,,,,,,,,,,,,
.. literalinclude:: examples/results/example-emotion.json
:language: json-ld
:emphasize-lines: 5-11,22-36

View File

@ -1,5 +0,0 @@
{
"@type": "plugins",
"plugins": [
]
}

View File

@ -1,85 +0,0 @@
{
"@context": "http://mixedemotions-project.eu/ns/context.jsonld",
"@id": "me:Result1",
"@type": "results",
"activities": [
{
"@id": "_:SAnalysis1_Activity",
"@type": "marl:SentimentAnalysis",
"prov:wasAssociatedWith": "me:SAnalysis1"
},
{
"@id": "_:EmotionAnalysis1_Activity",
"@type": "onyx:EmotionAnalysis",
"prov:wasAssociatedWith": "me:EmotionAnalysis1"
},
{
"@id": "_:NER1_Activity",
"@type": "me:NER",
"prov:wasAssociatedWith": "me:NER1"
}
],
"entries": [
{
"@id": "http://micro.blog/status1",
"@type": [
"nif:RFC5147String",
"nif:Context"
],
"nif:isString": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
"entities": [
{
"@id": "http://micro.blog/status1#char=5,13",
"nif:beginIndex": 5,
"nif:endIndex": 13,
"nif:anchorOf": "Microsoft",
"me:references": "http://dbpedia.org/page/Microsoft",
"prov:wasGeneratedBy": "_:NER1_Activity"
},
{
"@id": "http://micro.blog/status1#char=25,37",
"nif:beginIndex": 25,
"nif:endIndex": 37,
"nif:anchorOf": "Windows Phone",
"me:references": "http://dbpedia.org/page/Windows_Phone",
"prov:wasGeneratedBy": "_:NER1_Activity"
}
],
"suggestions": [
{
"@id": "http://micro.blog/status1#char=16,77",
"nif:beginIndex": 16,
"nif:endIndex": 77,
"nif:anchorOf": "put your Windows Phone on your newest #open technology program",
"prov:wasGeneratedBy": "_:SgAnalysis1_Activity"
}
],
"sentiments": [
{
"@id": "http://micro.blog/status1#char=80,97",
"nif:beginIndex": 80,
"nif:endIndex": 97,
"nif:anchorOf": "You'll be awesome.",
"marl:hasPolarity": "marl:Positive",
"marl:polarityValue": 0.9,
"prov:wasGeneratedBy": "_:SgAnalysis1_Activity"
}
],
"emotions": [
{
"@id": "http://micro.blog/status1#char=0,109",
"nif:anchorOf": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
"prov:wasGeneratedBy": "_:EmotionAnalysis1_Activity",
"onyx:hasEmotion": [
{
"onyx:hasEmotionCategory": "wna:liking"
},
{
"onyx:hasEmotionCategory": "wna:excitement"
}
]
}
]
}
]
}

View File

@ -1,18 +0,0 @@
{
"@context": "http://mixedemotions-project.eu/ns/context.jsonld",
"@id": "me:Result1",
"@type": "results",
"activities": [ ],
"entries": [
{
"@id": "http://example.org#char=0,40",
"@type": [
"nif:RFC5147String",
"nif:Context"
],
"nif:beginIndex": 0,
"nif:endIndex": 40,
"nif:isString": "My favourite actress is Natalie Portman"
}
]
}

View File

@ -1,100 +0,0 @@
{
"@context": "http://mixedemotions-project.eu/ns/context.jsonld",
"@id": "me:Result1",
"@type": "results",
"activities": [
{
"@id": "_:SAnalysis1_Activity",
"@type": "marl:SentimentAnalysis",
"prov:wasAssociatedWith": "me:SentimentAnalysis",
"prov:used": [
{
"name": "marl:maxPolarityValue",
"prov:value": "1"
},
{
"name": "marl:minPolarityValue",
"prov:value": "0"
}
]
},
{
"@id": "_:SgAnalysis1_Activity",
"prov:wasAssociatedWith": "me:SgAnalysis1",
"@type": "me:SuggestionAnalysis"
},
{
"@id": "_:EmotionAnalysis1_Activity",
"@type": "me:EmotionAnalysis",
"prov:wasAssociatedWith": "me:EmotionAnalysis1"
},
{
"@id": "_:NER1_Activity",
"@type": "me:NER",
"prov:wasAssociatedWith": "me:EmotionNER1"
}
],
"entries": [
{
"@id": "http://micro.blog/status1",
"@type": [
"nif:RFC5147String",
"nif:Context"
],
"nif:isString": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
"entities": [
{
"@id": "http://micro.blog/status1#char=5,13",
"nif:beginIndex": 5,
"nif:endIndex": 13,
"nif:anchorOf": "Microsoft",
"me:references": "http://dbpedia.org/page/Microsoft",
"prov:wasGeneratedBy": "me:NER1"
},
{
"@id": "http://micro.blog/status1#char=25,37",
"nif:beginIndex": 25,
"nif:endIndex": 37,
"nif:anchorOf": "Windows Phone",
"me:references": "http://dbpedia.org/page/Windows_Phone",
"prov:wasGeneratedBy": "me:NER1"
}
],
"suggestions": [
{
"@id": "http://micro.blog/status1#char=16,77",
"nif:beginIndex": 16,
"nif:endIndex": 77,
"nif:anchorOf": "put your Windows Phone on your newest #open technology program",
"prov:wasGeneratedBy": "me:SgAnalysis1"
}
],
"sentiments": [
{
"@id": "http://micro.blog/status1#char=80,97",
"nif:beginIndex": 80,
"nif:endIndex": 97,
"nif:anchorOf": "You'll be awesome.",
"marl:hasPolarity": "marl:Positive",
"marl:polarityValue": 0.9,
"prov:wasGeneratedBy": "me:SAnalysis1"
}
],
"emotions": [
{
"@id": "http://micro.blog/status1#char=0,109",
"nif:anchorOf": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
"prov:wasGeneratedBy": "me:EAnalysis1",
"onyx:hasEmotion": [
{
"onyx:hasEmotionCategory": "wna:liking"
},
{
"onyx:hasEmotionCategory": "wna:excitement"
}
]
}
]
}
]
}

View File

@ -1,39 +0,0 @@
{
"@context": "http://mixedemotions-project.eu/ns/context.jsonld",
"@id": "me:Result1",
"@type": "results",
"activities": [
{
"@id": "me:EmotionAnalysis1_Activity",
"@type": "me:EmotionAnalysis1",
"prov:wasAssociatedWith": "me:EmotionAnalysis1"
}
],
"entries": [
{
"@id": "http://micro.blog/status1",
"@type": [
"nif:RFC5147String",
"nif:Context"
],
"nif:isString": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
"sentiments": [
],
"emotions": [
{
"@id": "http://micro.blog/status1#char=0,109",
"nif:anchorOf": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
"prov:wasGeneratedBy": "_:EmotionAnalysis1_Activity",
"onyx:hasEmotion": [
{
"onyx:hasEmotionCategory": "wna:liking"
},
{
"onyx:hasEmotionCategory": "wna:excitement"
}
]
}
]
}
]
}

View File

@ -1,46 +0,0 @@
{
"@context": "http://mixedemotions-project.eu/ns/context.jsonld",
"@id": "me:Result1",
"@type": "results",
"activities": [
{
"@id": "_:NER1_Activity",
"@type": "me:NERAnalysis",
"prov:wasAssociatedWith": "me:NER1"
}
],
"entries": [
{
"@id": "http://micro.blog/status1",
"@type": [
"nif:RFC5147String",
"nif:Context"
],
"nif:isString": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
"entities": [
{
"@id": "http://micro.blog/status1#char=5,13",
"nif:beginIndex": 5,
"nif:endIndex": 13,
"nif:anchorOf": "Microsoft",
"me:references": "http://dbpedia.org/page/Microsoft",
"prov:wasGeneratedBy": "me:NER1"
},
{
"@id": "http://micro.blog/status1#char=25,37",
"nif:beginIndex": 25,
"nif:endIndex": 37,
"nif:anchorOf": "Windows Phone",
"me:references": "http://dbpedia.org/page/Windows_Phone",
"prov:wasGeneratedBy": "me:NER1"
}
],
"suggestions": [
],
"sentiments": [
],
"emotionSets": [
]
}
]
}

View File

@ -1,52 +0,0 @@
{
"@context": [
"http://mixedemotions-project.eu/ns/context.jsonld",
{
"emovoc": "http://www.gsi.upm.es/ontologies/onyx/vocabularies/emotionml/ns#"
}
],
"@id": "me:Result1",
"@type": "results",
"activities": [
{
"@id": "me:HesamsAnalysis_Activity",
"@type": "onyx:EmotionAnalysis",
"prov:wasAssociatedWith": "me:HesamsAnalysis",
"prov:used": [
{
"name": "emotion-model",
"prov:value": "emovoc:pad-dimensions"
}
]
}
],
"entries": [
{
"@id": "Entry1",
"@type": [
"nif:RFC5147String",
"nif:Context"
],
"nif:isString": "This is a test string",
"entities": [
],
"suggestions": [
],
"sentiments": [
],
"emotions": [
{
"@id": "Entry1#char=0,21",
"nif:anchorOf": "This is a test string",
"prov:wasGeneratedBy": "_:HesamAnalysis_Activity",
"onyx:hasEmotion": [
{
"emovoc:pleasure": 0.5,
"emovoc:arousal": 0.7
}
]
}
]
}
]
}

View File

@ -1,35 +0,0 @@
{
"@context": "http://mixedemotions-project.eu/ns/context.jsonld",
"@id": "me:Result1",
"@type": "results",
"activities": [
{
"@id": "_:SAnalysis1_Activity",
"@type": "marl:SentimentAnalysis",
"prov:wasAssociatedWith": "me:SAnalysis1"
}
],
"entries": [
{
"@id": "http://micro.blog/status1",
"@type": [
"nif:RFC5147String",
"nif:Context"
],
"nif:isString": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
"sentiments": [
{
"@id": "http://micro.blog/status1#char=80,97",
"nif:beginIndex": 80,
"nif:endIndex": 97,
"nif:anchorOf": "You'll be awesome.",
"marl:hasPolarity": "marl:Positive",
"marl:polarityValue": 0.9,
"prov:wasGeneratedBy": "_:SAnalysis1_Activity"
}
],
"emotions": [
]
}
]
}

View File

@ -1,37 +0,0 @@
{
"@context": "http://mixedemotions-project.eu/ns/context.jsonld",
"@id": "me:Result1",
"@type": "results",
"activities": [
{
"@id": "_:SgAnalysis1_Activity",
"@type": "me:SuggestionAnalysis",
"prov:wasAssociatedWith": "me:SgAnalysis1"
}
],
"entries": [
{
"@id": "http://micro.blog/status1",
"@type": [
"nif:RFC5147String",
"nif:Context"
],
"nif:isString": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
"entities": [
],
"suggestions": [
{
"@id": "http://micro.blog/status1#char=16,77",
"nif:beginIndex": 16,
"nif:endIndex": 77,
"nif:anchorOf": "put your Windows Phone on your newest #open technology program",
"prov:wasGeneratedBy": "_:SgAnalysis1_Activity"
}
],
"sentiments": [
],
"emotionSets": [
]
}
]
}

View File

@ -1,106 +0,0 @@
Welcome to Senpy's documentation!
=================================
.. image:: https://readthedocs.org/projects/senpy/badge/?version=latest
:target: http://senpy.readthedocs.io/en/latest/
.. image:: https://badge.fury.io/py/senpy.svg
:target: https://badge.fury.io/py/senpy
.. image:: https://travis-ci.org/gsi-upm/senpy.svg
:target: https://github.com/gsi-upm/senpy/senpy/tree/master
.. image:: https://img.shields.io/pypi/l/requests.svg
:target: https://lab.gsi.upm.es/senpy/senpy/
Senpy is a framework to build sentiment and emotion analysis services.
It provides functionalities for:
- developing sentiment and emotion classifier and exposing them as an HTTP service
- requesting sentiment and emotion analysis from different providers (i.e. Vader, Sentimet140, ...) using the same interface (:doc:`apischema`). In this way, applications do not depend on the API offered for these services.
- combining services that use different sentiment model (e.g. polarity between [-1, 1] or [0,1] or emotion models (e.g. Ekkman or VAD)
- evaluating sentiment algorithms with well known datasets
Using senpy services is as simple as sending an HTTP request with your favourite tool or library.
Let's analyze the sentiment of the text "Senpy is awesome".
We can call the `Sentiment140 <http://www.sentiment140.com/>`_ service with an HTTP request using curl:
.. code:: shell
:emphasize-lines: 14,18
$ curl "http://senpy.gsi.upm.es/api/sentiment140" \
--data-urlencode "input=Senpy is awesome"
{
"@context": "http://senpy.gsi.upm.es/api/contexts/YXBpL3NlbnRpbWVudDE0MD8j",
"@type": "Results",
"entries": [
{
"@id": "prefix:",
"@type": "Entry",
"marl:hasOpinion": [
{
"@type": "Sentiment",
"marl:hasPolarity": "marl:Positive",
"prov:wasGeneratedBy": "prefix:Analysis_1554389334.6431913"
}
],
"nif:isString": "Senpy is awesome",
"onyx:hasEmotionSet": []
}
]
}
Congratulations, youve used your first senpy service!
You can observe the result: the polarity is positive (marl:Positive). The reason of this prefix is that Senpy follows a linked data approach.
You can analyze the same sentence using a different sentiment service (e.g. Vader) and requesting a different format (e.g. turtle):
.. code:: shell
$ curl "http://senpy.gsi.upm.es/api/sentiment-vader" \
--data-urlencode "input=Senpy is awesome" \
--data-urlencode "outformat=turtle"
@prefix : <http://www.gsi.upm.es/onto/senpy/ns#> .
@prefix endpoint: <http://senpy.gsi.upm.es/api/> .
@prefix marl: <http://www.gsi.upm.es/ontologies/marl/ns#> .
@prefix nif: <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#> .
@prefix prefix: <http://senpy.invalid/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix senpy: <http://www.gsi.upm.es/onto/senpy/ns#> .
prefix: a senpy:Entry ;
nif:isString "Senpy is awesome" ;
marl:hasOpinion [ a senpy:Sentiment ;
marl:hasPolarity "marl:Positive" ;
marl:polarityValue 6.72e-01 ;
prov:wasGeneratedBy prefix:Analysis_1562668175.9808676 ] .
[] a senpy:Results ;
prov:used prefix: .
As you see, Vader returns also the polarity value (0.67) in addition to the category (positive).
If you are interested in consuming Senpy services, read :doc:`Quickstart`.
To get familiar with the concepts behind Senpy, and what it can offer for service developers, check out :doc:`development`.
:doc:`apischema` contains information about the semantic models and vocabularies used by Senpy.
.. toctree::
:caption: Learn more about senpy:
:maxdepth: 2
:hidden:
senpy
demo
Quickstart.ipynb
installation
conversion
Evaluation.ipynb
apischema
development
publications
projects

View File

@ -1,69 +0,0 @@
Installation
------------
The stable version can be used in two ways: as a system/user library through pip, or from a docker image.
Using docker is recommended because the image is self-contained, reproducible and isolated from the system, which means:
* It can be downloaded and run with just one simple command
* All dependencies are included
* It is OS-independent (MacOS, Windows, GNU/Linux)
* Several versions may coexist in the same machine without additional virtual environments
Additionally, you may create your own docker image with your custom plugins, ready to be used by others.
Through PIP
***********
.. code:: bash
pip install senpy
# Or with --user if you get permission errors:
pip install --user senpy
..
Alternatively, you can use the development version:
.. code:: bash
git clone git@github.com:gsi-upm/senpy
cd senpy
pip install --user .
Each version is automatically tested on GNU/Linux, macOS and Windows 10.
If you have trouble with the installation, please file an `issue on GitHub <https://github.com/gsi-upm/senpy/issues>`_.
Docker Image
************
The base image of senpy comes with some built-in plugins that you can use:
.. code:: bash
docker run -ti -p 5000:5000 gsiupm/senpy --host 0.0.0.0
To use your custom plugins, you can add volume to the container:
.. code:: bash
docker run -ti -p 5000:5000 -v <PATH OF PLUGINS>:/plugins gsiupm/senpy --host 0.0.0.0 --plugins-folder /plugins
Alias
.....
If you are using the docker approach regularly, it is advisable to use a script or an alias to simplify your executions:
.. code:: bash
alias senpy='docker run --rm -ti -p 5000:5000 -v $PWD:/senpy-plugins gsiupm/senpy'
Now, you may run senpy from any folder in your computer like so:
.. code:: bash
senpy --version

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

View File

@ -1,112 +0,0 @@
Advanced plugin definition
--------------------------
In addition to finding plugins defined in source code files, senpy can also load a special type of definition file (`.senpy` files).
This used to be the only mechanism for loading in earlier versions of senpy.
The definition file contains basic information
Lastly, it is also possible to add new plugins programmatically.
.. contents:: :local:
..
What is a plugin?
=================
A plugin is a program that, given a text, will add annotations to it.
In practice, a plugin consists of at least two files:
- Definition file: a `.senpy` file that describes the plugin (e.g. what input parameters it accepts, what emotion model it uses).
- Python module: the actual code that will add annotations to each input.
This separation allows us to deploy plugins that use the same code but employ different parameters.
For instance, one could use the same classifier and processing in several plugins, but train with different datasets.
This scenario is particularly useful for evaluation purposes.
The only limitation is that the name of each plugin needs to be unique.
Definition files
================
The definition file complements and overrides the attributes provided by the plugin.
It can be written in YAML or JSON.
The most important attributes are:
* **name**: unique name that senpy will use internally to identify the plugin.
* **module**: indicates the module that contains the plugin code, which will be automatically loaded by senpy.
* **version**
* extra_params: to add parameters to the senpy API when this plugin is requested. Those parameters may be required, and have aliased names. For instance:
.. code:: yaml
extra_params:
hello_param:
aliases: # required
- hello_param
- hello
required: true
default: Hi you
values:
- Hi you
- Hello y'all
- Howdy
A complete example:
.. code:: yaml
name: <Name of the plugin>
module: <Python file>
version: 0.1
And the json equivalent:
.. code:: json
{
"name": "<Name of the plugin>",
"module": "<Python file>",
"version": "0.1"
}
Example plugin with a definition file
=====================================
In this section, we will implement a basic sentiment analysis plugin.
To determine the polarity of each entry, the plugin will compare the length of the string to a threshold.
This threshold will be included in the definition file.
The definition file would look like this:
.. code:: yaml
name: helloworld
module: helloworld
version: 0.0
threshold: 10
description: Hello World
Now, in a file named ``helloworld.py``:
.. code:: python
#!/bin/env python
#helloworld.py
from senpy import AnalysisPlugin
from senpy import Sentiment
class HelloWorld(AnalysisPlugin):
def analyse_entry(entry, params):
'''Basically do nothing with each entry'''
sentiment = Sentiment()
if len(entry.text) < self.threshold:
sentiment['marl:hasPolarity'] = 'marl:Positive'
else:
sentiment['marl:hasPolarity'] = 'marl:Negative'
entry.sentiments.append(sentiment)
yield entry

View File

@ -1,258 +0,0 @@
F.A.Q.
======
.. contents:: :local:
What are annotations?
#####################
They are objects just like entries.
Senpy ships with several default annotations, including ``Sentiment`` and ``Emotion``.
What's a plugin made of?
########################
When receiving a query, senpy selects what plugin or plugins should process each entry, and in what order.
It also makes sure the every entry and the parameters provided by the user meet the plugin requirements.
Hence, two parts are necessary: 1) the code that will process the entry, and 2) some attributes and metadata that will tell senpy how to interact with the plugin.
In practice, this is what a plugin looks like, tests included:
.. literalinclude:: ../example-plugins/rand_plugin.py
:emphasize-lines: 21-28
:language: python
The lines highlighted contain some information about the plugin.
In particular, the following information is mandatory:
* A unique name for the class. In our example, sentiment-random.
* The subclass/type of plugin. This is typically either `SentimentPlugin` or `EmotionPlugin`. However, new types of plugin can be created for different annotations. The only requirement is that these new types inherit from `senpy.Analysis`
* A description of the plugin. This can be done simply by adding a doc to the class.
* A version, which should get updated.
* An author name.
How does senpy find modules?
############################
Senpy looks for files of two types:
* Python files of the form `senpy_<NAME>.py` or `<NAME>_plugin.py`. In these files, it will look for: 1) Instances that inherit from `senpy.Plugin`, or subclasses of `senpy.Plugin` that can be initialized without a configuration file. i.e. classes that contain all the required attributes for a plugin.
* Plugin definition files (see :doc:`plugins-definition`)
How can I define additional parameters for my plugin?
#####################################################
Your plugin may ask for additional parameters from users by using the attribute ``extra_params`` in your plugin definition.
It takes a dictionary, where the keys are the name of the argument/parameter, and the value has the following fields:
* aliases: the different names which can be used in the request to use the parameter.
* required: if set to true, users need to provide this parameter unless a default is set.
* options: the different acceptable values of the parameter (i.e. an enum). If set, the value provided must match one of the options.
* default: the default value of the parameter, if none is provided in the request.
.. code:: python
"extra_params":{
"language": {
"aliases": ["language", "lang", "l"],
"required": True,
"options": ["es", "en"],
"default": "es"
}
}
How should I load external data and files
#########################################
Most plugins will need access to files (dictionaries, lexicons, etc.).
These files are usually heavy or under a license that does not allow redistribution.
For this reason, senpy has a `data_folder` that is separated from the source files.
The location of this folder is controlled programmatically or by setting the `SENPY_DATA` environment variable.
You can use the `self.path(filepath)` function to get the path of a given `filepath` within the data folder.
Plugins have a convenience function `self.open` which will automatically look for the file if it exists, or open a new one if it doesn't:
.. code:: python
import os
class PluginWithResources(AnalysisPlugin):
file_in_data = <FILE PATH>
file_in_sources = <FILE PATH>
def on activate(self):
with self.open(self.file_in_data) as f:
self._classifier = train_from_file(f)
file_in_source = os.path.join(self.get_folder(), self.file_in_sources)
with self.open(file_in_source) as f:
pass
It is good practice to specify the paths of these files in the plugin configuration, so the same code can be reused with different resources.
Can I build a docker image for my plugin?
#########################################
Add the following dockerfile to your project to generate a docker image with your plugin:
.. code:: dockerfile
FROM gsiupm/senpy
Once you make sure your plugin works with a specific version of senpy, modify that file to make sure your build will work even if senpy gets updated.
e.g.:
.. code:: dockerfile
FROM gsiupm/senpy:1.0.1
This will copy your source folder to the image, and install all dependencies.
Now, to build an image:
.. code:: shell
docker build . -t gsiupm/exampleplugin
And you can run it with:
.. code:: shell
docker run -p 5000:5000 gsiupm/exampleplugin
If the plugin uses non-source files (:ref:`How should I load external data and files`), the recommended way is to use `SENPY_DATA` folder.
Data can then be mounted in the container or added to the image.
The former is recommended for open source plugins with licensed resources, whereas the latter is the most convenient and can be used for private images.
Mounting data:
.. code:: bash
docker run -v $PWD/data:/data gsiupm/exampleplugin
Adding data to the image:
.. code:: dockerfile
FROM gsiupm/senpy:1.0.1
COPY data /
What annotations can I use?
###########################
You can add almost any annotation to an entry.
The most common use cases are covered in the :doc:`apischema`.
Why does the analyse function yield instead of return?
######################################################
This is so that plugins may add new entries to the response or filter some of them.
For instance, a chunker may split one entry into several.
On the other hand, a conversion plugin may leave out those entries that do not contain relevant information.
If I'm using a classifier, where should I train it?
###################################################
Training a classifier can be time time consuming. To avoid running the training unnecessarily, you can use ShelfMixin to store the classifier. For instance:
.. code:: python
from senpy.plugins import ShelfMixin, AnalysisPlugin
class MyPlugin(ShelfMixin, AnalysisPlugin):
def train(self):
''' Code to train the classifier
'''
# Here goes the code
# ...
return classifier
def activate(self):
if 'classifier' not in self.sh:
classifier = self.train()
self.sh['classifier'] = classifier
self.classifier = self.sh['classifier']
def deactivate(self):
self.close()
By default the ShelfMixin creates a file based on the plugin name and stores it in that plugin's folder.
However, you can manually specify a 'shelf_file' in your .senpy file.
Shelves may get corrupted if the plugin exists unexpectedly.
A corrupt shelf prevents the plugin from loading.
If you do not care about the data in the shelf, you can force your plugin to remove the corrupted file and load anyway, set the 'force_shelf' to True in your plugin and start it again.
How can I turn an external service into a plugin?
#################################################
This example ilustrate how to implement a plugin that accesses the Sentiment140 service.
.. code:: python
class Sentiment140Plugin(SentimentPlugin):
def analyse_entry(self, entry, params):
text = entry.text
lang = params.get("language", "auto")
res = requests.post("http://www.sentiment140.com/api/bulkClassifyJson",
json.dumps({"language": lang,
"data": [{"text": text}]
}
)
)
p = params.get("prefix", None)
polarity_value = self.maxPolarityValue*int(res.json()["data"][0]
["polarity"]) * 0.25
polarity = "marl:Neutral"
neutral_value = self.maxPolarityValue / 2.0
if polarity_value > neutral_value:
polarity = "marl:Positive"
elif polarity_value < neutral_value:
polarity = "marl:Negative"
sentiment = Sentiment(id="Sentiment0",
prefix=p,
marl__hasPolarity=polarity,
marl__polarityValue=polarity_value)
sentiment.prov(self)
entry.sentiments.append(sentiment)
yield entry
How can I activate a DEBUG mode for my plugin?
###############################################
You can activate the DEBUG mode by the command-line tool using the option -d.
.. code:: bash
senpy -d
Additionally, with the ``--pdb`` option you will be dropped into a pdb post mortem shell if an exception is raised.
.. code:: bash
python -m pdb yourplugin.py
Where can I find more code examples?
####################################
See: `<http://github.com/gsi-upm/senpy-plugins-community>`_.

View File

@ -1,87 +0,0 @@
Quickstart for service developers
=================================
This document contains the minimum to get you started with developing new services using Senpy.
For an example of conversion plugins, see :doc:`conversion`.
For a description of definition files, see :doc:`plugins-definition`.
A more step-by-step tutorial with slides is available `here <https://lab.gsi.upm.es/senpy/senpy-tutorial>`__
.. contents:: :local:
Installation
############
First of all, you need to install the package.
See :doc:`installation` for instructions.
Once installed, the `senpy` command should be available.
Architecture
############
The main component of a sentiment analysis service is the algorithm itself. However, for the algorithm to work, it needs to get the appropriate parameters from the user, format the results according to the defined API, interact with the user whn errors occur or more information is needed, etc.
Senpy proposes a modular and dynamic architecture that allows:
* Implementing different algorithms in a extensible way, yet offering a common interface.
* Offering common services that facilitate development, so developers can focus on implementing new and better algorithms.
The framework consists of two main modules: Senpy core, which is the building block of the service, and Senpy plugins, which consist of the analysis algorithm. The next figure depicts a simplified version of the processes involved in an analysis with the Senpy framework.
.. image:: senpy-architecture.png
:width: 100%
:align: center
What is a plugin?
#################
A plugin is a python object that can process entries.
Given an entry, it will modify it, add annotations to it, or generate new entries.
What is an entry?
#################
Entries are objects that can be annotated.
In general, they will be a piece of text.
By default, entries are `NIF contexts <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html>`_ represented in JSON-LD format.
It is a dictionary/JSON object that looks like this:
.. code:: python
{
"@id": "<unique identifier or blank node name>",
"nif:isString": "input text",
"sentiments": [ {
...
}
],
...
}
Annotations are added to the object like this:
.. code:: python
entry = Entry()
entry.vocabulary__annotationName = 'myvalue'
entry['vocabulary:annotationName'] = 'myvalue'
entry['annotationNameURI'] = 'myvalue'
Where vocabulary is one of the prefixes defined in the default senpy context, and annotationURI is a full URI.
The value may be any valid JSON-LD dictionary.
For simplicity, senpy includes a series of models by default in the ``senpy.models`` module.
Plugins Code
############
The basic methods in a plugin are:
* analyse_entry: called in every user requests. It takes two parameters: ``Entry``, the entry object, and ``params``, the parameters supplied by the user. It should yield one or more ``Entry`` objects.
* activate: used to load memory-hungry resources. For instance, to train a classifier.
* deactivate: used to free up resources when the plugin is no longer needed.
Plugins are loaded asynchronously, so don't worry if the activate method takes too long. The plugin will be marked as activated once it is finished executing the method.

View File

@ -1,49 +0,0 @@
Projects using Senpy
--------------------
Are you using Senpy in your work?, we would love to hear from you!
Here is a list of on-going and past projects that have benefited from senpy:
MixedEmotions
,,,,,,,,,,,,,
`MixedEmotions <https://mixedemotions-project.eu/>`_ develops innovative multilingual multi-modal Big Data analytics applications.
The analytics relies on a common toolbox for multi-modal sentiment and emotion analysis.
The NLP parts of the toolbox are based on senpy and its API.
The toolbox is featured in this publication:
.. code-block:: text
Buitelaar, P., Wood, I. D., Arcan, M., McCrae, J. P., Abele, A., Robin, C., … Tummarello, G. (2018).
MixedEmotions: An Open-Source Toolbox for Multi-Modal Emotion Analysis.
IEEE Transactions on Multimedia.
EuroSentiment
,,,,,,,,,,,,,
The aim of the EUROSENTIMENT project was to create a pool for multilingual language resources and services for Sentiment Analysis.
The EuroSentiment project was the main motivation behind the development of Senpy, and some early versions were used:
.. code-block:: text
Sánchez-Rada, J. F., Vulcu, G., Iglesias, C. A., & Buitelaar, P. (2014).
EUROSENTIMENT: Linked Data Sentiment Analysis.
Proceedings of the ISWC 2014 Posters & Demonstrations Track
13th International Semantic Web Conference (ISWC 2014) (Vol. 1272, pp. 145148).
SoMeDi
,,,,,,
`SoMeDi <https://itea3.org/project/somedi.html>`_ is an ITEA3 project to research machine learning and artificial intelligence techniques that can be used to turn digital interaction data into Digital Interaction Intelligence and approaches that can be used to effectively enter and act in social media, and to automate this process.
SoMeDi exploits senpy's interoperability of services in their customizable data enrichment and NLP workflows.
TRIVALENT
,,,,,,,,,
`TRIVALENT <https://trivalent-project.eu/>`_ is an EU funded project which aims to a better understanding of root causes of the phenomenon of violent radicalisation in Europe in order to develop appropriate countermeasures, ranging from early detection methodologies to techniques of counter-narrative.
In addition to sentiment and emotion analysis services, trivalent provides other types of senpy services such as radicalism and writing style analysis.

View File

@ -1,36 +0,0 @@
Publications
============
And if you use Senpy in your research, please cite `Senpy: A Pragmatic Linked Sentiment Analysis Framework <http://gsi.upm.es/index.php/es/investigacion/publicaciones?view=publication&task=show&id=417>`__ (`BibTex <http://gsi.upm.es/index.php/es/investigacion/publicaciones?controller=publications&task=export&format=bibtex&id=417>`__):
.. code-block:: text
Sánchez-Rada, J. F., Iglesias, C. A., Corcuera, I., & Araque, Ó. (2016, October).
Senpy: A Pragmatic Linked Sentiment Analysis Framework.
In Data Science and Advanced Analytics (DSAA),
2016 IEEE International Conference on (pp. 735-742). IEEE.
Senpy uses Onyx for emotion representation, first introduced in:
.. code-block:: text
Sánchez-Rada, J. F., & Iglesias, C. A. (2016).
Onyx: A linked data approach to emotion representation.
Information Processing & Management, 52(1), 99-114.
Senpy uses Marl for sentiment representation, which was presented in:
.. code-block:: text
Westerski, A., Iglesias Fernandez, C. A., & Tapia Rico, F. (2011).
Linked opinions: Describing sentiments on the structured web of data.
The representation models, formats and challenges are partially covered in a chapter of the book Sentiment Analysis in Social Networks:
.. code-block:: text
Iglesias, C. A., Sánchez-Rada, J. F., Vulcu, G., & Buitelaar, P. (2017).
Linked Data Models for Sentiment and Emotion Analysis in Social Networks.
In Sentiment Analysis in Social Networks (pp. 49-69).

View File

@ -1,3 +0,0 @@
sphinxcontrib-httpdomain>=1.4
ipykernel
nbsphinx

Binary file not shown.

Before

Width:  |  Height:  |  Size: 122 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

View File

@ -1,27 +0,0 @@
What is Senpy?
--------------
Senpy is a framework for sentiment and emotion analysis services.
Its goal is to produce analysis services that are interchangeable and fully interoperable.
.. image:: senpy-architecture.png
:width: 100%
:align: center
All services built using senpy share a common interface.
This allows users to use them (almost) interchangeably, with the same API and tools, simply by pointing to a different URL or changing a parameter.
The common schema also makes it easier to evaluate the performance of different algorithms and services.
In fact, Senpy has a built-in evaluation API you can use to compare results with different algorithms.
Services can also use the common interface to communicate with each other.
And higher level features can be built on top of these services, such as automatic fusion of results, emotion model conversion, and service discovery.
These benefits are not limited to new services.
The community has developed wrappers for some proprietary and commercial services (such as sentiment140 and Meaning Cloud), so you can consult them as.
Senpy comes with a built-in client in the client package.
To achieve this goal, Senpy uses a Linked Data principled approach, based on the NIF (NLP Interchange Format) specification, and open vocabularies such as Marl and Onyx.
You can learn more about this in :doc:`vocabularies`.
Check out :doc:`development` if you have developed an analysis algorithm (e.g. sentiment analysis) and you want to publish it as a service.

View File

@ -1,85 +0,0 @@
Command line tool
=================
Basic usage
-----------
The senpy server is launched via the `senpy` command:
.. code:: text
usage: senpy [-h] [--level logging_level] [--log-format log_format] [--debug]
[--no-default-plugins] [--host HOST] [--port PORT]
[--plugins-folder PLUGINS_FOLDER] [--install]
[--test] [--no-run] [--data-folder DATA_FOLDER]
[--no-threaded] [--no-deps] [--version] [--allow-fail]
Run a Senpy server
optional arguments:
-h, --help show this help message and exit
--level logging_level, -l logging_level
Logging level
--log-format log_format
Logging format
--debug, -d Run the application in debug mode
--no-default-plugins Do not load the default plugins
--host HOST Use 0.0.0.0 to accept requests from any host.
--port PORT, -p PORT Port to listen on.
--plugins-folder PLUGINS_FOLDER, -f PLUGINS_FOLDER
Where to look for plugins.
--install, -i Install plugin dependencies before launching the server.
--test, -t Test all plugins before launching the server
--no-run Do not launch the server
--data-folder DATA_FOLDER, --data DATA_FOLDER
Where to look for data. It be set with the SENPY_DATA
environment variable as well.
--no-threaded Run the server without threading
--no-deps, -n Skip installing dependencies
--version, -v Output the senpy version and exit
--allow-fail, --fail Do not exit if some plugins fail to activate
When launched, the server will recursively look for plugins in the specified plugins folder (the current working directory by default).
For every plugin found, it will download its dependencies, and try to activate it.
The default server includes a playground and an endpoint with all plugins found.
Let's run senpy with the default plugins:
.. code:: bash
senpy -f .
Now open your browser and go to `http://localhost:5000 <http://localhost:5000>`_, where you should be greeted by the senpy playground:
.. image:: senpy-playground.png
:width: 100%
:alt: Playground
The playground is a user-friendly way to test your plugins, but you can always use the service directly: `http://localhost:5000/api?input=hello <http://localhost:5000/api?input=hello>`_.
By default, senpy will listen only on `127.0.0.1`.
That means you can only access the API from your PC (i.e. localhost).
You can listen on a different address using the `--host` flag (e.g., 0.0.0.0, to allow any computer to access it).
The default port is 5000.
You can change it with the `--port` flag.
For instance, to accept connections on port 6000 on any interface:
.. code:: bash
senpy --host 0.0.0.0 --port 6000
For more options, see the `--help` page.
Sentiment analysis in the command line
--------------------------------------
Although the main use of senpy is to publish services, the tool can also be used locally to analyze text in the command line.
This is a short video demonstration:
.. image:: https://asciinema.org/a/9uwef1ghkjk062cw2t4mhzpyk.png
:width: 100%
:target: https://asciinema.org/a/9uwef1ghkjk062cw2t4mhzpyk
:alt: CLI demo

View File

@ -1,24 +0,0 @@
Vocabularies and model
======================
The model used in Senpy is based on NIF 2.0 [1], which defines a semantic format and API for improving interoperability among natural language processing services.
Senpy has been applied to sentiment and emotion analysis services using the following vocabularies:
* Marl [2,6], a vocabulary designed to annotate and describe subjetive opinions expressed on the web or in information systems.
* Onyx [3,5], which is built one the same principles as Marl to annotate and describe emotions, and provides interoperability with Emotion Markup Language.
An overview of the vocabularies and their use can be found in [4].
[1] Guidelines for developing NIF-based NLP services, Final Community Group Report 22 December 2015 Available at: https://www.w3.org/2015/09/bpmlod-reports/nif-based-nlp-webservices/
[2] Marl Ontology Specification, available at http://www.gsi.upm.es/ontologies/marl/
[3] Onyx Ontology Specification, available at http://www.gsi.upm.es/ontologies/onyx/
[4] Iglesias, C. A., Sánchez-Rada, J. F., Vulcu, G., & Buitelaar, P. (2017). Linked Data Models for Sentiment and Emotion Analysis in Social Networks. In Sentiment Analysis in Social Networks (pp. 49-69).
[5] Sánchez-Rada, J. F., & Iglesias, C. A. (2016). Onyx: A linked data approach to emotion representation. Information Processing & Management, 52(1), 99-114.
[6] Westerski, A., Iglesias Fernandez, C. A., & Tapia Rico, F. (2011). Linked opinions: Describing sentiments on the structured web of data.

View File

@ -1,23 +0,0 @@
This is a collection of plugins that exemplify certain aspects of plugin development with senpy.
The first series of plugins are the `basic` ones.
Their starting point is a classification function defined in `basic.py`.
They all include testing and running them as a script will run all tests.
In ascending order of customization, the plugins are:
* Basic is the simplest plugin of all. It leverages the `SentimentBox` Plugin class to create a plugin out of a classification method, and `MappingMixin` to convert the labels from (`pos`, `neg`) to (`marl:Positive`, `marl:Negative`
* Basic_box is just like the previous one, but replaces the mixin with a custom function.
* Basic_configurable is a version of `basic` with a configurable map of emojis for each sentiment.
* Basic_parameterized like `basic_info`, but users set the map in each query (via `extra_parameters`).
* Basic_analyse\_entry uses the more general `analyse_entry` method and adds the annotations individually.
In rest of the plugins show advanced topics:
* mynoop: shows how to add a definition file with external requirements for a plugin. Doing this with a python-only module would require moving all imports of the requirements to their functions, which is considered bad practice.
* Async: a barebones example of training a plugin and analyzing data in parallel.
All of the plugins in this folder include a set of test cases and they are periodically tested with the latest version of senpy.
Additioanlly, for an example of stand-alone plugin that can be tested and deployed with docker, take a look at: lab.gsi.upm.es/senpy/plugin-example
bbm

View File

@ -1,53 +0,0 @@
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from senpy import AnalysisPlugin
import multiprocessing
def _train(process_number):
return process_number
class Async(AnalysisPlugin):
'''An example of an asynchronous module'''
author = '@balkian'
version = '0.2'
sync = False
def _do_async(self, num_processes):
pool = multiprocessing.Pool(processes=num_processes)
values = sorted(pool.map(_train, range(num_processes)))
return values
def activate(self):
self.value = self._do_async(4)
def analyse_entry(self, entry, params):
values = self._do_async(2)
entry.async_values = values
yield entry
test_cases = [
{
'input': 'any',
'expected': {
'async_values': [0, 1]
}
}
]

View File

@ -1,41 +0,0 @@
#!/usr/local/bin/python
# -*- coding: utf-8 -*-
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
emoticons = {
'pos': [':)', ':]', '=)', ':D'],
'neg': [':(', ':[', '=(']
}
emojis = {
'pos': [u'😁', u'😂', u'😃', u'😄', u'😆', u'😅', u'😄', u'😍'],
'neg': [u'😢', u'😡', u'😠', u'😞', u'😖', u'😔', u'😓', u'😒']
}
def get_polarity(text, dictionaries=[emoticons, emojis]):
polarity = 'marl:Neutral'
print('Input for get_polarity', text)
for dictionary in dictionaries:
for label, values in dictionary.items():
for emoticon in values:
if emoticon and emoticon in text:
polarity = label
break
print('Polarity', polarity)
return polarity

View File

@ -1,62 +0,0 @@
#!/usr/local/bin/python
# -*- coding: utf-8 -*-
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from senpy import easy_test, models, plugins
import basic
class BasicAnalyseEntry(plugins.SentimentPlugin):
'''Equivalent to Basic, implementing the analyse_entry method'''
author = '@balkian'
version = '0.1'
mappings = {
'pos': 'marl:Positive',
'neg': 'marl:Negative',
'default': 'marl:Neutral'
}
def analyse_entry(self, entry, activity):
polarity = basic.get_polarity(entry.text)
polarity = self.mappings.get(polarity, self.mappings['default'])
s = models.Sentiment(marl__hasPolarity=polarity)
s.prov(activity)
entry.sentiments.append(s)
yield entry
test_cases = [{
'input': 'Hello :)',
'polarity': 'marl:Positive'
}, {
'input': 'So sad :(',
'polarity': 'marl:Negative'
}, {
'input': 'Yay! Emojis 😁',
'polarity': 'marl:Positive'
}, {
'input': 'But no emoticons 😢',
'polarity': 'marl:Negative'
}]
if __name__ == '__main__':
easy_test()

View File

@ -1,54 +0,0 @@
#!/usr/local/bin/python
# -*- coding: utf-8 -*-
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from senpy import easy_test, SentimentBox
import basic
class BasicBox(SentimentBox):
''' A modified version of Basic that also does converts annotations manually'''
author = '@balkian'
version = '0.1'
def predict_one(self, features, **kwargs):
output = basic.get_polarity(features[0])
if output == 'pos':
return [1, 0, 0]
if output == 'neg':
return [0, 0, 1]
return [0, 1, 0]
test_cases = [{
'input': 'Hello :)',
'polarity': 'marl:Positive'
}, {
'input': 'So sad :(',
'polarity': 'marl:Negative'
}, {
'input': 'Yay! Emojis 😁',
'polarity': 'marl:Positive'
}, {
'input': 'But no emoticons 😢',
'polarity': 'marl:Negative'
}]
if __name__ == '__main__':
easy_test()

View File

@ -1,55 +0,0 @@
#!/usr/local/bin/python
# -*- coding: utf-8 -*-
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from senpy import easy_test, SentimentBox
import basic
class Basic(SentimentBox):
'''Provides sentiment annotation using a lexicon'''
author = '@balkian'
version = '0.1'
def predict_one(self, features, **kwargs):
output = basic.get_polarity(features[0])
if output == 'pos':
return [1, 0, 0]
if output == 'neu':
return [0, 1, 0]
return [0, 0, 1]
test_cases = [{
'input': u'Hello :)',
'polarity': 'marl:Positive'
}, {
'input': u'So sad :(',
'polarity': 'marl:Negative'
}, {
'input': u'Yay! Emojis 😁',
'polarity': 'marl:Positive'
}, {
'input': u'But no emoticons 😢',
'polarity': 'marl:Negative'
}]
if __name__ == '__main__':
easy_test()

View File

@ -1,121 +0,0 @@
#!/usr/local/bin/python
# -*- coding: utf-8 -*-
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from senpy import easy_test, models, plugins
import basic
class Dictionary(plugins.SentimentPlugin):
'''Sentiment annotation using a configurable lexicon'''
author = '@balkian'
version = '0.2'
dictionaries = [basic.emojis, basic.emoticons]
mappings = {'pos': 'marl:Positive', 'neg': 'marl:Negative'}
def analyse_entry(self, entry, *args, **kwargs):
polarity = basic.get_polarity(entry.text, self.dictionaries)
if polarity in self.mappings:
polarity = self.mappings[polarity]
s = models.Sentiment(marl__hasPolarity=polarity)
s.prov(self)
entry.sentiments.append(s)
yield entry
test_cases = [{
'input': 'Hello :)',
'polarity': 'marl:Positive'
}, {
'input': 'So sad :(',
'polarity': 'marl:Negative'
}, {
'input': 'Yay! Emojis 😁',
'polarity': 'marl:Positive'
}, {
'input': 'But no emoticons 😢',
'polarity': 'marl:Negative'
}]
class EmojiOnly(Dictionary):
'''Sentiment annotation with a basic lexicon of emojis'''
dictionaries = [basic.emojis]
test_cases = [{
'input': 'Hello :)',
'polarity': 'marl:Neutral'
}, {
'input': 'So sad :(',
'polarity': 'marl:Neutral'
}, {
'input': 'Yay! Emojis 😁',
'polarity': 'marl:Positive'
}, {
'input': 'But no emoticons 😢',
'polarity': 'marl:Negative'
}]
class EmoticonsOnly(Dictionary):
'''Sentiment annotation with a basic lexicon of emoticons'''
dictionaries = [basic.emoticons]
test_cases = [{
'input': 'Hello :)',
'polarity': 'marl:Positive'
}, {
'input': 'So sad :(',
'polarity': 'marl:Negative'
}, {
'input': 'Yay! Emojis 😁',
'polarity': 'marl:Neutral'
}, {
'input': 'But no emoticons 😢',
'polarity': 'marl:Neutral'
}]
class Salutes(Dictionary):
'''Sentiment annotation with a custom lexicon, for illustration purposes'''
dictionaries = [{
'marl:Positive': ['Hello', '!'],
'marl:Negative': ['Good bye', ]
}]
test_cases = [{
'input': 'Hello :)',
'polarity': 'marl:Positive'
}, {
'input': 'Good bye :(',
'polarity': 'marl:Negative'
}, {
'input': 'Yay! Emojis 😁',
'polarity': 'marl:Positive'
}, {
'input': 'But no emoticons 😢',
'polarity': 'marl:Neutral'
}]
if __name__ == '__main__':
easy_test()

View File

@ -1,41 +0,0 @@
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from senpy import AnalysisPlugin, easy
class Dummy(AnalysisPlugin):
'''This is a dummy self-contained plugin'''
author = '@balkian'
version = '0.1'
def analyse_entry(self, entry, params):
entry['nif:isString'] = entry['nif:isString'][::-1]
entry.reversed = entry.get('reversed', 0) + 1
yield entry
test_cases = [{
'entry': {
'nif:isString': 'Hello',
},
'expected': {
'nif:isString': 'olleH'
}
}]
if __name__ == '__main__':
easy()

View File

@ -1,56 +0,0 @@
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from senpy import AnalysisPlugin, easy
class DummyRequired(AnalysisPlugin):
'''This is a dummy self-contained plugin'''
author = '@balkian'
version = '0.1'
extra_params = {
'example': {
'description': 'An example parameter',
'required': True,
'options': ['a', 'b']
}
}
def analyse_entry(self, entry, params):
entry['nif:isString'] = entry['nif:isString'][::-1]
entry.reversed = entry.get('reversed', 0) + 1
yield entry
test_cases = [{
'entry': {
'nif:isString': 'Hello',
},
'should_fail': True
}, {
'entry': {
'nif:isString': 'Hello',
},
'params': {
'example': 'a'
},
'expected': {
'nif:isString': 'olleH'
}
}]
if __name__ == '__main__':
easy()

View File

@ -1,49 +0,0 @@
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from senpy.plugins import EmotionPlugin
from senpy.models import EmotionSet, Emotion, Entry
class EmoRand(EmotionPlugin):
'''A sample plugin that returns a random emotion annotation'''
name = 'emotion-random'
author = '@balkian'
version = '0.1'
url = "https://github.com/gsi-upm/senpy-plugins-community"
onyx__usesEmotionModel = "emoml:big6"
def analyse_entry(self, entry, activity):
category = "emoml:big6happiness"
number = max(-1, min(1, random.gauss(0, 0.5)))
if number > 0:
category = "emoml:big6anger"
emotionSet = EmotionSet()
emotion = Emotion({"onyx:hasEmotionCategory": category})
emotionSet.onyx__hasEmotion.append(emotion)
emotionSet.prov(activity)
entry.emotions.append(emotionSet)
yield entry
def test(self):
params = dict()
results = list()
for i in range(100):
res = next(self.analyse_entry(Entry(nif__isString="Hello"), self.activity(params)))
res.validate()
results.append(res.emotions[0]['onyx:hasEmotion'][0]['onyx:hasEmotionCategory'])

View File

@ -1,40 +0,0 @@
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import noop
from senpy.plugins import SentimentPlugin
class NoOp(SentimentPlugin):
'''This plugin does nothing. Literally nothing.'''
version = 0
def analyse_entry(self, entry, *args, **kwargs):
yield entry
def test(self):
print(dir(noop))
super(NoOp, self).test()
test_cases = [{
'entry': {
'nif:isString': 'hello'
},
'expected': {
'nif:isString': 'hello'
}
}]

View File

@ -1,4 +0,0 @@
module: mynoop
optional: true
requirements:
- noop

View File

@ -1,80 +0,0 @@
#!/usr/local/bin/python
# -*- coding: utf-8 -*-
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from senpy import easy_test, models, plugins
import basic
class ParameterizedDictionary(plugins.SentimentPlugin):
'''This is a basic self-contained plugin'''
author = '@balkian'
version = '0.2'
extra_params = {
'positive-words': {
'description': 'Comma-separated list of words that are considered positive',
'aliases': ['positive'],
'required': True
},
'negative-words': {
'description': 'Comma-separated list of words that are considered negative',
'aliases': ['negative'],
'required': False
}
}
def analyse_entry(self, entry, activity):
params = activity.params
positive_words = params['positive-words'].split(',')
negative_words = params['negative-words'].split(',')
dictionary = {
'marl:Positive': positive_words,
'marl:Negative': negative_words,
}
polarity = basic.get_polarity(entry.text, [dictionary])
s = models.Sentiment(marl__hasPolarity=polarity)
s.prov(activity)
entry.sentiments.append(s)
yield entry
test_cases = [
{
'input': 'Hello :)',
'polarity': 'marl:Positive',
'parameters': {
'positive': "Hello,:)",
'negative': "sad,:()"
}
},
{
'input': 'Hello :)',
'polarity': 'marl:Negative',
'parameters': {
'positive': "",
'negative': "Hello"
}
}
]
if __name__ == '__main__':
easy_test()

View File

@ -1,54 +0,0 @@
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import random
from senpy import SentimentPlugin, Sentiment, Entry
class RandSent(SentimentPlugin):
'''A sample plugin that returns a random sentiment annotation'''
name = 'sentiment-random'
author = "@balkian"
version = '0.1'
url = "https://github.com/gsi-upm/senpy-plugins-community"
marl__maxPolarityValue = '1'
marl__minPolarityValue = "-1"
def analyse_entry(self, entry, activity):
polarity_value = max(-1, min(1, random.gauss(0.2, 0.2)))
polarity = "marl:Neutral"
if polarity_value > 0:
polarity = "marl:Positive"
elif polarity_value < 0:
polarity = "marl:Negative"
sentiment = Sentiment(marl__hasPolarity=polarity,
marl__polarityValue=polarity_value)
sentiment.prov(activity)
entry.sentiments.append(sentiment)
yield entry
def test(self):
'''Run several random analyses.'''
params = dict()
results = list()
for i in range(50):
activity = self.activity(params)
res = next(self.analyse_entry(Entry(nif__isString="Hello"),
activity))
res.validate()
results.append(res.sentiments[0]['marl:hasPolarity'])
assert 'marl:Positive' in results
assert 'marl:Negative' in results

View File

@ -1,49 +0,0 @@
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
'''
Create a dummy dataset.
Messages with a happy emoticon are labelled positive
Messages with a sad emoticon are labelled negative
'''
import random
dataset = []
vocabulary = ['hello', 'world', 'senpy', 'cool', 'goodbye', 'random', 'text']
emojimap = {
1: [':)', ],
-1: [':(', ]
}
for tag, values in emojimap.items():
for i in range(1000):
msg = ''
for j in range(3):
msg += random.choice(vocabulary)
msg += " "
msg += random.choice(values)
dataset.append([msg, tag])
text = []
labels = []
for i in dataset:
text.append(i[0])
labels.append(i[1])

View File

@ -1,46 +0,0 @@
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from mydata import text, labels
X_train, X_test, y_train, y_test = train_test_split(text, labels, test_size=0.12, random_state=42)
from sklearn.naive_bayes import MultinomialNB
count_vec = CountVectorizer(tokenizer=lambda x: x.split())
clf3 = MultinomialNB()
pipeline = Pipeline([('cv', count_vec),
('clf', clf3)])
pipeline.fit(X_train, y_train)
print('Feature names: {}'.format(count_vec.get_feature_names_out()))
print('Class count: {}'.format(clf3.class_count_))
if __name__ == '__main__':
print('--Results--')
tests = [
(['The sentiment for senpy should be positive :)', ], 1),
(['The sentiment for anything else should be negative :()', ], -1)
]
for features, expected in tests:
result = pipeline.predict(features)
print('Input: {}\nExpected: {}\nGot: {}'.format(features[0], expected, result))

View File

@ -1,48 +0,0 @@
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from senpy import SentimentBox, easy_test
from mypipeline import pipeline
class PipelineSentiment(SentimentBox):
'''This is a pipeline plugin that wraps a classifier defined in another module
(mypipeline).'''
author = '@balkian'
version = 0.1
maxPolarityValue = 1
minPolarityValue = -1
def predict_one(self, features, **kwargs):
if pipeline.predict(features) > 0:
return [1, 0, 0]
return [0, 0, 1]
test_cases = [
{
'input': 'The sentiment for senpy should be positive :)',
'polarity': 'marl:Positive'
},
{
'input': 'The sentiment for senpy should be negative :(',
'polarity': 'marl:Negative'
}
]
if __name__ == '__main__':
easy_test()

View File

@ -1,43 +0,0 @@
#
# Copyright 2014 Grupo de Sistemas Inteligentes (GSI) DIT, UPM
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from senpy.plugins import AnalysisPlugin
from time import sleep
class Sleep(AnalysisPlugin):
'''Dummy plugin to test async'''
author = "@balkian"
version = "0.2"
timeout = 0.05
extra_params = {
"timeout": {
"@id": "timeout_sleep",
"aliases": ["timeout", "to"],
"required": False,
"default": 0
}
}
def activate(self, *args, **kwargs):
sleep(self.timeout)
def analyse_entry(self, entry, params):
sleep(float(params.get("timeout", self.timeout)))
yield entry
def test(self):
pass

View File

@ -1,6 +0,0 @@
gsitk>0.1.9.1
flask_cors==3.0.10
Pattern==3.6
lxml==4.9.3
pandas==2.1.1
textblob==0.17.1

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.6 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 208 KiB

File diff suppressed because it is too large Load Diff

Before

Width:  |  Height:  |  Size: 180 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

View File

@ -1,7 +0,0 @@
Deploy senpy to a kubernetes cluster.
Usage:
```
kubectl apply -f . -n senpy
```

View File

@ -1,36 +0,0 @@
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: senpy-latest
spec:
replicas: 1
selector:
matchLabels:
app: senpy-latest
template:
metadata:
labels:
app: senpy-latest
role: senpy-latest
spec:
containers:
- name: senpy-latest
image: $IMAGEWTAG
imagePullPolicy: Always
args: ["--enable-cors"]
resources:
limits:
memory: "512Mi"
cpu: "1000m"
ports:
- name: web
containerPort: 5000
volumeMounts:
- name: senpy-data
mountPath: /senpy-data
subPath: data
volumes:
- name: senpy-data
persistentVolumeClaim:
claimName: pvc-senpy

View File

@ -1,29 +0,0 @@
---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: senpy-ingress
labels:
app: senpy-latest
spec:
rules:
- host: senpy-latest.gsi.upm.es
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: senpy-latest
port:
number: 5000
- host: latest.senpy.gsi.upm.es
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: senpy-latest
port:
number: 5000

View File

@ -1,14 +0,0 @@
---
apiVersion: v1
kind: Service
metadata:
name: senpy-latest
labels:
app: senpy-latest
spec:
type: ClusterIP
ports:
- port: 5000
protocol: TCP
selector:
app: senpy-latest

View File

Before

Width:  |  Height:  |  Size: 8.0 KiB

After

Width:  |  Height:  |  Size: 8.0 KiB

Some files were not shown because too many files have changed in this diff Show More