mirror of
https://github.com/gsi-upm/soil
synced 2024-11-10 13:42:28 +00:00
345 lines
13 KiB
Python
345 lines
13 KiB
Python
from nxsim import NetworkSimulation
|
|
from nxsim import BaseNetworkAgent
|
|
from nxsim import BaseLoggingAgent
|
|
from random import randint
|
|
from matplotlib import pyplot as plt
|
|
import random
|
|
import numpy as np
|
|
import networkx as nx
|
|
import settings
|
|
|
|
settings.init() # Loads all the data from settings
|
|
|
|
####################
|
|
# Network creation #
|
|
####################
|
|
|
|
if settings.network_type == 0:
|
|
G = nx.complete_graph(settings.number_of_nodes)
|
|
if settings.network_type == 1:
|
|
G = nx.barabasi_albert_graph(settings.number_of_nodes,3)
|
|
if settings.network_type == 2:
|
|
G = nx.margulis_gabber_galil_graph(settings.number_of_nodes, None)
|
|
# More types of networks can be added here
|
|
|
|
|
|
##############################
|
|
# Variables initializitation #
|
|
##############################
|
|
|
|
myList=[] # List just for debugging
|
|
networkStatus=[] # This list will contain the status of every node of the network
|
|
for x in range(0, settings.number_of_nodes):
|
|
networkStatus.append({'id':x})
|
|
|
|
# Initialize agent states. Let's assume everyone is normal.
|
|
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
|
|
|
|
# Seed a zombie, just for zombie model
|
|
#init_states[5] = {'id': 1}
|
|
#init_states[3] = {'id': 1}
|
|
|
|
####################
|
|
# Available models #
|
|
####################
|
|
|
|
class BigMarketModel(BaseNetworkAgent):
|
|
def __init__(self, environment=None, agent_id=0, state=()):
|
|
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
|
self.time_awareness = 0
|
|
networkStatus[self.id][self.env.now]=0
|
|
if self.id == 0: #Empresa 1
|
|
self.state['id']=0
|
|
self.tweet_probability_1 = settings.tweet_probability_1
|
|
elif self.id == 1: #Empresa 2
|
|
self.state['id']=1
|
|
self.tweet_probability_2 = settings.tweet_probability_2
|
|
else: #Usuarios normales
|
|
self.state['id']=2
|
|
self.tweet_probability_users = settings.tweet_probability_users
|
|
self.tweet_probability_about = settings.tweet_probability_about
|
|
self.sentiment_about = settings.sentiment_about
|
|
|
|
def run(self):
|
|
while True:
|
|
aware_neighbors_1_time_step=[]
|
|
#Outside effects
|
|
if random.random() < settings.innovation_prob:
|
|
if self.state['id'] == 0:
|
|
self.state['id'] = 1
|
|
myList.append(self.id)
|
|
networkStatus[self.id][self.env.now]=1
|
|
self.time_awareness = self.env.now #Para saber cuando se han contagiado
|
|
yield self.env.timeout(settings.timeout)
|
|
else:
|
|
yield self.env.timeout(settings.timeout)
|
|
|
|
#Imitation effects
|
|
if self.state['id'] == 0:
|
|
aware_neighbors = self.get_neighboring_agents(state_id=1)
|
|
for x in aware_neighbors:
|
|
if x.time_awareness == (self.env.now-1):
|
|
aware_neighbors_1_time_step.append(x)
|
|
num_neighbors_aware = len(aware_neighbors_1_time_step)
|
|
if random.random() < (settings.imitation_prob*num_neighbors_aware):
|
|
myList.append(self.id)
|
|
self.state['id'] = 1
|
|
networkStatus[self.id][self.env.now]=1
|
|
yield self.env.timeout(settings.timeout)
|
|
else:
|
|
yield self.env.timeout(settings.timeout)
|
|
|
|
class SentimentCorrelationModel(BaseNetworkAgent):
|
|
def __init__(self, environment=None, agent_id=0, state=()):
|
|
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
|
self.outside_effects_prob = settings.outside_effects_prob
|
|
self.anger_prob = settings.anger_prob
|
|
self.joy_prob = settings.joy_prob
|
|
self.sadness_prob = settings.sadness_prob
|
|
self.disgust_prob = settings.disgust_prob
|
|
self.time_awareness=[]
|
|
for i in range(4): #En este modelo tenemos 4 sentimientos
|
|
self.time_awareness.append(0) #0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
|
|
networkStatus[self.id][self.env.now]=0
|
|
|
|
|
|
def run(self):
|
|
while True:
|
|
|
|
angry_neighbors_1_time_step=[]
|
|
joyful_neighbors_1_time_step=[]
|
|
sad_neighbors_1_time_step=[]
|
|
disgusted_neighbors_1_time_step=[]
|
|
|
|
|
|
angry_neighbors = self.get_neighboring_agents(state_id=1)
|
|
for x in angry_neighbors:
|
|
if x.time_awareness[0] > (self.env.now-500):
|
|
angry_neighbors_1_time_step.append(x)
|
|
num_neighbors_angry = len(angry_neighbors_1_time_step)
|
|
|
|
|
|
joyful_neighbors = self.get_neighboring_agents(state_id=2)
|
|
for x in joyful_neighbors:
|
|
if x.time_awareness[1] > (self.env.now-500):
|
|
joyful_neighbors_1_time_step.append(x)
|
|
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
|
|
|
|
|
|
sad_neighbors = self.get_neighboring_agents(state_id=3)
|
|
for x in sad_neighbors:
|
|
if x.time_awareness[2] > (self.env.now-500):
|
|
sad_neighbors_1_time_step.append(x)
|
|
num_neighbors_sad = len(sad_neighbors_1_time_step)
|
|
|
|
|
|
disgusted_neighbors = self.get_neighboring_agents(state_id=4)
|
|
for x in disgusted_neighbors:
|
|
if x.time_awareness[3] > (self.env.now-500):
|
|
disgusted_neighbors_1_time_step.append(x)
|
|
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
|
|
|
|
|
|
anger_prob= settings.anger_prob+(len(angry_neighbors_1_time_step)*settings.anger_prob)
|
|
joy_prob= settings.joy_prob+(len(joyful_neighbors_1_time_step)*settings.joy_prob)
|
|
sadness_prob = settings.sadness_prob+(len(sad_neighbors_1_time_step)*settings.sadness_prob)
|
|
disgust_prob = settings.disgust_prob+(len(disgusted_neighbors_1_time_step)*settings.disgust_prob)
|
|
outside_effects_prob= settings.outside_effects_prob
|
|
|
|
|
|
num = random.random()
|
|
|
|
|
|
if(num<outside_effects_prob):
|
|
self.state['id'] = random.randint(1,4)
|
|
myList.append(self.id)
|
|
networkStatus[self.id][self.env.now]=self.state['id'] #Almaceno cuando se ha infectado para la red dinamica
|
|
self.time_awareness[self.state['id']-1] = self.env.now
|
|
yield self.env.timeout(settings.timeout)
|
|
|
|
|
|
if(num<anger_prob):
|
|
|
|
myList.append(self.id)
|
|
self.state['id'] = 1
|
|
networkStatus[self.id][self.env.now]=1
|
|
self.time_awareness[self.state['id']-1] = self.env.now
|
|
elif (num<joy_prob+anger_prob and num>anger_prob):
|
|
|
|
myList.append(self.id)
|
|
self.state['id'] = 2
|
|
networkStatus[self.id][self.env.now]=2
|
|
self.time_awareness[self.state['id']-1] = self.env.now
|
|
elif (num<sadness_prob+anger_prob+joy_prob and num>joy_prob+anger_prob):
|
|
|
|
myList.append(self.id)
|
|
self.state['id'] = 3
|
|
networkStatus[self.id][self.env.now]=3
|
|
self.time_awareness[self.state['id']-1] = self.env.now
|
|
elif (num<disgust_prob+sadness_prob+anger_prob+joy_prob and num>sadness_prob+anger_prob+joy_prob):
|
|
|
|
myList.append(self.id)
|
|
self.state['id'] = 4
|
|
networkStatus[self.id][self.env.now]=4
|
|
self.time_awareness[self.state['id']-1] = self.env.now
|
|
|
|
yield self.env.timeout(settings.timeout)
|
|
|
|
|
|
class BassModel(BaseNetworkAgent):
|
|
def __init__(self, environment=None, agent_id=0, state=()):
|
|
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
|
self.innovation_prob = settings.innovation_prob
|
|
self.imitation_prob = settings.imitation_prob
|
|
networkStatus[self.id][self.env.now]=0
|
|
|
|
def run(self):
|
|
while True:
|
|
|
|
|
|
#Outside effects
|
|
if random.random() < settings.innovation_prob:
|
|
if self.state['id'] == 0:
|
|
self.state['id'] = 1
|
|
myList.append(self.id)
|
|
networkStatus[self.id][self.env.now]=1
|
|
yield self.env.timeout(settings.timeout)
|
|
else:
|
|
yield self.env.timeout(settings.timeout)
|
|
|
|
#Imitation effects
|
|
if self.state['id'] == 0:
|
|
aware_neighbors = self.get_neighboring_agents(state_id=1)
|
|
num_neighbors_aware = len(aware_neighbors)
|
|
if random.random() < (settings.imitation_prob*num_neighbors_aware):
|
|
myList.append(self.id)
|
|
self.state['id'] = 1
|
|
networkStatus[self.id][self.env.now]=1
|
|
yield self.env.timeout(settings.timeout)
|
|
else:
|
|
yield self.env.timeout(settings.timeout)
|
|
|
|
class IndependentCascadeModel(BaseNetworkAgent):
|
|
def __init__(self, environment=None, agent_id=0, state=()):
|
|
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
|
self.innovation_prob = settings.innovation_prob
|
|
self.imitation_prob = settings.imitation_prob
|
|
self.time_awareness = 0
|
|
networkStatus[self.id][self.env.now]=0
|
|
|
|
def run(self):
|
|
while True:
|
|
aware_neighbors_1_time_step=[]
|
|
#Outside effects
|
|
if random.random() < settings.innovation_prob:
|
|
if self.state['id'] == 0:
|
|
self.state['id'] = 1
|
|
myList.append(self.id)
|
|
networkStatus[self.id][self.env.now]=1
|
|
self.time_awareness = self.env.now #Para saber cuando se han contagiado
|
|
yield self.env.timeout(settings.timeout)
|
|
else:
|
|
yield self.env.timeout(settings.timeout)
|
|
|
|
#Imitation effects
|
|
if self.state['id'] == 0:
|
|
aware_neighbors = self.get_neighboring_agents(state_id=1)
|
|
for x in aware_neighbors:
|
|
if x.time_awareness == (self.env.now-1):
|
|
aware_neighbors_1_time_step.append(x)
|
|
num_neighbors_aware = len(aware_neighbors_1_time_step)
|
|
if random.random() < (settings.imitation_prob*num_neighbors_aware):
|
|
myList.append(self.id)
|
|
self.state['id'] = 1
|
|
networkStatus[self.id][self.env.now]=1
|
|
yield self.env.timeout(settings.timeout)
|
|
else:
|
|
yield self.env.timeout(settings.timeout)
|
|
|
|
|
|
class ZombieOutbreak(BaseNetworkAgent):
|
|
def __init__(self, environment=None, agent_id=0, state=()):
|
|
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
|
self.bite_prob = settings.bite_prob
|
|
networkStatus[self.id][self.env.now]=0
|
|
|
|
|
|
def run(self):
|
|
while True:
|
|
if random.random() < settings.heal_prob:
|
|
if self.state['id'] == 1:
|
|
self.zombify()
|
|
yield self.env.timeout(settings.timeout)
|
|
else:
|
|
yield self.env.timeout(settings.timeout)
|
|
else:
|
|
if self.state['id'] == 1:
|
|
print("Soy el zombie " + str(self.id) + " y me voy a curar porque el num aleatorio ha sido " + str(num))
|
|
networkStatus[self.id][self.env.now]=0
|
|
if self.id in myList:
|
|
myList.remove(self.id)
|
|
self.state['id'] = 0
|
|
yield self.env.timeout(settings.timeout)
|
|
else:
|
|
yield self.env.timeout(settings.timeout)
|
|
|
|
|
|
def zombify(self):
|
|
normal_neighbors = self.get_neighboring_agents(state_id=0)
|
|
for neighbor in normal_neighbors:
|
|
if random.random() < self.bite_prob:
|
|
print("Soy el zombie " + str(self.id) + " y voy a contagiar a " + str(neighbor.id))
|
|
neighbor.state['id'] = 1 # zombie
|
|
myList.append(neighbor.id)
|
|
networkStatus[self.id][self.env.now]=1
|
|
networkStatus[neighbor.id][self.env.now]=1
|
|
print(self.env.now, "Soy el zombie: "+ str(self.id), "Mi vecino es: "+ str(neighbor.id), sep='\t')
|
|
break
|
|
|
|
|
|
##############
|
|
# Simulation #
|
|
##############
|
|
|
|
sim = NetworkSimulation(topology=G, states=init_states, agent_type=SentimentCorrelationModel,
|
|
max_time=settings.max_time, num_trials=settings.num_trials, logging_interval=1.0)
|
|
|
|
|
|
sim.run_simulation()
|
|
|
|
###########
|
|
# Results #
|
|
###########
|
|
|
|
myList = sorted(myList, key=int)
|
|
#print("Los zombies son: " + str(myList))
|
|
|
|
trial = BaseLoggingAgent.open_trial_state_history(dir_path='sim_01', trial_id=0)
|
|
status_census = [sum([1 for node_id, state in g.items() if state['id'] == 1]) for t,g in trial.items()]
|
|
|
|
|
|
#################
|
|
# Visualization #
|
|
#################
|
|
|
|
#lista = nx.nodes(G)
|
|
#print('Nodos: ' + str(lista))
|
|
for x in range(0, settings.number_of_nodes):
|
|
networkStatusAux=[]
|
|
for tiempo in networkStatus[x]:
|
|
if tiempo != 'id':
|
|
networkStatusAux.append((networkStatus[x][tiempo],tiempo,None))
|
|
G.add_node(x, status= networkStatusAux)
|
|
#print(networkStatus)
|
|
|
|
|
|
nx.write_gexf(G,"test.gexf", version="1.2draft")
|
|
plt.plot(status_census)
|
|
plt.draw() # pyplot draw()
|
|
plt.savefig("status.png")
|
|
#print(networkStatus)
|
|
#nx.draw(G)
|
|
#plt.show()
|
|
#plt.savefig("path.png")
|
|
|