mirror of
https://github.com/gsi-upm/soil
synced 2024-11-13 23:12:28 +00:00
e1be3a730e
* Pandas integration * Improved environment * Logging and data dumps * Tests * Added Finite State Machine models * Rewritten ipython notebook and documentation
1285 lines
33 KiB
ReStructuredText
1285 lines
33 KiB
ReStructuredText
Developing new models
|
||
---------------------
|
||
|
||
Introduction
|
||
============
|
||
|
||
This notebook is an introduction to the soil agent-based social network
|
||
simulation framework. In particular, we will focus on a specific use
|
||
case: studying the propagation of news in a social network.
|
||
|
||
The steps we will follow are:
|
||
|
||
- Modelling the behavior of agents
|
||
- Running the simulation using different configurations
|
||
- Analysing the results of each simulation
|
||
|
||
But before that, let's import the soil module and networkx.
|
||
|
||
.. code:: ipython3
|
||
|
||
import soil
|
||
import networkx as nx
|
||
|
||
.. code:: ipython3
|
||
|
||
%pylab inline
|
||
# To display plots in the notebook
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
Populating the interactive namespace from numpy and matplotlib
|
||
|
||
|
||
Basic concepts
|
||
==============
|
||
|
||
There are three main elements in a soil simulation:
|
||
|
||
- The network topology. A simulation may use an existing NetworkX
|
||
topology, or generate one on the fly
|
||
- Agents. There are two types: 1) network agents, which are linked to a
|
||
node in the topology, and 2) environment agents, which are freely
|
||
assigned to the environment.
|
||
- The environment. It assigns agents to nodes in the network, and
|
||
stores the environment parameters (shared state for all agents).
|
||
|
||
Soil is based on ``simpy``, which is an event-based network simulation
|
||
library. Soil provides several abstractions over events to make
|
||
developing agents easier. This means you can use events (timeouts,
|
||
delays) in soil, but for the most part we will assume your models will
|
||
be step-based.
|
||
|
||
Modeling behaviour
|
||
==================
|
||
|
||
Our first step will be to model how every person in the social network
|
||
reacts when it comes to news. We will follow a very simple model (a
|
||
finite state machine).
|
||
|
||
There are two types of people, those who have heard about a newsworthy
|
||
event (infected) or those who have not (neutral). A neutral person may
|
||
heard about the news either on the TV (with probability
|
||
**prob\_tv\_spread**) or through their friends. Once a person has heard
|
||
the news, they will spread it to their friends (with a probability
|
||
**prob\_neighbor\_spread**). Some users do not have a TV, so they only
|
||
rely on their friends.
|
||
|
||
The spreading probabilities will change over time due to different
|
||
factors. We will represent this variance using an environment agent.
|
||
|
||
Network Agents
|
||
++++++++++++++
|
||
|
||
A basic network agent in Soil should inherit from
|
||
``soil.agents.BaseAgent``, and define its behaviour in every step of the
|
||
simulation by implementing a ``run(self)`` method. The most important
|
||
attributes of the agent are:
|
||
|
||
- ``agent.state``, a dictionary with the state of the agent.
|
||
``agent.state['id']`` reflects the state id of the agent. That state
|
||
id can be used to look for other networks in that specific state. The
|
||
state can be access via the agent as well. For instance:
|
||
|
||
.. code:: py
|
||
|
||
a = soil.agents.BaseAgent(env=env)
|
||
a['hours_of_sleep'] = 10
|
||
print(a['hours_of_sleep'])
|
||
|
||
The state of the agent is stored in every step of the simulation:
|
||
``py print(a['hours_of_sleep', 10]) # hours of sleep before step #10 print(a[None, 0]) # whole state of the agent before step #0``
|
||
|
||
- ``agent.env``, a reference to the environment. Most commonly used to
|
||
get access to the environment parameters and the topology:
|
||
|
||
.. code:: py
|
||
|
||
a.env.G.nodes() # Get all nodes ids in the topology
|
||
a.env['minimum_hours_of_sleep']
|
||
|
||
Since our model is a finite state machine, we will be basing it on
|
||
``soil.agents.FSM``.
|
||
|
||
With ``soil.agents.FSM``, we do not need to specify a ``step`` method.
|
||
Instead, we describe every step as a function. To change to another
|
||
state, a function may return the new state. If no state is returned, the
|
||
state remains unchanged.[ It will consist of two states, ``neutral``
|
||
(default) and ``infected``.
|
||
|
||
Here's the code:
|
||
|
||
.. code:: ipython3
|
||
|
||
import random
|
||
|
||
class NewsSpread(soil.agents.FSM):
|
||
@soil.agents.default_state
|
||
@soil.agents.state
|
||
def neutral(self):
|
||
r = random.random()
|
||
if self['has_tv'] and r < self.env['prob_tv_spread']:
|
||
return self.infected
|
||
return
|
||
|
||
@soil.agents.state
|
||
def infected(self):
|
||
prob_infect = self.env['prob_neighbor_spread']
|
||
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
|
||
r = random.random()
|
||
if r < prob_infect:
|
||
neighbor.state['id'] = self.infected.id
|
||
return
|
||
|
||
|
||
Environment agents
|
||
++++++++++++++++++
|
||
|
||
Environment agents allow us to control the state of the environment. In
|
||
this case, we will use an environment agent to simulate a very viral
|
||
event.
|
||
|
||
When the event happens, the agent will modify the probability of
|
||
spreading the rumor.
|
||
|
||
.. code:: ipython3
|
||
|
||
NEIGHBOR_FACTOR = 0.9
|
||
TV_FACTOR = 0.5
|
||
class NewsEnvironmentAgent(soil.agents.BaseAgent):
|
||
def step(self):
|
||
if self.now == self['event_time']:
|
||
self.env['prob_tv_spread'] = 1
|
||
self.env['prob_neighbor_spread'] = 1
|
||
elif self.now > self['event_time']:
|
||
self.env['prob_tv_spread'] = self.env['prob_tv_spread'] * TV_FACTOR
|
||
self.env['prob_neighbor_spread'] = self.env['prob_neighbor_spread'] * NEIGHBOR_FACTOR
|
||
|
||
Testing the agents
|
||
++++++++++++++++++
|
||
|
||
Feel free to skip this section if this is your first time with soil.
|
||
|
||
Testing agents is not easy, and this is not a thorough testing process
|
||
for agents. Rather, this section is aimed to show you how to access
|
||
internal pats of soil so you can test your agents.
|
||
|
||
First of all, let's check if our network agent has the states we would
|
||
expect:
|
||
|
||
.. code:: ipython3
|
||
|
||
NewsSpread.states
|
||
|
||
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
{'infected': <function __main__.NewsSpread.infected>,
|
||
'neutral': <function __main__.NewsSpread.neutral>}
|
||
|
||
|
||
|
||
Now, let's run a simulation on a simple network. It is comprised of
|
||
three nodes:
|
||
|
||
.. code:: ipython3
|
||
|
||
G = nx.Graph()
|
||
G.add_edge(0, 1)
|
||
G.add_edge(0, 2)
|
||
G.add_edge(2, 3)
|
||
G.add_node(4)
|
||
pos = nx.spring_layout(G)
|
||
nx.draw_networkx(G, pos, node_color='red')
|
||
nx.draw_networkx(G, pos, nodelist=[0], node_color='blue')
|
||
|
||
|
||
|
||
.. image:: output_21_0.png
|
||
|
||
|
||
Let's run a simple simulation that assigns a NewsSpread agent to all the
|
||
nodes in that network. Notice how node 0 is the only one with a TV.
|
||
|
||
.. code:: ipython3
|
||
|
||
env_params = {'prob_tv_spread': 0,
|
||
'prob_neighbor_spread': 0}
|
||
|
||
MAX_TIME = 100
|
||
EVENT_TIME = 10
|
||
|
||
sim = soil.simulation.SoilSimulation(topology=G,
|
||
num_trials=1,
|
||
max_time=MAX_TIME,
|
||
environment_agents=[{'agent_type': NewsEnvironmentAgent,
|
||
'state': {
|
||
'event_time': EVENT_TIME
|
||
}}],
|
||
network_agents=[{'agent_type': NewsSpread,
|
||
'weight': 1}],
|
||
states={0: {'has_tv': True}},
|
||
default_state={'has_tv': False},
|
||
environment_params=env_params)
|
||
env = sim.run_simulation()[0]
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
Trial: 0
|
||
Running
|
||
Finished trial in 0.014928102493286133 seconds
|
||
Finished simulation in 0.015764951705932617 seconds
|
||
|
||
|
||
Now we can access the results of the simulation and compare them to our
|
||
expected results
|
||
|
||
.. code:: ipython3
|
||
|
||
agents = list(env.network_agents)
|
||
|
||
# Until the event, all agents are neutral
|
||
for t in range(10):
|
||
for a in agents:
|
||
assert a['id', t] == a.neutral.id
|
||
|
||
# After the event, the node with a TV is infected, the rest are not
|
||
assert agents[0]['id', 11] == NewsSpread.infected.id
|
||
|
||
for a in agents[1:4]:
|
||
assert a['id', 11] == NewsSpread.neutral.id
|
||
|
||
# At the end, the agents connected to the infected one will probably be infected, too.
|
||
assert agents[1]['id', MAX_TIME] == NewsSpread.infected.id
|
||
assert agents[2]['id', MAX_TIME] == NewsSpread.infected.id
|
||
|
||
# But the node with no friends should not be affected
|
||
assert agents[4]['id', MAX_TIME] == NewsSpread.neutral.id
|
||
|
||
|
||
Lastly, let's see if the probabilities have decreased as expected:
|
||
|
||
.. code:: ipython3
|
||
|
||
assert abs(env.environment_params['prob_neighbor_spread'] - (NEIGHBOR_FACTOR**(MAX_TIME-1-10))) < 10e-4
|
||
assert abs(env.environment_params['prob_tv_spread'] - (TV_FACTOR**(MAX_TIME-1-10))) < 10e-6
|
||
|
||
Running the simulation
|
||
======================
|
||
|
||
To run a simulation, we need a configuration. Soil can load
|
||
configurations from python dictionaries as well as JSON and YAML files.
|
||
For this demo, we will use a python dictionary:
|
||
|
||
.. code:: ipython3
|
||
|
||
config = {
|
||
'name': 'ExampleSimulation',
|
||
'max_time': 20,
|
||
'interval': 1,
|
||
'num_trials': 1,
|
||
'network_params': {
|
||
'generator': 'complete_graph',
|
||
'n': 500,
|
||
},
|
||
'network_agents': [
|
||
{
|
||
'agent_type': NewsSpread,
|
||
'weight': 1,
|
||
'state': {
|
||
'has_tv': False
|
||
}
|
||
},
|
||
{
|
||
'agent_type': NewsSpread,
|
||
'weight': 2,
|
||
'state': {
|
||
'has_tv': True
|
||
}
|
||
}
|
||
],
|
||
'states': [ {'has_tv': True} ],
|
||
'environment_params':{
|
||
'prob_tv_spread': 0.01,
|
||
'prob_neighbor_spread': 0.5
|
||
}
|
||
}
|
||
|
||
Let's run our simulation:
|
||
|
||
.. code:: ipython3
|
||
|
||
soil.simulation.run_from_config(config, dump=False)
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
Using config(s): ExampleSimulation
|
||
Trial: 0
|
||
Running
|
||
Finished trial in 1.4140360355377197 seconds
|
||
Finished simulation in 2.4056642055511475 seconds
|
||
|
||
|
||
In real life, you probably want to run several simulations, varying some
|
||
of the parameters so that you can compare and answer your research
|
||
questions.
|
||
|
||
For instance:
|
||
|
||
- Does the outcome depend on the structure of our network? We will use
|
||
different generation algorithms to compare them (Barabasi-Albert and
|
||
Erdos-Renyi)
|
||
- How does neighbor spreading probability affect my simulation? We will
|
||
try probability values in the range of [0, 0.4], in intervals of 0.1.
|
||
|
||
.. code:: ipython3
|
||
|
||
network_1 = {
|
||
'generator': 'erdos_renyi_graph',
|
||
'n': 500,
|
||
'p': 0.1
|
||
}
|
||
network_2 = {
|
||
'generator': 'barabasi_albert_graph',
|
||
'n': 500,
|
||
'm': 2
|
||
}
|
||
|
||
|
||
for net in [network_1, network_2]:
|
||
for i in range(5):
|
||
prob = i / 10
|
||
config['environment_params']['prob_neighbor_spread'] = prob
|
||
config['network_params'] = net
|
||
config['name'] = 'Spread_{}_prob_{}'.format(net['generator'], prob)
|
||
s = soil.simulation.run_from_config(config)
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
Using config(s): Spread_erdos_renyi_graph_prob_0.0
|
||
Trial: 0
|
||
Running
|
||
Finished trial in 0.2691483497619629 seconds
|
||
Finished simulation in 0.3650345802307129 seconds
|
||
Using config(s): Spread_erdos_renyi_graph_prob_0.1
|
||
Trial: 0
|
||
Running
|
||
Finished trial in 0.34261059761047363 seconds
|
||
Finished simulation in 0.44017767906188965 seconds
|
||
Using config(s): Spread_erdos_renyi_graph_prob_0.2
|
||
Trial: 0
|
||
Running
|
||
Finished trial in 0.34417223930358887 seconds
|
||
Finished simulation in 0.4550771713256836 seconds
|
||
Using config(s): Spread_erdos_renyi_graph_prob_0.3
|
||
Trial: 0
|
||
Running
|
||
Finished trial in 0.3237779140472412 seconds
|
||
Finished simulation in 0.42307496070861816 seconds
|
||
Using config(s): Spread_erdos_renyi_graph_prob_0.4
|
||
Trial: 0
|
||
Running
|
||
Finished trial in 0.3507683277130127 seconds
|
||
Finished simulation in 0.45061564445495605 seconds
|
||
Using config(s): Spread_barabasi_albert_graph_prob_0.0
|
||
Trial: 0
|
||
Running
|
||
Finished trial in 0.19115304946899414 seconds
|
||
Finished simulation in 0.20927715301513672 seconds
|
||
Using config(s): Spread_barabasi_albert_graph_prob_0.1
|
||
Trial: 0
|
||
Running
|
||
Finished trial in 0.22086191177368164 seconds
|
||
Finished simulation in 0.2390913963317871 seconds
|
||
Using config(s): Spread_barabasi_albert_graph_prob_0.2
|
||
Trial: 0
|
||
Running
|
||
Finished trial in 0.21225976943969727 seconds
|
||
Finished simulation in 0.23252630233764648 seconds
|
||
Using config(s): Spread_barabasi_albert_graph_prob_0.3
|
||
Trial: 0
|
||
Running
|
||
Finished trial in 0.2853121757507324 seconds
|
||
Finished simulation in 0.30568504333496094 seconds
|
||
Using config(s): Spread_barabasi_albert_graph_prob_0.4
|
||
Trial: 0
|
||
Running
|
||
Finished trial in 0.21434736251831055 seconds
|
||
Finished simulation in 0.23370599746704102 seconds
|
||
|
||
|
||
The results are conveniently stored in pickle (simulation), csv (history
|
||
of agent and environment state) and gexf format.
|
||
|
||
.. code:: ipython3
|
||
|
||
!tree soil_output
|
||
!du -xh soil_output/*
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
[01;34msoil_output[00m
|
||
├── [01;34mSim_prob_0[00m
|
||
│ ├── Sim_prob_0.dumped.yml
|
||
│ ├── Sim_prob_0.simulation.pickle
|
||
│ ├── Sim_prob_0_trial_0.environment.csv
|
||
│ └── Sim_prob_0_trial_0.gexf
|
||
├── [01;34mSpread_barabasi_albert_graph_prob_0.0[00m
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.0.dumped.yml
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.0.simulation.pickle
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.0_trial_0.environment.csv
|
||
│ └── Spread_barabasi_albert_graph_prob_0.0_trial_0.gexf
|
||
├── [01;34mSpread_barabasi_albert_graph_prob_0.1[00m
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.1.dumped.yml
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.1.simulation.pickle
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.1_trial_0.environment.csv
|
||
│ └── Spread_barabasi_albert_graph_prob_0.1_trial_0.gexf
|
||
├── [01;34mSpread_barabasi_albert_graph_prob_0.2[00m
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.2.dumped.yml
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.2.simulation.pickle
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.2_trial_0.environment.csv
|
||
│ └── Spread_barabasi_albert_graph_prob_0.2_trial_0.gexf
|
||
├── [01;34mSpread_barabasi_albert_graph_prob_0.3[00m
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.3.dumped.yml
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.3.simulation.pickle
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.3_trial_0.environment.csv
|
||
│ └── Spread_barabasi_albert_graph_prob_0.3_trial_0.gexf
|
||
├── [01;34mSpread_barabasi_albert_graph_prob_0.4[00m
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.4.dumped.yml
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.4.simulation.pickle
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.4_trial_0.environment.csv
|
||
│ └── Spread_barabasi_albert_graph_prob_0.4_trial_0.gexf
|
||
├── [01;34mSpread_erdos_renyi_graph_prob_0.0[00m
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.0.dumped.yml
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.0.simulation.pickle
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.0_trial_0.environment.csv
|
||
│ └── Spread_erdos_renyi_graph_prob_0.0_trial_0.gexf
|
||
├── [01;34mSpread_erdos_renyi_graph_prob_0.1[00m
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.1.dumped.yml
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.1.simulation.pickle
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.1_trial_0.environment.csv
|
||
│ └── Spread_erdos_renyi_graph_prob_0.1_trial_0.gexf
|
||
├── [01;34mSpread_erdos_renyi_graph_prob_0.2[00m
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.2.dumped.yml
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.2.simulation.pickle
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.2_trial_0.environment.csv
|
||
│ └── Spread_erdos_renyi_graph_prob_0.2_trial_0.gexf
|
||
├── [01;34mSpread_erdos_renyi_graph_prob_0.3[00m
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.3.dumped.yml
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.3.simulation.pickle
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.3_trial_0.environment.csv
|
||
│ └── Spread_erdos_renyi_graph_prob_0.3_trial_0.gexf
|
||
└── [01;34mSpread_erdos_renyi_graph_prob_0.4[00m
|
||
├── Spread_erdos_renyi_graph_prob_0.4.dumped.yml
|
||
├── Spread_erdos_renyi_graph_prob_0.4.simulation.pickle
|
||
├── Spread_erdos_renyi_graph_prob_0.4_trial_0.environment.csv
|
||
└── Spread_erdos_renyi_graph_prob_0.4_trial_0.gexf
|
||
|
||
11 directories, 44 files
|
||
1.8M soil_output/Sim_prob_0
|
||
652K soil_output/Spread_barabasi_albert_graph_prob_0.0
|
||
684K soil_output/Spread_barabasi_albert_graph_prob_0.1
|
||
692K soil_output/Spread_barabasi_albert_graph_prob_0.2
|
||
692K soil_output/Spread_barabasi_albert_graph_prob_0.3
|
||
688K soil_output/Spread_barabasi_albert_graph_prob_0.4
|
||
1.8M soil_output/Spread_erdos_renyi_graph_prob_0.0
|
||
1.9M soil_output/Spread_erdos_renyi_graph_prob_0.1
|
||
1.9M soil_output/Spread_erdos_renyi_graph_prob_0.2
|
||
1.9M soil_output/Spread_erdos_renyi_graph_prob_0.3
|
||
1.9M soil_output/Spread_erdos_renyi_graph_prob_0.4
|
||
|
||
|
||
Analysing the results
|
||
=====================
|
||
|
||
Once the simulations are over, we can use soil to analyse the results.
|
||
|
||
First, let's load the stored results into a pandas dataframe.
|
||
|
||
.. code:: ipython3
|
||
|
||
%pylab inline
|
||
from soil import analysis
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
Populating the interactive namespace from numpy and matplotlib
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
/usr/lib/python3.6/site-packages/IPython/core/magics/pylab.py:160: UserWarning: pylab import has clobbered these variables: ['random']
|
||
`%matplotlib` prevents importing * from pylab and numpy
|
||
"\n`%matplotlib` prevents importing * from pylab and numpy"
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
config_file, df, config = list(analysis.get_data('soil_output/Spread_barabasi*prob_0.1*', process=False))[0]
|
||
df
|
||
|
||
|
||
|
||
|
||
.. raw:: html
|
||
|
||
<div>
|
||
<style>
|
||
.dataframe thead tr:only-child th {
|
||
text-align: right;
|
||
}
|
||
|
||
.dataframe thead th {
|
||
text-align: left;
|
||
}
|
||
|
||
.dataframe tbody tr th {
|
||
vertical-align: top;
|
||
}
|
||
</style>
|
||
<table border="1" class="dataframe">
|
||
<thead>
|
||
<tr style="text-align: right;">
|
||
<th></th>
|
||
<th>agent_id</th>
|
||
<th>tstep</th>
|
||
<th>attribute</th>
|
||
<th>value</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<th>0</th>
|
||
<td>env</td>
|
||
<td>0</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>1</th>
|
||
<td>env</td>
|
||
<td>0</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>2</th>
|
||
<td>env</td>
|
||
<td>1</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>3</th>
|
||
<td>env</td>
|
||
<td>1</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>4</th>
|
||
<td>env</td>
|
||
<td>2</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>5</th>
|
||
<td>env</td>
|
||
<td>2</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>6</th>
|
||
<td>env</td>
|
||
<td>3</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>7</th>
|
||
<td>env</td>
|
||
<td>3</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>8</th>
|
||
<td>env</td>
|
||
<td>4</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>9</th>
|
||
<td>env</td>
|
||
<td>4</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>10</th>
|
||
<td>env</td>
|
||
<td>5</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>11</th>
|
||
<td>env</td>
|
||
<td>5</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>12</th>
|
||
<td>env</td>
|
||
<td>6</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>13</th>
|
||
<td>env</td>
|
||
<td>6</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>14</th>
|
||
<td>env</td>
|
||
<td>7</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>15</th>
|
||
<td>env</td>
|
||
<td>7</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>16</th>
|
||
<td>env</td>
|
||
<td>8</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>17</th>
|
||
<td>env</td>
|
||
<td>8</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>18</th>
|
||
<td>env</td>
|
||
<td>9</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>19</th>
|
||
<td>env</td>
|
||
<td>9</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>20</th>
|
||
<td>env</td>
|
||
<td>10</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21</th>
|
||
<td>env</td>
|
||
<td>10</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>22</th>
|
||
<td>env</td>
|
||
<td>11</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>23</th>
|
||
<td>env</td>
|
||
<td>11</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>24</th>
|
||
<td>env</td>
|
||
<td>12</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>25</th>
|
||
<td>env</td>
|
||
<td>12</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>26</th>
|
||
<td>env</td>
|
||
<td>13</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>27</th>
|
||
<td>env</td>
|
||
<td>13</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>28</th>
|
||
<td>env</td>
|
||
<td>14</td>
|
||
<td>prob_tv_spread</td>
|
||
<td>0.01</td>
|
||
</tr>
|
||
<tr>
|
||
<th>29</th>
|
||
<td>env</td>
|
||
<td>14</td>
|
||
<td>prob_neighbor_spread</td>
|
||
<td>0.1</td>
|
||
</tr>
|
||
<tr>
|
||
<th>...</th>
|
||
<td>...</td>
|
||
<td>...</td>
|
||
<td>...</td>
|
||
<td>...</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21012</th>
|
||
<td>499</td>
|
||
<td>6</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21013</th>
|
||
<td>499</td>
|
||
<td>6</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21014</th>
|
||
<td>499</td>
|
||
<td>7</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21015</th>
|
||
<td>499</td>
|
||
<td>7</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21016</th>
|
||
<td>499</td>
|
||
<td>8</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21017</th>
|
||
<td>499</td>
|
||
<td>8</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21018</th>
|
||
<td>499</td>
|
||
<td>9</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21019</th>
|
||
<td>499</td>
|
||
<td>9</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21020</th>
|
||
<td>499</td>
|
||
<td>10</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21021</th>
|
||
<td>499</td>
|
||
<td>10</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21022</th>
|
||
<td>499</td>
|
||
<td>11</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21023</th>
|
||
<td>499</td>
|
||
<td>11</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21024</th>
|
||
<td>499</td>
|
||
<td>12</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21025</th>
|
||
<td>499</td>
|
||
<td>12</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21026</th>
|
||
<td>499</td>
|
||
<td>13</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21027</th>
|
||
<td>499</td>
|
||
<td>13</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21028</th>
|
||
<td>499</td>
|
||
<td>14</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21029</th>
|
||
<td>499</td>
|
||
<td>14</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21030</th>
|
||
<td>499</td>
|
||
<td>15</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21031</th>
|
||
<td>499</td>
|
||
<td>15</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21032</th>
|
||
<td>499</td>
|
||
<td>16</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21033</th>
|
||
<td>499</td>
|
||
<td>16</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21034</th>
|
||
<td>499</td>
|
||
<td>17</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21035</th>
|
||
<td>499</td>
|
||
<td>17</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21036</th>
|
||
<td>499</td>
|
||
<td>18</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21037</th>
|
||
<td>499</td>
|
||
<td>18</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21038</th>
|
||
<td>499</td>
|
||
<td>19</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21039</th>
|
||
<td>499</td>
|
||
<td>19</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21040</th>
|
||
<td>499</td>
|
||
<td>20</td>
|
||
<td>has_tv</td>
|
||
<td>True</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21041</th>
|
||
<td>499</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<p>21042 rows × 4 columns</p>
|
||
</div>
|
||
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
list(analysis.get_data('soil_output/Spread_barabasi*prob_0.1*', process=True))[0][1]
|
||
|
||
|
||
|
||
|
||
.. raw:: html
|
||
|
||
<div>
|
||
<style>
|
||
.dataframe thead tr:only-child th {
|
||
text-align: right;
|
||
}
|
||
|
||
.dataframe thead th {
|
||
text-align: left;
|
||
}
|
||
|
||
.dataframe tbody tr th {
|
||
vertical-align: top;
|
||
}
|
||
</style>
|
||
<table border="1" class="dataframe">
|
||
<thead>
|
||
<tr style="text-align: right;">
|
||
<th>value</th>
|
||
<th>0.01</th>
|
||
<th>0.1</th>
|
||
<th>False</th>
|
||
<th>True</th>
|
||
<th>infected</th>
|
||
<th>neutral</th>
|
||
</tr>
|
||
<tr>
|
||
<th>tstep</th>
|
||
<th></th>
|
||
<th></th>
|
||
<th></th>
|
||
<th></th>
|
||
<th></th>
|
||
<th></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<th>0</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>0.0</td>
|
||
<td>500.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>1</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>3.0</td>
|
||
<td>497.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>2</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>6.0</td>
|
||
<td>494.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>3</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>12.0</td>
|
||
<td>488.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>4</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>23.0</td>
|
||
<td>477.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>5</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>36.0</td>
|
||
<td>464.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>6</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>53.0</td>
|
||
<td>447.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>7</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>79.0</td>
|
||
<td>421.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>8</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>119.0</td>
|
||
<td>381.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>9</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>164.0</td>
|
||
<td>336.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>10</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>204.0</td>
|
||
<td>296.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>11</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>254.0</td>
|
||
<td>246.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>12</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>293.0</td>
|
||
<td>207.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>13</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>336.0</td>
|
||
<td>164.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>14</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>365.0</td>
|
||
<td>135.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>15</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>391.0</td>
|
||
<td>109.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>16</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>407.0</td>
|
||
<td>93.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>17</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>424.0</td>
|
||
<td>76.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>18</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>442.0</td>
|
||
<td>58.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>19</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>452.0</td>
|
||
<td>48.0</td>
|
||
</tr>
|
||
<tr>
|
||
<th>20</th>
|
||
<td>1.0</td>
|
||
<td>1.0</td>
|
||
<td>163.0</td>
|
||
<td>337.0</td>
|
||
<td>464.0</td>
|
||
<td>36.0</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
</div>
|
||
|
||
|
||
|
||
If you don't want to work with pandas, you can also use some pre-defined
|
||
functions from soil to conveniently plot the results:
|
||
|
||
.. code:: ipython3
|
||
|
||
analysis.plot_all('soil_output/Spread_barabasi*', attributes=['id'])
|
||
|
||
|
||
|
||
.. image:: output_44_0.png
|
||
|
||
|
||
|
||
.. image:: output_44_1.png
|
||
|
||
|
||
|
||
.. image:: output_44_2.png
|
||
|
||
|
||
|
||
.. image:: output_44_3.png
|
||
|
||
|
||
|
||
.. image:: output_44_4.png
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
analysis.plot_all('soil_output/Spread_erdos*', attributes=['id'])
|
||
|
||
|
||
|
||
.. image:: output_45_0.png
|
||
|
||
|
||
|
||
.. image:: output_45_1.png
|
||
|
||
|
||
|
||
.. image:: output_45_2.png
|
||
|
||
|
||
|
||
.. image:: output_45_3.png
|
||
|
||
|
||
|
||
.. image:: output_45_4.png
|
||
|