1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-14 15:32:29 +00:00
soil/docs/soil_tutorial.rst
2023-04-20 17:57:18 +02:00

1397 lines
34 KiB
ReStructuredText
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Soil Tutorial
=============
Introduction
------------
This notebook is an introduction to the soil agent-based social network
simulation framework. In particular, we will focus on a specific use
case: studying the propagation of news in a social network.
The steps we will follow are:
- Modelling the behavior of agents
- Running the simulation using different configurations
- Analysing the results of each simulation
But before that, lets import the soil module and networkx.
.. code:: ipython3
import soil
import networkx as nx
%load_ext autoreload
%autoreload 2
import matplotlib.pyplot as plt
Basic concepts
--------------
There are three main elements in a soil simulation:
- The environment or model. It assigns agents to nodes in the network,
and stores the environment parameters (shared state for all agents).
- The network topology. A simulation may use an existing NetworkX
topology, or generate one on the fly.
- Agents. There are several types of agents, depending on their
behavior and their capabilities. Some examples of built-in types of
agents are:
- Network agents, which are linked to a node in the topology. They
have additional methods to access their neighbors.
- FSM (Finite state machine) agents. Their behavior is defined in
terms of states, and an agent will move from one state to another.
- Evented agents, an actor-based model of agents, which can
communicate with one another through message passing.
- For convenience, a general ``soil.Agent`` class is provided, which
inherits from Network, FSM and Evented at the same time.
Soil provides several abstractions over events to make developing agents
easier. This means you can use events (timeouts, delays) in soil, but
for the most part we will assume your models will be step-based o.
Modeling behaviour
------------------
Our first step will be to model how every person in the social network
reacts to hearing a piece of disinformation (news). We will follow a
very simple model based on a finite state machine.
A person may be in one of two states: **neutral** (the default state)
and **infected**. A neutral person may hear about a piece of
disinformation either on the TV (with probability **prob_tv_spread**) or
through their friends. Once a person has heard the news, they will
spread it to their friends (with a probability
**prob_neighbor_spread**). Some users do not have a TV, so they will
only be infected by their friends.
The spreading probabilities will change over time due to different
factors. We will represent this variance using an additional agent which
will not be a part of the social network.
Modelling Agents
~~~~~~~~~~~~~~~~
The following sections will cover the basics of developing agents in
SOIL.
For more advanced patterns, please check the **examples** folder in the
repository.
Basic agents
^^^^^^^^^^^^
The most basic agent in Soil is ``soil.BaseAgent``. These agents
implement their behavior by overriding the ``step`` method, which will
be run in every simulation step. Only one agent will be running at any
given time, and it will be doing so until the ``step`` function returns.
Agents can access their environment through their ``self.model``
attribute. This is most commonly used to get access to the environment
parameters and methods. Here is a simple example of an agent:
.. code:: python
class ExampleAgent(BaseAgent):
def init(self):
self.is_infected = False
self.steps_neutral = 0
def step(self):
# Implement agent logic
if self.is_infected:
... # Do something, like infecting other agents
return self.die("No need to do anything else") # Stop forever
else:
... # Do something
self.steps_neutral += 1
if self.steps_neutral > self.model.max_steps_neutral:
self.is_infected = True
Any kind of agent behavior can be implemented with this ``step``
function. However, it has two main drawbacks: 1) complex behaviors can
get difficult both write and understand; 2) these behaviors are not
composable.
FSM agents
^^^^^^^^^^
One way to solve both issues is to model agents as `Finite-state
Machines <https://en.wikipedia.org/wiki/Finite-state_machine>`__ (FSM,
for short). FSM define a series of possible states for the agent, and
changes between these states. These states can be modelled and extended
independently.
This is modelled in Soil through the ``soil.FSM`` class. Agents that
inherit from ``soil.FSM`` do not need to specify a ``step`` method.
Instead, we describe each finite state with a function. To change to
another state, a function may return the new state, or the ``id`` of a
state. If no state is returned, the state remains unchanged.
The current state of the agent can be checked with ``agent.state_id``.
That state id can be used to look for other agents in that specific
state.
Our previous example could be expressed like this:
.. code:: python
class FSMExample(FSM):
def init(self):
self.steps_neutral = 0
@state(default=True)
def neutral(self):
... # Do something
self.steps_neutral += 1
if self.steps_neutral > self.model.max_steps_neutral:
return self.infected # Change state
@state
def infected(self):
... # Do something
return self.die("No need to do anything else")
Generator-based agents
^^^^^^^^^^^^^^^^^^^^^^
Another design pattern that can be very useful in some cases is to model
each step (or a specific state) using generators (the ``yield``
keyword).
.. code:: python
class GenExample(BaseAgent):
def step(self):
for i in range(self.model.max_steps_neutral):
... # Do something
yield # Signal the scheduler that this step is done for now
... # Do something
return self.die("No need to do anything else")
Telling the scheduler when to wake up an agent
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
By default, every agent will be called in every simulation step, and the
time elapsed between two steps is controlled by the ``interval``
attribute in the environment.
But agents may signal the scheduler when they expect to be called again.
This is especially useful when an agent is going to be dormant for a
long time. To do so, an agent can return (or ``yield``) from a ``step``
or a ``state`` a value of type ``soil.When`` (absolute time),
``soil.Delta`` (relative time) or ``soil.Cond``, telling the scheduler
when the agent will be ready to run again. If it returns nothing (i.e.,
``None``), the agent will be ready to run at the next simulation step.
Environment agents
~~~~~~~~~~~~~~~~~~
Environment agents allow us to control the state of the environment. In
this case, we will use an environment agent to simulate a very viral
event.
When the event happens, the agent will modify the probability of
spreading the rumor.
.. code:: ipython3
import logging
class EventGenerator(soil.BaseAgent):
level = logging.INFO
def step(self):
# Do nothing until the time of the event
yield soil.When(self.model.event_time)
self.info("TV event happened")
self.model.prob_tv_spread = 0.5
self.model.prob_neighbor_spread *= 2
self.model.prob_neighbor_spread = min(self.model.prob_neighbor_spread, 1)
yield
self.model.prob_tv_spread = 0
while self.alive:
self.model.prob_neighbor_spread = self.model.prob_neighbor_spread * self.model.neighbor_factor
if self.model.prob_neighbor_spread < 0.01:
return self.die("neighbors can no longer spread the rumour")
yield
Environment (Model)
~~~~~~~~~~~~~~~~~~~
Lets define a environment model to test our event generator agent. This
environment will have a single agent (the event generator). We will also
tell the environment to save the value of ``prob_tv_spread`` after every
step:
.. code:: ipython3
class NewsEnv(soil.NetworkEnvironment):
prob_tv_spread = 0.1
prob_neighbor_spread = 0.1
event_time = 10
tv_factor = 0.5
neighbor_factor = 0.9
def init(self):
self.add_model_reporter("prob_tv_spread")
self.add_agent(EventGenerator)
Once the environment has been defined, we can run a simulation
.. code:: ipython3
it = NewsEnv.run(iterations=1, dump=False, max_time=14)
it[0].model_df()
.. parsed-literal::
HBox(children=(IntProgress(value=0, description='NewsEnv', max=1, style=ProgressStyle(description_width='initi…
.. parsed-literal::
HBox(children=(IntProgress(value=0, max=1), HTML(value='')))
.. parsed-literal::
.. raw:: html
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>step</th>
<th>agent_count</th>
<th>prob_tv_spread</th>
</tr>
<tr>
<th>time</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>0</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<th>10</th>
<td>1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<th>11</th>
<td>2</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<th>12</th>
<td>3</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<th>13</th>
<td>4</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<th>14</th>
<td>5</td>
<td>1</td>
<td>0.0</td>
</tr>
</tbody>
</table>
</div>
As we can see, the event occurred right after ``t=10``, so by ``t=11``
the value of ``prob_tv_spread`` was already set to ``1.0``.
You may notice nothing happened between ``t=0`` and ``t=1``. That is
because there arent any other agents in the simulation, and our event
generator explicitly waited until ``t=10``.
Network agents
~~~~~~~~~~~~~~
In our disinformation scenario, we will model our agents as a FSM with
two states: ``neutral`` (default) and ``infected``.
Heres the code:
.. code:: ipython3
class NewsSpread(soil.Agent):
has_tv = False
infected_by_friends = False
@soil.state(default=True)
def neutral(self):
if self.infected_by_friends:
return self.infected
if self.has_tv:
if self.prob(self.model.prob_tv_spread):
return self.infected
@soil.state
def infected(self):
for neighbor in self.iter_neighbors(state_id=self.neutral.id):
if self.prob(self.model.prob_neighbor_spread):
neighbor.infected_by_friends = True
We can check that our states are well defined, here:
.. code:: ipython3
NewsSpread.states()
.. parsed-literal::
['dead', 'neutral', 'infected']
Environment (Model)
~~~~~~~~~~~~~~~~~~~
Lets modify our simple simulation. We will add a network of agents of
type NewsSpread.
Only one agent (0) will have a TV (in blue).
.. code:: ipython3
def generate_simple():
G = nx.Graph()
G.add_edge(0, 1)
G.add_edge(0, 2)
G.add_edge(2, 3)
G.add_node(4)
return G
G = generate_simple()
pos = nx.spring_layout(G)
nx.draw_networkx(G, pos, node_color='red')
nx.draw_networkx(G, pos, nodelist=[0], node_color='blue')
.. image:: output_30_0.png
.. code:: ipython3
class NewsEnv(soil.NetworkEnvironment):
prob_tv_spread = 0
prob_neighbor_spread = 0.1
event_time = 10
tv_factor = 0.5
neighbor_factor = 0.9
def init(self):
self.add_agent(EventGenerator)
self.G = generate_simple()
self.populate_network(NewsSpread)
self.agent(node_id=0).has_tv = True
self.add_model_reporter('prob_tv_spread')
self.add_model_reporter('prob_neighbor_spread')
.. code:: ipython3
it = NewsEnv.run(max_time=20)
it[0].model_df()
.. parsed-literal::
HBox(children=(IntProgress(value=0, description='NewsEnv', max=1, style=ProgressStyle(description_width='initi…
.. parsed-literal::
HBox(children=(IntProgress(value=0, max=1), HTML(value='')))
.. parsed-literal::
.. raw:: html
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>step</th>
<th>agent_count</th>
<th>prob_tv_spread</th>
<th>prob_neighbor_spread</th>
</tr>
<tr>
<th>time</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>0</th>
<td>0</td>
<td>6</td>
<td>0.0</td>
<td>0.100000</td>
</tr>
<tr>
<th>1</th>
<td>1</td>
<td>6</td>
<td>0.0</td>
<td>0.100000</td>
</tr>
<tr>
<th>2</th>
<td>2</td>
<td>6</td>
<td>0.0</td>
<td>0.100000</td>
</tr>
<tr>
<th>3</th>
<td>3</td>
<td>6</td>
<td>0.0</td>
<td>0.100000</td>
</tr>
<tr>
<th>4</th>
<td>4</td>
<td>6</td>
<td>0.0</td>
<td>0.100000</td>
</tr>
<tr>
<th>5</th>
<td>5</td>
<td>6</td>
<td>0.0</td>
<td>0.100000</td>
</tr>
<tr>
<th>6</th>
<td>6</td>
<td>6</td>
<td>0.0</td>
<td>0.100000</td>
</tr>
<tr>
<th>7</th>
<td>7</td>
<td>6</td>
<td>0.0</td>
<td>0.100000</td>
</tr>
<tr>
<th>8</th>
<td>8</td>
<td>6</td>
<td>0.0</td>
<td>0.100000</td>
</tr>
<tr>
<th>9</th>
<td>9</td>
<td>6</td>
<td>0.0</td>
<td>0.100000</td>
</tr>
<tr>
<th>10</th>
<td>10</td>
<td>6</td>
<td>0.0</td>
<td>0.100000</td>
</tr>
<tr>
<th>11</th>
<td>11</td>
<td>6</td>
<td>0.5</td>
<td>0.200000</td>
</tr>
<tr>
<th>12</th>
<td>12</td>
<td>6</td>
<td>0.0</td>
<td>0.180000</td>
</tr>
<tr>
<th>13</th>
<td>13</td>
<td>6</td>
<td>0.0</td>
<td>0.162000</td>
</tr>
<tr>
<th>14</th>
<td>14</td>
<td>6</td>
<td>0.0</td>
<td>0.145800</td>
</tr>
<tr>
<th>15</th>
<td>15</td>
<td>6</td>
<td>0.0</td>
<td>0.131220</td>
</tr>
<tr>
<th>16</th>
<td>16</td>
<td>6</td>
<td>0.0</td>
<td>0.118098</td>
</tr>
<tr>
<th>17</th>
<td>17</td>
<td>6</td>
<td>0.0</td>
<td>0.106288</td>
</tr>
<tr>
<th>18</th>
<td>18</td>
<td>6</td>
<td>0.0</td>
<td>0.095659</td>
</tr>
<tr>
<th>19</th>
<td>19</td>
<td>6</td>
<td>0.0</td>
<td>0.086093</td>
</tr>
<tr>
<th>20</th>
<td>20</td>
<td>6</td>
<td>0.0</td>
<td>0.077484</td>
</tr>
</tbody>
</table>
</div>
In this case, notice that the inclusion of other agents (which run every
step) means that the simulation did not skip to ``t=10``.
Now, lets look at the state of our agents in every step:
.. code:: ipython3
soil.analysis.plot(it[0])
.. image:: output_34_0.png
Running in more scenarios
-------------------------
In real life, you probably want to run several simulations, varying some
of the parameters so that you can compare and answer your research
questions.
For instance:
- Does the outcome depend on the structure of our network? We will use
different generation algorithms to compare them (Barabasi-Albert and
Erdos-Renyi)
- How does neighbor spreading probability affect my simulation? We will
try probability values in the range of [0, 0.4], in intervals of 0.1.
.. code:: ipython3
class NewsEnvComplete(soil.Environment):
prob_tv = 0.05
prob_tv_spread = 0
prob_neighbor_spread = 0
event_time = 10
tv_factor = 0
neighbor_factor = 0.5
generator = "erdos_renyi_graph"
n = 100
def init(self):
self.add_agent(EventGenerator)
if not self.G:
opts = {"n": self.n}
if self.generator == "erdos_renyi_graph":
opts["p"] = 0.5
elif self.generator == "barabasi_albert_graph":
opts["m"] = 4
self.create_network(generator=self.generator, **opts)
self.populate_network([NewsSpread,
NewsSpread.w(has_tv=True)],
[1-self.prob_tv, self.prob_tv])
self.add_model_reporter('prob_tv_spread')
self.add_model_reporter('prob_neighbor_spread')
self.add_agent_reporter('state_id')
Since we do not care about previous results, we will
set\ ``overwrite=True``.
.. code:: ipython3
s = soil.Simulation(model=NewsEnvComplete, iterations=5, max_time=30, dump=True, overwrite=True)
N = 100
probabilities = [0, 0.25, 0.5, 0.75, 1.0]
generators = ["erdos_renyi_graph", "barabasi_albert_graph"]
it = s.run(name=f"newspread", matrix=dict(n=[N], generator=generators, prob_neighbor_spread=probabilities))
.. parsed-literal::
[INFO ][17:29:24] Output directory: /mnt/data/home/j/git/lab.gsi/soil/soil/examples/tutorial/soil_output
.. parsed-literal::
HBox(children=(IntProgress(value=0, description='newspread', max=10, style=ProgressStyle(description_width='in…
.. parsed-literal::
n = 100
generator = erdos_renyi_graph
prob_neighbor_spread = 0
.. parsed-literal::
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
.. parsed-literal::
n = 100
generator = erdos_renyi_graph
prob_neighbor_spread = 0.25
.. parsed-literal::
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
.. parsed-literal::
n = 100
generator = erdos_renyi_graph
prob_neighbor_spread = 0.5
.. parsed-literal::
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
.. parsed-literal::
n = 100
generator = erdos_renyi_graph
prob_neighbor_spread = 0.75
.. parsed-literal::
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
.. parsed-literal::
n = 100
generator = erdos_renyi_graph
prob_neighbor_spread = 1.0
.. parsed-literal::
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
.. parsed-literal::
n = 100
generator = barabasi_albert_graph
prob_neighbor_spread = 0
.. parsed-literal::
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
.. parsed-literal::
n = 100
generator = barabasi_albert_graph
prob_neighbor_spread = 0.25
.. parsed-literal::
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
.. parsed-literal::
n = 100
generator = barabasi_albert_graph
prob_neighbor_spread = 0.5
.. parsed-literal::
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
.. parsed-literal::
n = 100
generator = barabasi_albert_graph
prob_neighbor_spread = 0.75
.. parsed-literal::
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
.. parsed-literal::
n = 100
generator = barabasi_albert_graph
prob_neighbor_spread = 1.0
.. parsed-literal::
HBox(children=(IntProgress(value=0, max=5), HTML(value='')))
.. parsed-literal::
.. code:: ipython3
assert len(it) == len(probabilities) * len(generators) * s.iterations
The results are conveniently stored in sqlite (history of agent and
environment state) and the configuration is saved in a YAML file.
You can also export the results to GEXF format (dynamic network) and CSV
using .\ ``run(dump=['gexf', 'csv'])`` or the command line flags
``--graph --csv``.
.. code:: ipython3
!tree soil_output
!du -xh soil_output/*
.. parsed-literal::
soil_output
└── newspread
├── newspread_1681989837.124865.dumped.yml
├── newspread_1681990513.1584163.dumped.yml
├── newspread_1681990524.5204282.dumped.yml
├── newspread_1681990796.858183.dumped.yml
├── newspread_1682002299.544348.dumped.yml
├── newspread_1682003721.597205.dumped.yml
├── newspread_1682003784.1948986.dumped.yml
├── newspread_1682003812.4626257.dumped.yml
├── newspread_1682004020.182087.dumped.yml
├── newspread_1682004044.6837814.dumped.yml
├── newspread_1682004398.267355.dumped.yml
├── newspread_1682004564.1052232.dumped.yml
└── newspread.sqlite
1 directory, 13 files
21M soil_output/newspread
Analysing the results
~~~~~~~~~~~~~~~~~~~~~
Loading data
^^^^^^^^^^^^
Once the simulations are over, we can use soil to analyse the results.
There are two main ways: directly using the iterations returned by the
``run`` method, or loading up data from the results database. This is
particularly useful to store data between sessions, and to accumulate
results over multiple runs.
The mainThe main method to load data from the database is ``read_sql``,
which can be used in two ways:
- ``analysis.read_sql(<sqlite_file>)`` to load all the results from a
sqlite database . e.g. \ ``read_sql('my_simulation/file.db.sqlite')``
- ``analysis.read_sql(name=<simulation name>)`` will look for the
default path for a simulation named ``<simulation name>``
The result in both cases is a named tuple with four dataframes:
- ``configuration``, which contains configuration parameters per
simulation
- ``parameters``, which shows the parameters used **in every
iteration** of every simulation
- ``env``, with the data collected from the model in each iteration (as
specified in ``model_reporters``)
- ``agents``, like ``env``, but for ``agent_reporters``
Lets see it in action by loading the stored results into a pandas
dataframe:
.. code:: ipython3
res = soil.read_sql(name="newspread", include_agents=True)
Plotting data
~~~~~~~~~~~~~
Once we have loaded the results from the file, we can use them just like
any other dataframe.
Here is an example of plotting the ratio of infected users in each of
our simulations:
.. code:: ipython3
for (g, group) in res.env.dropna().groupby("params_id"):
params = res.parameters.query(f'params_id == "{g}"').iloc[0]
title = f"{params.generator.rstrip('_graph')} {params.prob_neighbor_spread}"
prob = group.groupby(by=["step"]).prob_neighbor_spread.mean()
line = "-"
if "barabasi" in params.generator:
line = "--"
prob.rename(title).fillna(0).plot(linestyle=line)
plt.title("Mean probability for each configuration")
plt.legend();
.. image:: output_49_0.png
.. code:: ipython3
for (g, group) in res.agents.dropna().groupby("params_id"):
params = res.parameters.query(f'params_id == "{g}"').iloc[0]
title = f"{params.generator.rstrip('_graph')} {params.prob_neighbor_spread}"
counts = group.groupby(by=["step", "state_id"]).value_counts().unstack()
line = "-"
if "barabasi" in params.generator:
line = "--"
(counts.infected/counts.sum(axis=1)).rename(title).fillna(0).plot(linestyle=line)
plt.legend()
plt.xlim([9, None]);
plt.title("Ratio of infected users");
.. image:: output_50_0.png
Data format
-----------
Parameters
~~~~~~~~~~
The ``parameters`` dataframe has three keys:
- The identifier of the simulation. This will be shared by all
iterations launched in the same run
- The identifier of the parameters used in the simulation. This will be
shared by all iterations that have the exact same set of parameters.
- The identifier of the iteration. Each row should have a different
iteration identifier
There will be a column per each parameter passed to the environment. In
this case, thats three: **generator**, **n** and
**prob_neighbor_spread**.
.. code:: ipython3
res.parameters.head()
.. raw:: html
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th></th>
<th>key</th>
<th>generator</th>
<th>n</th>
<th>prob_neighbor_spread</th>
</tr>
<tr>
<th>iteration_id</th>
<th>params_id</th>
<th>simulation_id</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th rowspan="5" valign="top">0</th>
<th>39063f8</th>
<th>newspread_1682002299.544348</th>
<td>erdos_renyi_graph</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<th>5db645d</th>
<th>newspread_1682002299.544348</th>
<td>barabasi_albert_graph</td>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<th>8f26adb</th>
<th>newspread_1682002299.544348</th>
<td>barabasi_albert_graph</td>
<td>100</td>
<td>0.5</td>
</tr>
<tr>
<th>cb3dbca</th>
<th>newspread_1682002299.544348</th>
<td>erdos_renyi_graph</td>
<td>100</td>
<td>0.5</td>
</tr>
<tr>
<th>d1fe9c1</th>
<th>newspread_1682002299.544348</th>
<td>barabasi_albert_graph</td>
<td>100</td>
<td>1.0</td>
</tr>
</tbody>
</table>
</div>
Configuration
~~~~~~~~~~~~~
This dataset is indexed by the identifier of the simulation, and there
will be a column per each attribute of the simulation. For instance,
there is one for the number of processes used, another one for the path
where the results were stored, etc.
.. code:: ipython3
res.config.head()
.. raw:: html
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th>index</th>
<th>version</th>
<th>source_file</th>
<th>name</th>
<th>description</th>
<th>group</th>
<th>backup</th>
<th>overwrite</th>
<th>dry_run</th>
<th>dump</th>
<th>...</th>
<th>num_processes</th>
<th>exporters</th>
<th>model_reporters</th>
<th>agent_reporters</th>
<th>tables</th>
<th>outdir</th>
<th>exporter_params</th>
<th>level</th>
<th>skip_test</th>
<th>debug</th>
</tr>
<tr>
<th>simulation_id</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th>newspread_1682002299.544348</th>
<td>0</td>
<td>2</td>
<td>None</td>
<td>newspread</td>
<td></td>
<td>None</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>...</td>
<td>1</td>
<td>[&lt;class 'soil.exporters.default'&gt;]</td>
<td>{}</td>
<td>{}</td>
<td>{}</td>
<td>/mnt/data/home/j/git/lab.gsi/soil/soil/example...</td>
<td>{}</td>
<td>20</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>
<p>1 rows × 29 columns</p>
</div>
Model reporters
~~~~~~~~~~~~~~~
The ``env`` dataframe includes the data collected from the model. The
keys in this case are the same as ``parameters``, and an additional one:
**step**.
.. code:: ipython3
res.env.head()
.. raw:: html
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th></th>
<th></th>
<th></th>
<th>agent_count</th>
<th>time</th>
<th>prob_tv_spread</th>
<th>prob_neighbor_spread</th>
</tr>
<tr>
<th>simulation_id</th>
<th>params_id</th>
<th>iteration_id</th>
<th>step</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th rowspan="5" valign="top">newspread_1682002299.544348</th>
<th rowspan="5" valign="top">fcfc955</th>
<th rowspan="5" valign="top">0</th>
<th>0</th>
<td>101</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<th>1</th>
<td>101</td>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<th>2</th>
<td>101</td>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<th>3</th>
<td>101</td>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<th>4</th>
<td>101</td>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
</div>
Agent reporters
~~~~~~~~~~~~~~~
This dataframe reflects the data collected for all the agents in the
simulation, in every step where data collection was invoked.
The key in this dataframe is similar to the one in the ``parameters``
dataframe, but there will be two more keys: the ``step`` and the
``agent_id``. There will be a column per each agent reporter added to
the model. In our case, there is only one: ``state_id``.
.. code:: ipython3
res.agents.head()
.. raw:: html
<div>
<style scoped>
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
</style>
<table border="1" class="dataframe">
<thead>
<tr style="text-align: right;">
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>state_id</th>
</tr>
<tr>
<th>simulation_id</th>
<th>params_id</th>
<th>iteration_id</th>
<th>step</th>
<th>agent_id</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<th rowspan="5" valign="top">newspread_1682002299.544348</th>
<th rowspan="5" valign="top">fcfc955</th>
<th rowspan="5" valign="top">0</th>
<th rowspan="5" valign="top">0</th>
<th>0</th>
<td>None</td>
</tr>
<tr>
<th>1</th>
<td>neutral</td>
</tr>
<tr>
<th>2</th>
<td>neutral</td>
</tr>
<tr>
<th>3</th>
<td>neutral</td>
</tr>
<tr>
<th>4</th>
<td>neutral</td>
</tr>
</tbody>
</table>
</div>