mirror of
https://github.com/gsi-upm/soil
synced 2024-11-14 15:32:29 +00:00
307 lines
12 KiB
Python
307 lines
12 KiB
Python
import os
|
|
import time
|
|
import importlib
|
|
import sys
|
|
import yaml
|
|
import traceback
|
|
import networkx as nx
|
|
from networkx.readwrite import json_graph
|
|
from multiprocessing import Pool
|
|
from functools import partial
|
|
|
|
import pickle
|
|
|
|
from nxsim import NetworkSimulation
|
|
|
|
from . import serialization, utils, basestring, agents
|
|
from .environment import Environment
|
|
from .utils import logger
|
|
from .exporters import for_sim as exporters_for_sim
|
|
|
|
|
|
class Simulation(NetworkSimulation):
|
|
"""
|
|
Subclass of nsim.NetworkSimulation with three main differences:
|
|
1) agent type can be specified by name or by class.
|
|
2) instead of just one type, a network agents distribution can be used.
|
|
The distribution specifies the weight (or probability) of each
|
|
agent type in the topology. This is an example distribution: ::
|
|
|
|
[
|
|
{'agent_type': 'agent_type_1',
|
|
'weight': 0.2,
|
|
'state': {
|
|
'id': 0
|
|
}
|
|
},
|
|
{'agent_type': 'agent_type_2',
|
|
'weight': 0.8,
|
|
'state': {
|
|
'id': 1
|
|
}
|
|
}
|
|
]
|
|
|
|
In this example, 20% of the nodes will be marked as type
|
|
'agent_type_1'.
|
|
3) if no initial state is given, each node's state will be set
|
|
to `{'id': 0}`.
|
|
|
|
Parameters
|
|
---------
|
|
name : str, optional
|
|
name of the Simulation
|
|
group : str, optional
|
|
a group name can be used to link simulations
|
|
topology : networkx.Graph instance, optional
|
|
network_params : dict
|
|
parameters used to create a topology with networkx, if no topology is given
|
|
network_agents : dict
|
|
definition of agents to populate the topology with
|
|
agent_type : NetworkAgent subclass, optional
|
|
Default type of NetworkAgent to use for nodes not specified in network_agents
|
|
states : list, optional
|
|
List of initial states corresponding to the nodes in the topology. Basic form is a list of integers
|
|
whose value indicates the state
|
|
dir_path: str, optional
|
|
Directory path to load simulation assets (files, modules...)
|
|
seed : str, optional
|
|
Seed to use for the random generator
|
|
num_trials : int, optional
|
|
Number of independent simulation runs
|
|
max_time : int, optional
|
|
Time how long the simulation should run
|
|
environment_params : dict, optional
|
|
Dictionary of globally-shared environmental parameters
|
|
environment_agents: dict, optional
|
|
Similar to network_agents. Distribution of Agents that control the environment
|
|
environment_class: soil.environment.Environment subclass, optional
|
|
Class for the environment. It defailts to soil.environment.Environment
|
|
load_module : str, module name, deprecated
|
|
If specified, soil will load the content of this module under 'soil.agents.custom'
|
|
|
|
|
|
"""
|
|
|
|
def __init__(self, name=None, group=None, topology=None, network_params=None,
|
|
network_agents=None, agent_type=None, states=None,
|
|
default_state=None, interval=1, num_trials=1,
|
|
max_time=100, load_module=None, seed=None,
|
|
dir_path=None, environment_agents=None,
|
|
environment_params=None, environment_class=None,
|
|
**kwargs):
|
|
|
|
self.seed = str(seed) or str(time.time())
|
|
self.load_module = load_module
|
|
self.network_params = network_params
|
|
self.name = name or 'Unnamed_' + time.strftime("%Y-%m-%d_%H:%M:%S")
|
|
self.group = group or None
|
|
self.num_trials = num_trials
|
|
self.max_time = max_time
|
|
self.default_state = default_state or {}
|
|
self.dir_path = dir_path or os.getcwd()
|
|
self.interval = interval
|
|
|
|
sys.path += list(x for x in [os.getcwd(), self.dir_path] if x not in sys.path)
|
|
|
|
if topology is None:
|
|
topology = serialization.load_network(network_params,
|
|
dir_path=self.dir_path)
|
|
elif isinstance(topology, basestring) or isinstance(topology, dict):
|
|
topology = json_graph.node_link_graph(topology)
|
|
self.topology = nx.Graph(topology)
|
|
|
|
|
|
self.environment_params = environment_params or {}
|
|
self.environment_class = serialization.deserialize(environment_class,
|
|
known_modules=['soil.environment', ]) or Environment
|
|
|
|
environment_agents = environment_agents or []
|
|
self.environment_agents = agents._convert_agent_types(environment_agents,
|
|
known_modules=[self.load_module])
|
|
|
|
distro = agents.calculate_distribution(network_agents,
|
|
agent_type)
|
|
self.network_agents = agents._convert_agent_types(distro,
|
|
known_modules=[self.load_module])
|
|
|
|
self.states = agents._validate_states(states,
|
|
self.topology)
|
|
|
|
def run_simulation(self, *args, **kwargs):
|
|
return self.run(*args, **kwargs)
|
|
|
|
def run(self, *args, **kwargs):
|
|
'''Run the simulation and return the list of resulting environments'''
|
|
return list(self._run_simulation_gen(*args, **kwargs))
|
|
|
|
def _run_sync_or_async(self, parallel=False, *args, **kwargs):
|
|
if parallel:
|
|
p = Pool()
|
|
func = partial(self.run_trial_exceptions,
|
|
*args,
|
|
**kwargs)
|
|
for i in p.imap_unordered(func, range(self.num_trials)):
|
|
if isinstance(i, Exception):
|
|
logger.error('Trial failed:\n\t%s', i.message)
|
|
continue
|
|
yield i
|
|
else:
|
|
for i in range(self.num_trials):
|
|
yield self.run_trial(i,
|
|
*args,
|
|
**kwargs)
|
|
|
|
def _run_simulation_gen(self, *args, parallel=False, dry_run=False,
|
|
exporters=None, outdir=None, exporter_params={}, **kwargs):
|
|
logger.info('Using exporters: %s', exporters or [])
|
|
logger.info('Output directory: %s', outdir)
|
|
exporters = exporters_for_sim(self,
|
|
exporters or [],
|
|
dry_run=dry_run,
|
|
outdir=outdir,
|
|
**exporter_params)
|
|
|
|
with utils.timer('simulation {}'.format(self.name)):
|
|
for exporter in exporters:
|
|
exporter.start()
|
|
|
|
for env in self._run_sync_or_async(*args, parallel=parallel,
|
|
**kwargs):
|
|
for exporter in exporters:
|
|
exporter.trial_end(env)
|
|
yield env
|
|
|
|
for exporter in exporters:
|
|
exporter.end()
|
|
|
|
def get_env(self, trial_id = 0, **kwargs):
|
|
'''Create an environment for a trial of the simulation'''
|
|
opts = self.environment_params.copy()
|
|
env_name = '{}_trial_{}'.format(self.name, trial_id)
|
|
opts.update({
|
|
'name': env_name,
|
|
'topology': self.topology.copy(),
|
|
'seed': self.seed+env_name,
|
|
'initial_time': 0,
|
|
'interval': self.interval,
|
|
'network_agents': self.network_agents,
|
|
'states': self.states,
|
|
'default_state': self.default_state,
|
|
'environment_agents': self.environment_agents,
|
|
})
|
|
opts.update(kwargs)
|
|
env = self.environment_class(**opts)
|
|
return env
|
|
|
|
def run_trial(self, trial_id=0, until=None, **opts):
|
|
"""Run a single trial of the simulation
|
|
|
|
Parameters
|
|
----------
|
|
trial_id : int
|
|
"""
|
|
# Set-up trial environment and graph
|
|
until = until or self.max_time
|
|
env = self.get_env(trial_id = trial_id, **opts)
|
|
# Set up agents on nodes
|
|
with utils.timer('Simulation {} trial {}'.format(self.name, trial_id)):
|
|
env.run(until)
|
|
return env
|
|
def run_trial_exceptions(self, *args, **kwargs):
|
|
'''
|
|
A wrapper for run_trial that catches exceptions and returns them.
|
|
It is meant for async simulations
|
|
'''
|
|
try:
|
|
return self.run_trial(*args, **kwargs)
|
|
except Exception as ex:
|
|
c = ex.__cause__
|
|
c.message = ''.join(traceback.format_exception(type(c), c, c.__traceback__)[:])
|
|
return c
|
|
|
|
def to_dict(self):
|
|
return self.__getstate__()
|
|
|
|
def to_yaml(self):
|
|
return yaml.dump(self.to_dict())
|
|
|
|
|
|
def dump_yaml(self, f=None, outdir=None):
|
|
if not f and not outdir:
|
|
raise ValueError('specify a file or an output directory')
|
|
|
|
if not f:
|
|
f = os.path.join(outdir, '{}.dumped.yml'.format(self.name))
|
|
|
|
with utils.open_or_reuse(f, 'w') as f:
|
|
f.write(self.to_yaml())
|
|
|
|
def dump_pickle(self, f=None, outdir=None):
|
|
if not outdir and not f:
|
|
raise ValueError('specify a file or an output directory')
|
|
|
|
if not f:
|
|
f = os.path.join(outdir,
|
|
'{}.simulation.pickle'.format(self.name))
|
|
with utils.open_or_reuse(f, 'wb') as f:
|
|
pickle.dump(self, f)
|
|
|
|
def __getstate__(self):
|
|
state={}
|
|
for k, v in self.__dict__.items():
|
|
if k[0] != '_':
|
|
state[k] = v
|
|
state['topology'] = json_graph.node_link_data(self.topology)
|
|
state['network_agents'] = agents.serialize_distribution(self.network_agents,
|
|
known_modules = [])
|
|
state['environment_agents'] = agents.serialize_distribution(self.environment_agents,
|
|
known_modules = [])
|
|
state['environment_class'] = serialization.serialize(self.environment_class,
|
|
known_modules=['soil.environment'])[1] # func, name
|
|
if state['load_module'] is None:
|
|
del state['load_module']
|
|
return state
|
|
|
|
def __setstate__(self, state):
|
|
self.__dict__ = state
|
|
self.load_module = getattr(self, 'load_module', None)
|
|
if self.dir_path not in sys.path:
|
|
sys.path += [self.dir_path, os.getcwd()]
|
|
self.topology = json_graph.node_link_graph(state['topology'])
|
|
self.network_agents = agents.calculate_distribution(agents._convert_agent_types(self.network_agents))
|
|
self.environment_agents = agents._convert_agent_types(self.environment_agents,
|
|
known_modules=[self.load_module])
|
|
self.environment_class = serialization.deserialize(self.environment_class,
|
|
known_modules=[self.load_module, 'soil.environment', ]) # func, name
|
|
return state
|
|
|
|
|
|
def all_from_config(config):
|
|
configs = list(serialization.load_config(config))
|
|
for config, _ in configs:
|
|
sim = Simulation(**config)
|
|
yield sim
|
|
|
|
|
|
def from_config(conf_or_path):
|
|
config = list(serialization.load_config(conf_or_path))
|
|
if len(config) > 1:
|
|
raise AttributeError('Provide only one configuration')
|
|
config = config[0][0]
|
|
sim = Simulation(**config)
|
|
return sim
|
|
|
|
|
|
def run_from_config(*configs, **kwargs):
|
|
for config_def in configs:
|
|
# logger.info("Found {} config(s)".format(len(ls)))
|
|
for config, path in serialization.load_config(config_def):
|
|
name = config.get('name', 'unnamed')
|
|
logger.info("Using config(s): {name}".format(name=name))
|
|
|
|
dir_path = config.pop('dir_path', os.path.dirname(path))
|
|
sim = Simulation(dir_path=dir_path,
|
|
**config)
|
|
sim.run_simulation(**kwargs)
|