1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-13 23:12:28 +00:00
soil/settings.py
2016-04-21 12:56:06 +02:00

104 lines
2.5 KiB
Python

# settings.py
def init():
global number_of_nodes
global max_time
global num_trials
global bite_prob
global network_type
global heal_prob
global innovation_prob
global imitation_prob
global timeout
global outside_effects_prob
global anger_prob
global joy_prob
global sadness_prob
global disgust_prob
global tweet_probability_users
global tweet_relevant_probability
global tweet_probability_about
global sentiment_about
global tweet_probability_enterprises
global enterprises
global neutral_discontent_spon_prob
global neutral_discontent_infected_prob
global neutral_content_spon_prob
global neutral_content_infected_prob
global discontent_content
global discontent_neutral
global content_discontent
global content_neutral
global variance_d_c
global variance_c_d
global standard_variance
global prob_neutral_making_denier
global prob_infect
global prob_cured_healing_infected
global prob_cured_vaccinate_neutral
global prob_vaccinated_healing_infected
global prob_vaccinated_vaccinate_neutral
global prob_generate_anti_rumor
network_type=1
number_of_nodes=1000
max_time=500
num_trials=1
timeout=20
#Zombie model
bite_prob=0.01 # 0-1
heal_prob=0.01 # 0-1
#Bass model
innovation_prob=0.001
imitation_prob=0.005
#Sentiment Correlation model
outside_effects_prob = 0.2
anger_prob = 0.06
joy_prob = 0.05
sadness_prob = 0.02
disgust_prob = 0.02
#Big Market model
##Names
enterprises = ["BBVA","Santander", "Bankia"]
##Users
tweet_probability_users = 0.44
tweet_relevant_probability = 0.25
tweet_probability_about = [0.15, 0.15, 0.15]
sentiment_about = [0, 0, 0] #Valores por defecto
##Enterprises
tweet_probability_enterprises = [0.3, 0.3, 0.3]
#SISa
neutral_discontent_spon_prob = 0.04
neutral_discontent_infected_prob = 0.04
neutral_content_spon_prob = 0.18
neutral_content_infected_prob = 0.02
discontent_neutral = 0.13
discontent_content = 0.07
variance_d_c = 0.02
content_discontent = 0.009
variance_c_d = 0.003
content_neutral = 0.088
standard_variance = 0.055
#Spread Model M2
prob_neutral_making_denier = 0.055
prob_infect = 0.1
prob_cured_healing_infected = 0.055
prob_cured_vaccinate_neutral = 0.055
prob_vaccinated_healing_infected = 0.055
prob_vaccinated_vaccinate_neutral = 0.055
prob_generate_anti_rumor = 0.055