1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-13 06:52:28 +00:00
soil/models.py
2016-04-13 18:45:19 +02:00

321 lines
12 KiB
Python

from nxsim import BaseNetworkAgent
import random
import settings
settings.init()
##############################
# Variables initializitation #
##############################
def init():
global networkStatus
networkStatus = {} # Dict that will contain the status of every agent in the network
sentimentCorrelationNodeArray=[]
for x in range(0, settings.number_of_nodes):
sentimentCorrelationNodeArray.append({'id':x})
# Initialize agent states. Let's assume everyone is normal.
init_states = [{'id': 0, } for _ in range(settings.number_of_nodes)] # add keys as as necessary, but "id" must always refer to that state category
####################
# Available models #
####################
class ComportamientoBase(BaseNetworkAgent):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self._attrs = {}
@property
def attrs(self):
now = self.env.now
if now not in self._attrs:
self._attrs[now] = {}
return self._attrs[now]
@attrs.setter
def attrs(self, value):
self._attrs[self.env.now] = value
def run(self):
while True:
self.step(self.env.now)
yield self.env.timeout(settings.timeout)
def step(self, now):
networkStatus['agente_%s'% self.id] = self.a_json()
def a_json(self):
final = {}
for stamp, attrs in self._attrs.items():
for a in attrs:
if a not in final:
final[a] = {}
final[a][stamp] = attrs[a]
return final
class BigMarketModel(ComportamientoBase):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.enterprises = settings.enterprises
self.type = ""
self.number_of_enterprises = len(settings.enterprises)
if self.id < self.number_of_enterprises: #Empresas
self.state['id']=self.id
self.type="Enterprise"
self.tweet_probability = settings.tweet_probability_enterprises[self.id]
else: #Usuarios normales
self.state['id']=self.number_of_enterprises
self.type="User"
self.tweet_probability = settings.tweet_probability_users
self.tweet_relevant_probability = settings.tweet_relevant_probability
self.tweet_probability_about = settings.tweet_probability_about #Lista
self.sentiment_about = settings.sentiment_about #Lista
def step(self, now):
if(self.id < self.number_of_enterprises): # Empresa
self.enterpriseBehaviour()
else: # Usuario
self.userBehaviour()
super().step(now)
def enterpriseBehaviour(self):
if random.random()< self.tweet_probability: #Twittea
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodos vecinos usuarios
for x in aware_neighbors:
if random.uniform(0,10) < 5:
x.sentiment_about[self.id] += 0.1 #Aumenta para empresa
else:
x.sentiment_about[self.id] -= 0.1 #Reduce para empresa
# Establecemos limites
if x.sentiment_about[self.id] > 1:
x.sentiment_about[self.id] = 1
if x.sentiment_about[self.id]< -1:
x.sentiment_about[self.id] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[self.id]] = x.sentiment_about[self.id]
def userBehaviour(self):
if random.random() < self.tweet_probability: #Twittea
if random.random() < self.tweet_relevant_probability: #Twittea algo relevante
#Probabilidad de tweet para cada empresa
for i in range(self.number_of_enterprises):
random_num = random.random()
if random_num < self.tweet_probability_about[i]:
#Se ha cumplido la condicion, evaluo los sentimientos hacia esa empresa
if self.sentiment_about[i] < 0:
#NEGATIVO
self.userTweets("negative",i)
elif self.sentiment_about[i] == 0:
#NEUTRO
pass
else:
#POSITIVO
self.userTweets("positive",i)
def userTweets(self,sentiment,enterprise):
aware_neighbors = self.get_neighboring_agents(state_id=self.number_of_enterprises) #Nodos vecinos usuarios
for x in aware_neighbors:
if sentiment == "positive":
x.sentiment_about[enterprise] +=0.003
elif sentiment == "negative":
x.sentiment_about[enterprise] -=0.003
else:
pass
# Establecemos limites
if x.sentiment_about[enterprise] > 1:
x.sentiment_about[enterprise] = 1
if x.sentiment_about[enterprise] < -1:
x.sentiment_about[enterprise] = -1
x.attrs['sentiment_enterprise_%s'% self.enterprises[enterprise]] = x.sentiment_about[enterprise]
class SentimentCorrelationModel(ComportamientoBase):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.outside_effects_prob = settings.outside_effects_prob
self.anger_prob = settings.anger_prob
self.joy_prob = settings.joy_prob
self.sadness_prob = settings.sadness_prob
self.disgust_prob = settings.disgust_prob
self.time_awareness=[]
for i in range(4): #En este modelo tenemos 4 sentimientos
self.time_awareness.append(0) #0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self, now):
self.behaviour()
super().step(now)
def behaviour(self):
angry_neighbors_1_time_step=[]
joyful_neighbors_1_time_step=[]
sad_neighbors_1_time_step=[]
disgusted_neighbors_1_time_step=[]
angry_neighbors = self.get_neighboring_agents(state_id=1)
for x in angry_neighbors:
if x.time_awareness[0] > (self.env.now-500):
angry_neighbors_1_time_step.append(x)
num_neighbors_angry = len(angry_neighbors_1_time_step)
joyful_neighbors = self.get_neighboring_agents(state_id=2)
for x in joyful_neighbors:
if x.time_awareness[1] > (self.env.now-500):
joyful_neighbors_1_time_step.append(x)
num_neighbors_joyful = len(joyful_neighbors_1_time_step)
sad_neighbors = self.get_neighboring_agents(state_id=3)
for x in sad_neighbors:
if x.time_awareness[2] > (self.env.now-500):
sad_neighbors_1_time_step.append(x)
num_neighbors_sad = len(sad_neighbors_1_time_step)
disgusted_neighbors = self.get_neighboring_agents(state_id=4)
for x in disgusted_neighbors:
if x.time_awareness[3] > (self.env.now-500):
disgusted_neighbors_1_time_step.append(x)
num_neighbors_disgusted = len(disgusted_neighbors_1_time_step)
anger_prob= settings.anger_prob+(len(angry_neighbors_1_time_step)*settings.anger_prob)
joy_prob= settings.joy_prob+(len(joyful_neighbors_1_time_step)*settings.joy_prob)
sadness_prob = settings.sadness_prob+(len(sad_neighbors_1_time_step)*settings.sadness_prob)
disgust_prob = settings.disgust_prob+(len(disgusted_neighbors_1_time_step)*settings.disgust_prob)
outside_effects_prob= settings.outside_effects_prob
num = random.random()
if(num<outside_effects_prob):
self.state['id'] = random.randint(1,4)
sentimentCorrelationNodeArray[self.id][self.env.now]=self.state['id'] #Almaceno cuando se ha infectado para la red dinamica
self.time_awareness[self.state['id']-1] = self.env.now
self.attrs['sentiment'] = self.state['id']
if(num<anger_prob):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<joy_prob+anger_prob and num>anger_prob):
self.state['id'] = 2
sentimentCorrelationNodeArray[self.id][self.env.now]=2
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<sadness_prob+anger_prob+joy_prob and num>joy_prob+anger_prob):
self.state['id'] = 3
sentimentCorrelationNodeArray[self.id][self.env.now]=3
self.time_awareness[self.state['id']-1] = self.env.now
elif (num<disgust_prob+sadness_prob+anger_prob+joy_prob and num>sadness_prob+anger_prob+joy_prob):
self.state['id'] = 4
sentimentCorrelationNodeArray[self.id][self.env.now]=4
self.time_awareness[self.state['id']-1] = self.env.now
self.attrs['sentiment'] = self.state['id']
class BassModel(ComportamientoBase):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self, now):
self.behaviour()
super().step(now)
def behaviour(self):
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
return
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
num_neighbors_aware = len(aware_neighbors)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
class IndependentCascadeModel(ComportamientoBase):
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.innovation_prob = settings.innovation_prob
self.imitation_prob = settings.imitation_prob
self.time_awareness = 0
sentimentCorrelationNodeArray[self.id][self.env.now]=0
def step(self,now):
self.behaviour()
super().step(now)
def behaviour(self):
aware_neighbors_1_time_step=[]
#Outside effects
if random.random() < settings.innovation_prob:
if self.state['id'] == 0:
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
self.time_awareness = self.env.now #Para saber cuando se han contagiado
else:
pass
self.attrs['status'] = self.state['id']
return
#Imitation effects
if self.state['id'] == 0:
aware_neighbors = self.get_neighboring_agents(state_id=1)
for x in aware_neighbors:
if x.time_awareness == (self.env.now-1):
aware_neighbors_1_time_step.append(x)
num_neighbors_aware = len(aware_neighbors_1_time_step)
if random.random() < (settings.imitation_prob*num_neighbors_aware):
self.state['id'] = 1
sentimentCorrelationNodeArray[self.id][self.env.now]=1
else:
pass
self.attrs['status'] = self.state['id']
return