mirror of
https://github.com/gsi-upm/soil
synced 2024-11-14 15:32:29 +00:00
99 lines
4.1 KiB
Python
99 lines
4.1 KiB
Python
import random
|
|
import numpy as np
|
|
from models.BaseBehaviour import *
|
|
|
|
|
|
class SISaModel(BaseBehaviour):
|
|
"""
|
|
Settings:
|
|
neutral_discontent_spon_prob
|
|
|
|
neutral_discontent_infected_prob
|
|
|
|
neutral_content_spong_prob
|
|
|
|
neutral_content_infected_prob
|
|
|
|
discontent_neutral
|
|
|
|
discontent_content
|
|
|
|
variance_d_c
|
|
|
|
content_discontent
|
|
|
|
variance_c_d
|
|
|
|
content_neutral
|
|
|
|
standard_variance
|
|
"""
|
|
|
|
def __init__(self, environment=None, agent_id=0, state=()):
|
|
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
|
|
|
self.neutral_discontent_spon_prob = np.random.normal(environment.environment_params['neutral_discontent_spon_prob'],
|
|
environment.environment_params['standard_variance'])
|
|
self.neutral_discontent_infected_prob = np.random.normal(environment.environment_params['neutral_discontent_infected_prob'],
|
|
environment.environment_params['standard_variance'])
|
|
self.neutral_content_spon_prob = np.random.normal(environment.environment_params['neutral_content_spon_prob'],
|
|
environment.environment_params['standard_variance'])
|
|
self.neutral_content_infected_prob = np.random.normal(environment.environment_params['neutral_content_infected_prob'],
|
|
environment.environment_params['standard_variance'])
|
|
|
|
self.discontent_neutral = np.random.normal(environment.environment_params['discontent_neutral'],
|
|
environment.environment_params['standard_variance'])
|
|
self.discontent_content = np.random.normal(environment.environment_params['discontent_content'],
|
|
environment.environment_params['variance_d_c'])
|
|
|
|
self.content_discontent = np.random.normal(environment.environment_params['content_discontent'],
|
|
environment.environment_params['variance_c_d'])
|
|
self.content_neutral = np.random.normal(environment.environment_params['content_neutral'],
|
|
environment.environment_params['standard_variance'])
|
|
|
|
def step(self, now):
|
|
if self.state['id'] == 0:
|
|
self.neutral_behaviour()
|
|
if self.state['id'] == 1:
|
|
self.discontent_behaviour()
|
|
if self.state['id'] == 2:
|
|
self.content_behaviour()
|
|
|
|
self.attrs['status'] = self.state['id']
|
|
super().step(now)
|
|
|
|
def neutral_behaviour(self):
|
|
# Spontaneous effects
|
|
if random.random() < self.neutral_discontent_spon_prob:
|
|
self.state['id'] = 1
|
|
if random.random() < self.neutral_content_spon_prob:
|
|
self.state['id'] = 2
|
|
|
|
# Infected
|
|
discontent_neighbors = self.get_neighboring_agents(state_id=1)
|
|
if random.random() < len(discontent_neighbors) * self.neutral_discontent_infected_prob:
|
|
self.state['id'] = 1
|
|
content_neighbors = self.get_neighboring_agents(state_id=2)
|
|
if random.random() < len(content_neighbors) * self.neutral_content_infected_prob:
|
|
self.state['id'] = 2
|
|
|
|
def discontent_behaviour(self):
|
|
# Healing
|
|
if random.random() < self.discontent_neutral:
|
|
self.state['id'] = 0
|
|
|
|
# Superinfected
|
|
content_neighbors = self.get_neighboring_agents(state_id=2)
|
|
if random.random() < len(content_neighbors) * self.discontent_content:
|
|
self.state['id'] = 2
|
|
|
|
def content_behaviour(self):
|
|
# Healing
|
|
if random.random() < self.content_neutral:
|
|
self.state['id'] = 0
|
|
|
|
# Superinfected
|
|
discontent_neighbors = self.get_neighboring_agents(state_id=1)
|
|
if random.random() < len(discontent_neighbors) * self.content_discontent:
|
|
self.state['id'] = 1
|