1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-14 15:32:29 +00:00
soil/models/SISaModel/SISaModel.py
2017-04-24 12:55:00 +02:00

99 lines
4.1 KiB
Python

import random
import numpy as np
from models.BaseBehaviour import *
class SISaModel(BaseBehaviour):
"""
Settings:
neutral_discontent_spon_prob
neutral_discontent_infected_prob
neutral_content_spong_prob
neutral_content_infected_prob
discontent_neutral
discontent_content
variance_d_c
content_discontent
variance_c_d
content_neutral
standard_variance
"""
def __init__(self, environment=None, agent_id=0, state=()):
super().__init__(environment=environment, agent_id=agent_id, state=state)
self.neutral_discontent_spon_prob = np.random.normal(environment.environment_params['neutral_discontent_spon_prob'],
environment.environment_params['standard_variance'])
self.neutral_discontent_infected_prob = np.random.normal(environment.environment_params['neutral_discontent_infected_prob'],
environment.environment_params['standard_variance'])
self.neutral_content_spon_prob = np.random.normal(environment.environment_params['neutral_content_spon_prob'],
environment.environment_params['standard_variance'])
self.neutral_content_infected_prob = np.random.normal(environment.environment_params['neutral_content_infected_prob'],
environment.environment_params['standard_variance'])
self.discontent_neutral = np.random.normal(environment.environment_params['discontent_neutral'],
environment.environment_params['standard_variance'])
self.discontent_content = np.random.normal(environment.environment_params['discontent_content'],
environment.environment_params['variance_d_c'])
self.content_discontent = np.random.normal(environment.environment_params['content_discontent'],
environment.environment_params['variance_c_d'])
self.content_neutral = np.random.normal(environment.environment_params['content_neutral'],
environment.environment_params['standard_variance'])
def step(self, now):
if self.state['id'] == 0:
self.neutral_behaviour()
if self.state['id'] == 1:
self.discontent_behaviour()
if self.state['id'] == 2:
self.content_behaviour()
self.attrs['status'] = self.state['id']
super().step(now)
def neutral_behaviour(self):
# Spontaneous effects
if random.random() < self.neutral_discontent_spon_prob:
self.state['id'] = 1
if random.random() < self.neutral_content_spon_prob:
self.state['id'] = 2
# Infected
discontent_neighbors = self.get_neighboring_agents(state_id=1)
if random.random() < len(discontent_neighbors) * self.neutral_discontent_infected_prob:
self.state['id'] = 1
content_neighbors = self.get_neighboring_agents(state_id=2)
if random.random() < len(content_neighbors) * self.neutral_content_infected_prob:
self.state['id'] = 2
def discontent_behaviour(self):
# Healing
if random.random() < self.discontent_neutral:
self.state['id'] = 0
# Superinfected
content_neighbors = self.get_neighboring_agents(state_id=2)
if random.random() < len(content_neighbors) * self.discontent_content:
self.state['id'] = 2
def content_behaviour(self):
# Healing
if random.random() < self.content_neutral:
self.state['id'] = 0
# Superinfected
discontent_neighbors = self.get_neighboring_agents(state_id=1)
if random.random() < len(discontent_neighbors) * self.content_discontent:
self.state['id'] = 1