mirror of
https://github.com/gsi-upm/soil
synced 2025-04-05 02:40:20 +00:00
390 lines
11 KiB
Python
390 lines
11 KiB
Python
# networkStatus = {} # Dict that will contain the status of every agent in the network
|
|
# sentimentCorrelationNodeArray = []
|
|
# for x in range(0, settings.network_params["number_of_nodes"]):
|
|
# sentimentCorrelationNodeArray.append({'id': x})
|
|
# Initialize agent states. Let's assume everyone is normal.
|
|
|
|
|
|
import nxsim
|
|
import logging
|
|
from collections import OrderedDict
|
|
from copy import deepcopy
|
|
from functools import partial
|
|
import json
|
|
|
|
from functools import wraps
|
|
|
|
from .. import utils, history
|
|
|
|
agent_types = {}
|
|
|
|
|
|
class MetaAgent(type):
|
|
def __init__(cls, name, bases, nmspc):
|
|
super(MetaAgent, cls).__init__(name, bases, nmspc)
|
|
agent_types[name] = cls
|
|
|
|
|
|
class BaseAgent(nxsim.BaseAgent, metaclass=MetaAgent):
|
|
"""
|
|
A special simpy BaseAgent that keeps track of its state history.
|
|
"""
|
|
|
|
defaults = {}
|
|
|
|
def __init__(self, environment=None, agent_id=None, state=None,
|
|
name='network_process', interval=None, **state_params):
|
|
# Check for REQUIRED arguments
|
|
assert environment is not None, TypeError('__init__ missing 1 required keyword argument: \'environment\'. '
|
|
'Cannot be NoneType.')
|
|
# Initialize agent parameters
|
|
self.id = agent_id
|
|
self.name = name
|
|
self.state_params = state_params
|
|
|
|
# Global parameters
|
|
self.global_topology = environment.G
|
|
self.environment_params = environment.environment_params
|
|
|
|
# Register agent to environment
|
|
self.env = environment
|
|
|
|
self._neighbors = None
|
|
self.alive = True
|
|
real_state = deepcopy(self.defaults)
|
|
real_state.update(state or {})
|
|
self.state = real_state
|
|
self.interval = interval
|
|
|
|
if not hasattr(self, 'level'):
|
|
self.level = logging.DEBUG
|
|
self.logger = logging.getLogger('{}-Agent-{}'.format(self.env.name,
|
|
self.id))
|
|
self.logger.setLevel(self.level)
|
|
|
|
# initialize every time an instance of the agent is created
|
|
self.action = self.env.process(self.run())
|
|
|
|
@property
|
|
def state(self):
|
|
'''
|
|
Return the agent itself, which behaves as a dictionary.
|
|
Changes made to `agent.state` will be reflected in the history.
|
|
|
|
This method shouldn't be used, but is kept here for backwards compatibility.
|
|
'''
|
|
return self
|
|
|
|
@state.setter
|
|
def state(self, value):
|
|
self._state = {}
|
|
for k, v in value.items():
|
|
self[k] = v
|
|
|
|
def __getitem__(self, key):
|
|
if isinstance(key, tuple):
|
|
key, t_step = key
|
|
k = history.Key(key=key, t_step=t_step, agent_id=self.id)
|
|
return self.env[k]
|
|
return self._state.get(key, None)
|
|
|
|
def __delitem__(self, key):
|
|
self._state[key] = None
|
|
|
|
def __contains__(self, key):
|
|
return key in self._state
|
|
|
|
def __setitem__(self, key, value):
|
|
self._state[key] = value
|
|
k = history.Key(t_step=self.now,
|
|
agent_id=self.id,
|
|
key=key)
|
|
self.env[k] = value
|
|
|
|
def items(self):
|
|
return self._state.items()
|
|
|
|
def get(self, key, default=None):
|
|
return self[key] if key in self else default
|
|
|
|
@property
|
|
def now(self):
|
|
try:
|
|
return self.env.now
|
|
except AttributeError:
|
|
# No environment
|
|
return None
|
|
|
|
def run(self):
|
|
if self.interval is not None:
|
|
interval = self.interval
|
|
elif 'interval' in self:
|
|
interval = self['interval']
|
|
else:
|
|
interval = self.env.interval
|
|
while self.alive:
|
|
res = self.step()
|
|
yield res or self.env.timeout(interval)
|
|
|
|
def die(self, remove=False):
|
|
self.alive = False
|
|
if remove:
|
|
super().die()
|
|
|
|
def step(self):
|
|
pass
|
|
|
|
def to_json(self):
|
|
return json.dumps(self.state)
|
|
|
|
def count_agents(self, state_id=None, limit_neighbors=False):
|
|
if limit_neighbors:
|
|
agents = self.global_topology.neighbors(self.id)
|
|
else:
|
|
agents = self.global_topology.nodes()
|
|
count = 0
|
|
for agent in agents:
|
|
if state_id and state_id != self.global_topology.node[agent]['agent']['id']:
|
|
continue
|
|
count += 1
|
|
return count
|
|
|
|
def count_neighboring_agents(self, state_id=None):
|
|
return len(super().get_agents(state_id, limit_neighbors=True))
|
|
|
|
def get_agents(self, state_id=None, limit_neighbors=False, iterator=False, **kwargs):
|
|
if limit_neighbors:
|
|
agents = super().get_agents(state_id, limit_neighbors)
|
|
else:
|
|
agents = filter(lambda x: state_id is None or x.state.get('id', None) == state_id,
|
|
self.env.agents)
|
|
|
|
def matches_all(agent):
|
|
state = agent.state
|
|
for k, v in kwargs.items():
|
|
if state.get(k, None) != v:
|
|
return False
|
|
return True
|
|
|
|
f = filter(matches_all, agents)
|
|
if iterator:
|
|
return f
|
|
return list(f)
|
|
|
|
def log(self, message, *args, level=logging.INFO, **kwargs):
|
|
message = message + " ".join(str(i) for i in args)
|
|
message = "\t@{:>5}:\t{}".format(self.now, message)
|
|
for k, v in kwargs:
|
|
message += " {k}={v} ".format(k, v)
|
|
extra = {}
|
|
extra['now'] = self.now
|
|
extra['id'] = self.id
|
|
return self.logger.log(level, message, extra=extra)
|
|
|
|
def debug(self, *args, **kwargs):
|
|
return self.log(*args, level=logging.DEBUG, **kwargs)
|
|
|
|
def info(self, *args, **kwargs):
|
|
return self.log(*args, level=logging.INFO, **kwargs)
|
|
|
|
|
|
def state(func):
|
|
'''
|
|
A state function should return either a state id, or a tuple (state_id, when)
|
|
The default value for state_id is the current state id.
|
|
The default value for when is the interval defined in the nevironment.
|
|
'''
|
|
|
|
@wraps(func)
|
|
def func_wrapper(self):
|
|
next_state = func(self)
|
|
when = None
|
|
if next_state is None:
|
|
return when
|
|
try:
|
|
next_state, when = next_state
|
|
except (ValueError, TypeError):
|
|
pass
|
|
if next_state:
|
|
self.set_state(next_state)
|
|
return when
|
|
|
|
func_wrapper.id = func.__name__
|
|
func_wrapper.is_default = False
|
|
return func_wrapper
|
|
|
|
|
|
def default_state(func):
|
|
func.is_default = True
|
|
return func
|
|
|
|
|
|
class MetaFSM(MetaAgent):
|
|
def __init__(cls, name, bases, nmspc):
|
|
super(MetaFSM, cls).__init__(name, bases, nmspc)
|
|
states = {}
|
|
# Re-use states from inherited classes
|
|
default_state = None
|
|
for i in bases:
|
|
if isinstance(i, MetaFSM):
|
|
for state_id, state in i.states.items():
|
|
if state.is_default:
|
|
default_state = state
|
|
states[state_id] = state
|
|
|
|
# Add new states
|
|
for name, func in nmspc.items():
|
|
if hasattr(func, 'id'):
|
|
if func.is_default:
|
|
default_state = func
|
|
states[func.id] = func
|
|
cls.default_state = default_state
|
|
cls.states = states
|
|
|
|
|
|
class FSM(BaseAgent, metaclass=MetaFSM):
|
|
def __init__(self, *args, **kwargs):
|
|
super(FSM, self).__init__(*args, **kwargs)
|
|
if 'id' not in self.state:
|
|
if not self.default_state:
|
|
raise ValueError('No default state specified for {}'.format(self.id))
|
|
self['id'] = self.default_state.id
|
|
|
|
def step(self):
|
|
if 'id' in self.state:
|
|
next_state = self['id']
|
|
elif self.default_state:
|
|
next_state = self.default_state.id
|
|
else:
|
|
raise Exception('{} has no valid state id or default state'.format(self))
|
|
if next_state not in self.states:
|
|
raise Exception('{} is not a valid id for {}'.format(next_state, self))
|
|
self.states[next_state](self)
|
|
|
|
def set_state(self, state):
|
|
if hasattr(state, 'id'):
|
|
state = state.id
|
|
if state not in self.states:
|
|
raise ValueError('{} is not a valid state'.format(state))
|
|
self['id'] = state
|
|
return state
|
|
|
|
|
|
def prob(prob=1):
|
|
'''
|
|
A true/False uniform distribution with a given probability.
|
|
To be used like this:
|
|
|
|
.. code-block:: python
|
|
|
|
if prob(0.3):
|
|
do_something()
|
|
|
|
'''
|
|
r = random.random()
|
|
return r < prob
|
|
|
|
|
|
def calculate_distribution(network_agents=None,
|
|
agent_type=None):
|
|
'''
|
|
Calculate the threshold values (thresholds for a uniform distribution)
|
|
of an agent distribution given the weights of each agent type.
|
|
|
|
The input has this form: ::
|
|
|
|
[
|
|
{'agent_type': 'agent_type_1',
|
|
'weight': 0.2,
|
|
'state': {
|
|
'id': 0
|
|
}
|
|
},
|
|
{'agent_type': 'agent_type_2',
|
|
'weight': 0.8,
|
|
'state': {
|
|
'id': 1
|
|
}
|
|
}
|
|
]
|
|
|
|
In this example, 20% of the nodes will be marked as type
|
|
'agent_type_1'.
|
|
'''
|
|
if network_agents:
|
|
network_agents = deepcopy(network_agents)
|
|
elif agent_type:
|
|
network_agents = [{'agent_type': agent_type}]
|
|
else:
|
|
return []
|
|
|
|
# Calculate the thresholds
|
|
total = sum(x.get('weight', 1) for x in network_agents)
|
|
acc = 0
|
|
for v in network_agents:
|
|
upper = acc + (v.get('weight', 1)/total)
|
|
v['threshold'] = [acc, upper]
|
|
acc = upper
|
|
return network_agents
|
|
|
|
|
|
def _serialize_distribution(network_agents):
|
|
d = _convert_agent_types(network_agents,
|
|
to_string=True)
|
|
'''
|
|
When serializing an agent distribution, remove the thresholds, in order
|
|
to avoid cluttering the YAML definition file.
|
|
'''
|
|
for v in d:
|
|
if 'threshold' in v:
|
|
del v['threshold']
|
|
return d
|
|
|
|
|
|
def _validate_states(states, topology):
|
|
'''Validate states to avoid ignoring states during initialization'''
|
|
states = states or []
|
|
if isinstance(states, dict):
|
|
for x in states:
|
|
assert x in topology.node
|
|
else:
|
|
assert len(states) <= len(topology)
|
|
return states
|
|
|
|
|
|
def _convert_agent_types(ind, to_string=False):
|
|
'''Convenience method to allow specifying agents by class or class name.'''
|
|
d = deepcopy(ind)
|
|
for v in d:
|
|
agent_type = v['agent_type']
|
|
if to_string and not isinstance(agent_type, str):
|
|
v['agent_type'] = str(agent_type.__name__)
|
|
elif not to_string and isinstance(agent_type, str):
|
|
v['agent_type'] = agent_types[agent_type]
|
|
return d
|
|
|
|
|
|
def _agent_from_distribution(distribution, value=-1):
|
|
"""Used in the initialization of agents given an agent distribution."""
|
|
if value < 0:
|
|
value = random.random()
|
|
for d in distribution:
|
|
threshold = d['threshold']
|
|
if value >= threshold[0] and value < threshold[1]:
|
|
state = {}
|
|
if 'state' in d:
|
|
state = deepcopy(d['state'])
|
|
return d['agent_type'], state
|
|
|
|
raise Exception('Distribution for value {} not found in: {}'.format(value, distribution))
|
|
|
|
|
|
from .BassModel import *
|
|
from .BigMarketModel import *
|
|
from .IndependentCascadeModel import *
|
|
from .ModelM2 import *
|
|
from .SentimentCorrelationModel import *
|
|
from .SISaModel import *
|
|
from .CounterModel import *
|
|
from .DrawingAgent import *
|