1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-13 06:52:28 +00:00
soil/soil.py
2017-04-21 14:19:26 +02:00

109 lines
3.4 KiB
Python

from models import *
from nxsim import NetworkSimulation
import numpy
from matplotlib import pyplot as plt
import networkx as nx
import settings
import models
import math
import json
####################
# Network creation #
####################
if settings.network_type == 0:
G = nx.complete_graph(settings.number_of_nodes)
if settings.network_type == 1:
G = nx.barabasi_albert_graph(settings.number_of_nodes, 10)
if settings.network_type == 2:
G = nx.margulis_gabber_galil_graph(settings.number_of_nodes, None)
# More types of networks can be added here
##############
# Simulation #
##############
sim = NetworkSimulation(topology=G, states=init_states, agent_type=ControlModelM2,
max_time=settings.max_time, num_trials=settings.num_trials, logging_interval=1.0)
sim.run_simulation()
###########
# Results #
###########
x_values = []
infected_values = []
neutral_values = []
cured_values = []
vaccinated_values = []
attribute_plot = 'status'
for time in range(0, settings.max_time):
value_infectados = 0
value_neutral = 0
value_cured = 0
value_vaccinated = 0
real_time = time * settings.timeout
activity= False
for x in range(0, settings.number_of_nodes):
if attribute_plot in models.networkStatus["agent_%s" % x]:
if real_time in models.networkStatus["agent_%s" % x][attribute_plot]:
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == 1: ## Infected
value_infectados += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == 0: ## Neutral
value_neutral += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == 2: ## Cured
value_cured += 1
activity = True
if models.networkStatus["agent_%s" % x][attribute_plot][real_time] == 3: ## Vaccinated
value_vaccinated += 1
activity = True
if activity:
x_values.append(real_time)
infected_values.append(value_infectados)
neutral_values.append(value_neutral)
cured_values.append(value_cured)
vaccinated_values.append(value_vaccinated)
activity=False
infected_line = plt.plot(x_values,infected_values,label='Infected')
neutral_line = plt.plot(x_values,neutral_values, label='Neutral')
cured_line = plt.plot(x_values,cured_values, label='Cured')
vaccinated_line = plt.plot(x_values,vaccinated_values, label='Vaccinated')
plt.legend()
plt.savefig('control_model.png')
# plt.show()
#################
# Visualization #
#################
for x in range(0, settings.number_of_nodes):
for attribute in models.networkStatus["agent_%s"%x]:
emotionStatusAux=[]
for t_step in models.networkStatus["agent_%s"%x][attribute]:
prec = 2
output = math.floor(models.networkStatus["agent_%s"%x][attribute][t_step] * (10 ** prec)) / (10 ** prec) # 2 decimals
emotionStatusAux.append((output,t_step,None))
attributes = {}
attributes[attribute] = emotionStatusAux
G.add_node(x, attributes)
print("Done!")
with open('data.txt', 'w') as outfile:
json.dump(models.networkStatus, outfile, sort_keys=True, indent=4, separators=(',', ': '))
nx.write_gexf(G,"test.gexf", version="1.2draft")