mirror of
https://github.com/gsi-upm/soil
synced 2025-04-11 15:39:15 +00:00
94 lines
3.5 KiB
Python
94 lines
3.5 KiB
Python
import random
|
|
import numpy as np
|
|
from . import FSM, state
|
|
|
|
|
|
class SISaModel(FSM):
|
|
"""
|
|
Settings:
|
|
neutral_discontent_spon_prob
|
|
|
|
neutral_discontent_infected_prob
|
|
|
|
neutral_content_spon_prob
|
|
|
|
neutral_content_infected_prob
|
|
|
|
discontent_neutral
|
|
|
|
discontent_content
|
|
|
|
variance_d_c
|
|
|
|
content_discontent
|
|
|
|
variance_c_d
|
|
|
|
content_neutral
|
|
|
|
standard_variance
|
|
"""
|
|
|
|
def __init__(self, environment, unique_id=0, state=()):
|
|
super().__init__(model=environment, unique_id=unique_id, state=state)
|
|
|
|
self.neutral_discontent_spon_prob = np.random.normal(self.env['neutral_discontent_spon_prob'],
|
|
self.env['standard_variance'])
|
|
self.neutral_discontent_infected_prob = np.random.normal(self.env['neutral_discontent_infected_prob'],
|
|
self.env['standard_variance'])
|
|
self.neutral_content_spon_prob = np.random.normal(self.env['neutral_content_spon_prob'],
|
|
self.env['standard_variance'])
|
|
self.neutral_content_infected_prob = np.random.normal(self.env['neutral_content_infected_prob'],
|
|
self.env['standard_variance'])
|
|
|
|
self.discontent_neutral = np.random.normal(self.env['discontent_neutral'],
|
|
self.env['standard_variance'])
|
|
self.discontent_content = np.random.normal(self.env['discontent_content'],
|
|
self.env['variance_d_c'])
|
|
|
|
self.content_discontent = np.random.normal(self.env['content_discontent'],
|
|
self.env['variance_c_d'])
|
|
self.content_neutral = np.random.normal(self.env['content_neutral'],
|
|
self.env['standard_variance'])
|
|
|
|
@state
|
|
def neutral(self):
|
|
# Spontaneous effects
|
|
if random.random() < self.neutral_discontent_spon_prob:
|
|
return self.discontent
|
|
if random.random() < self.neutral_content_spon_prob:
|
|
return self.content
|
|
|
|
# Infected
|
|
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent)
|
|
if random.random() < discontent_neighbors * self.neutral_discontent_infected_prob:
|
|
return self.discontent
|
|
content_neighbors = self.count_neighboring_agents(state_id=self.content.id)
|
|
if random.random() < content_neighbors * self.neutral_content_infected_prob:
|
|
return self.content
|
|
return self.neutral
|
|
|
|
@state
|
|
def discontent(self):
|
|
# Healing
|
|
if random.random() < self.discontent_neutral:
|
|
return self.neutral
|
|
|
|
# Superinfected
|
|
content_neighbors = self.count_neighboring_agents(state_id=self.content.id)
|
|
if random.random() < content_neighbors * self.discontent_content:
|
|
return self.content
|
|
return self.discontent
|
|
|
|
@state
|
|
def content(self):
|
|
# Healing
|
|
if random.random() < self.content_neutral:
|
|
return self.neutral
|
|
|
|
# Superinfected
|
|
discontent_neighbors = self.count_neighboring_agents(state_id=self.discontent.id)
|
|
if random.random() < discontent_neighbors * self.content_discontent:
|
|
self.discontent
|
|
return self.content
|