mirror of
https://github.com/gsi-upm/soil
synced 2024-11-22 03:02:28 +00:00
2607 lines
62 KiB
ReStructuredText
2607 lines
62 KiB
ReStructuredText
|
||
Soil Tutorial
|
||
=============
|
||
|
||
Introduction
|
||
------------
|
||
|
||
This notebook is an introduction to the soil agent-based social network
|
||
simulation framework. In particular, we will focus on a specific use
|
||
case: studying the propagation of news in a social network.
|
||
|
||
The steps we will follow are:
|
||
|
||
- Modelling the behavior of agents
|
||
- Running the simulation using different configurations
|
||
- Analysing the results of each simulation
|
||
|
||
But before that, let's import the soil module and networkx.
|
||
|
||
.. code:: ipython3
|
||
|
||
import soil
|
||
import networkx as nx
|
||
|
||
%load_ext autoreload
|
||
%autoreload 2
|
||
|
||
%pylab inline
|
||
# To display plots in the notebook_
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
Populating the interactive namespace from numpy and matplotlib
|
||
|
||
|
||
Basic concepts
|
||
--------------
|
||
|
||
There are three main elements in a soil simulation:
|
||
|
||
- The network topology. A simulation may use an existing NetworkX
|
||
topology, or generate one on the fly
|
||
- Agents. There are two types: 1) network agents, which are linked to a
|
||
node in the topology, and 2) environment agents, which are freely
|
||
assigned to the environment.
|
||
- The environment. It assigns agents to nodes in the network, and
|
||
stores the environment parameters (shared state for all agents).
|
||
|
||
Modeling behaviour
|
||
------------------
|
||
|
||
Our first step will be to model how every person in the social network
|
||
reacts when it comes to news. We will follow a very simple model (a
|
||
finite state machine).
|
||
|
||
There are two types of people, those who have heard about a newsworthy
|
||
event (infected) or those who have not (neutral). A neutral person may
|
||
heard about the news either on the TV (with probability
|
||
**prob\_tv\_spread**) or through their friends. Once a person has heard
|
||
the news, they will spread it to their friends (with a probability
|
||
**prob\_neighbor\_spread**). Some users do not have a TV, so they only
|
||
rely on their friends.
|
||
|
||
The spreading probabilities will change over time due to different
|
||
factors. We will represent this variance using an environment agent.
|
||
|
||
Network Agents
|
||
~~~~~~~~~~~~~~
|
||
|
||
A basic network agent in Soil should inherit from
|
||
``soil.agents.BaseAgent``, and define its behaviour in every step of the
|
||
simulation by implementing a ``run(self)`` method. The most important
|
||
attributes of the agent are:
|
||
|
||
- ``agent.state``, a dictionary with the state of the agent.
|
||
``agent.state['id']`` reflects the state id of the agent. That state
|
||
id can be used to look for other networks in that specific state. The
|
||
state can be access via the agent as well. For instance:
|
||
|
||
.. code:: py
|
||
|
||
a = soil.agents.BaseAgent(env=env)
|
||
a['hours_of_sleep'] = 10
|
||
print(a['hours_of_sleep'])
|
||
|
||
The state of the agent is stored in every step of the simulation:
|
||
``py print(a['hours_of_sleep', 10]) # hours of sleep before step #10 print(a[None, 0]) # whole state of the agent before step #0``
|
||
|
||
- ``agent.env``, a reference to the environment. Most commonly used to
|
||
get access to the environment parameters and the topology:
|
||
|
||
.. code:: py
|
||
|
||
a.env.G.nodes() # Get all nodes ids in the topology
|
||
a.env['minimum_hours_of_sleep']
|
||
|
||
Since our model is a finite state machine, we will be basing it on
|
||
``soil.agents.FSM``.
|
||
|
||
With ``soil.agents.FSM``, we do not need to specify a ``step`` method.
|
||
Instead, we describe every step as a function. To change to another
|
||
state, a function may return the new state. If no state is returned, the
|
||
state remains unchanged.[ It will consist of two states, ``neutral``
|
||
(default) and ``infected``.
|
||
|
||
Here's the code:
|
||
|
||
.. code:: ipython3
|
||
|
||
import random
|
||
|
||
class NewsSpread(soil.agents.FSM):
|
||
@soil.agents.default_state
|
||
@soil.agents.state
|
||
def neutral(self):
|
||
r = random.random()
|
||
if self['has_tv'] and r < self.env['prob_tv_spread']:
|
||
return self.infected
|
||
return
|
||
|
||
@soil.agents.state
|
||
def infected(self):
|
||
prob_infect = self.env['prob_neighbor_spread']
|
||
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
|
||
r = random.random()
|
||
if r < prob_infect:
|
||
neighbor.state['id'] = self.infected.id
|
||
return
|
||
|
||
|
||
Environment agents
|
||
~~~~~~~~~~~~~~~~~~
|
||
|
||
Environment agents allow us to control the state of the environment. In
|
||
this case, we will use an environment agent to simulate a very viral
|
||
event.
|
||
|
||
When the event happens, the agent will modify the probability of
|
||
spreading the rumor.
|
||
|
||
.. code:: ipython3
|
||
|
||
NEIGHBOR_FACTOR = 0.9
|
||
TV_FACTOR = 0.5
|
||
class NewsEnvironmentAgent(soil.agents.BaseAgent):
|
||
def step(self):
|
||
if self.now == self['event_time']:
|
||
self.env['prob_tv_spread'] = 1
|
||
self.env['prob_neighbor_spread'] = 1
|
||
elif self.now > self['event_time']:
|
||
self.env['prob_tv_spread'] = self.env['prob_tv_spread'] * TV_FACTOR
|
||
self.env['prob_neighbor_spread'] = self.env['prob_neighbor_spread'] * NEIGHBOR_FACTOR
|
||
|
||
Testing the agents
|
||
~~~~~~~~~~~~~~~~~~
|
||
|
||
Feel free to skip this section if this is your first time with soil.
|
||
|
||
Testing agents is not easy, and this is not a thorough testing process
|
||
for agents. Rather, this section is aimed to show you how to access
|
||
internal pats of soil so you can test your agents.
|
||
|
||
First of all, let's check if our network agent has the states we would
|
||
expect:
|
||
|
||
.. code:: ipython3
|
||
|
||
NewsSpread.states
|
||
|
||
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
{'infected': <function __main__.NewsSpread.infected>,
|
||
'neutral': <function __main__.NewsSpread.neutral>}
|
||
|
||
|
||
|
||
Now, let's run a simulation on a simple network. It is comprised of
|
||
three nodes:
|
||
|
||
.. code:: ipython3
|
||
|
||
G = nx.Graph()
|
||
G.add_edge(0, 1)
|
||
G.add_edge(0, 2)
|
||
G.add_edge(2, 3)
|
||
G.add_node(4)
|
||
pos = nx.spring_layout(G)
|
||
nx.draw_networkx(G, pos, node_color='red')
|
||
nx.draw_networkx(G, pos, nodelist=[0], node_color='blue')
|
||
|
||
|
||
|
||
.. image:: output_21_0.png
|
||
|
||
|
||
Let's run a simple simulation that assigns a NewsSpread agent to all the
|
||
nodes in that network. Notice how node 0 is the only one with a TV.
|
||
|
||
.. code:: ipython3
|
||
|
||
env_params = {'prob_tv_spread': 0,
|
||
'prob_neighbor_spread': 0}
|
||
|
||
MAX_TIME = 100
|
||
EVENT_TIME = 10
|
||
|
||
sim = soil.Simulation(topology=G,
|
||
num_trials=1,
|
||
max_time=MAX_TIME,
|
||
environment_agents=[{'agent_class': NewsEnvironmentAgent,
|
||
'state': {
|
||
'event_time': EVENT_TIME
|
||
}}],
|
||
network_agents=[{'agent_class': NewsSpread,
|
||
'weight': 1}],
|
||
states={0: {'has_tv': True}},
|
||
default_state={'has_tv': False},
|
||
environment_params=env_params)
|
||
env = sim.run_simulation()[0]
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
INFO:soil.utils:Trial: 0
|
||
INFO:soil.utils: Running
|
||
INFO:soil.utils:Finished trial in 0.02695441246032715 seconds
|
||
INFO:soil.utils:NOT dumping results
|
||
INFO:soil.utils:Finished simulation in 0.03360605239868164 seconds
|
||
|
||
|
||
Now we can access the results of the simulation and compare them to our
|
||
expected results
|
||
|
||
.. code:: ipython3
|
||
|
||
agents = list(env.network_agents)
|
||
|
||
# Until the event, all agents are neutral
|
||
for t in range(10):
|
||
for a in agents:
|
||
assert a['id', t] == a.neutral.id
|
||
|
||
# After the event, the node with a TV is infected, the rest are not
|
||
assert agents[0]['id', 11] == NewsSpread.infected.id
|
||
|
||
for a in agents[1:4]:
|
||
assert a['id', 11] == NewsSpread.neutral.id
|
||
|
||
# At the end, the agents connected to the infected one will probably be infected, too.
|
||
assert agents[1]['id', MAX_TIME] == NewsSpread.infected.id
|
||
assert agents[2]['id', MAX_TIME] == NewsSpread.infected.id
|
||
|
||
# But the node with no friends should not be affected
|
||
assert agents[4]['id', MAX_TIME] == NewsSpread.neutral.id
|
||
|
||
|
||
Lastly, let's see if the probabilities have decreased as expected:
|
||
|
||
.. code:: ipython3
|
||
|
||
assert abs(env.environment_params['prob_neighbor_spread'] - (NEIGHBOR_FACTOR**(MAX_TIME-1-10))) < 10e-4
|
||
assert abs(env.environment_params['prob_tv_spread'] - (TV_FACTOR**(MAX_TIME-1-10))) < 10e-6
|
||
|
||
Running the simulation
|
||
----------------------
|
||
|
||
To run a simulation, we need a configuration. Soil can load
|
||
configurations from python dictionaries as well as JSON and YAML files.
|
||
For this demo, we will use a python dictionary:
|
||
|
||
.. code:: ipython3
|
||
|
||
config = {
|
||
'name': 'ExampleSimulation',
|
||
'max_time': 20,
|
||
'interval': 1,
|
||
'num_trials': 1,
|
||
'network_params': {
|
||
'generator': 'complete_graph',
|
||
'n': 500,
|
||
},
|
||
'network_agents': [
|
||
{
|
||
'agent_class': NewsSpread,
|
||
'weight': 1,
|
||
'state': {
|
||
'has_tv': False
|
||
}
|
||
},
|
||
{
|
||
'agent_class': NewsSpread,
|
||
'weight': 2,
|
||
'state': {
|
||
'has_tv': True
|
||
}
|
||
}
|
||
],
|
||
'environment_agents':[
|
||
{'agent_class': NewsEnvironmentAgent,
|
||
'state': {
|
||
'event_time': 10
|
||
}
|
||
}
|
||
],
|
||
'states': [ {'has_tv': True} ],
|
||
'environment_params':{
|
||
'prob_tv_spread': 0.01,
|
||
'prob_neighbor_spread': 0.5
|
||
}
|
||
}
|
||
|
||
Let's run our simulation:
|
||
|
||
.. code:: ipython3
|
||
|
||
soil.simulation.run_from_config(config)
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
INFO:soil.utils:Using config(s): ExampleSimulation
|
||
INFO:soil.utils:Dumping results to soil_output/ExampleSimulation : False
|
||
INFO:soil.utils:Trial: 0
|
||
INFO:soil.utils: Running
|
||
INFO:soil.utils:Finished trial in 5.869051456451416 seconds
|
||
INFO:soil.utils:NOT dumping results
|
||
INFO:soil.utils:Finished simulation in 6.9609293937683105 seconds
|
||
|
||
|
||
In real life, you probably want to run several simulations, varying some
|
||
of the parameters so that you can compare and answer your research
|
||
questions.
|
||
|
||
For instance:
|
||
|
||
- Does the outcome depend on the structure of our network? We will use
|
||
different generation algorithms to compare them (Barabasi-Albert and
|
||
Erdos-Renyi)
|
||
- How does neighbor spreading probability affect my simulation? We will
|
||
try probability values in the range of [0, 0.4], in intervals of 0.1.
|
||
|
||
.. code:: ipython3
|
||
|
||
network_1 = {
|
||
'generator': 'erdos_renyi_graph',
|
||
'n': 500,
|
||
'p': 0.1
|
||
}
|
||
network_2 = {
|
||
'generator': 'barabasi_albert_graph',
|
||
'n': 500,
|
||
'm': 2
|
||
}
|
||
|
||
|
||
for net in [network_1, network_2]:
|
||
for i in range(5):
|
||
prob = i / 10
|
||
config['environment_params']['prob_neighbor_spread'] = prob
|
||
config['network_params'] = net
|
||
config['name'] = 'Spread_{}_prob_{}'.format(net['generator'], prob)
|
||
s = soil.simulation.run_from_config(config)
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
INFO:soil.utils:Using config(s): Spread_erdos_renyi_graph_prob_0.0
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_erdos_renyi_graph_prob_0.0 : True
|
||
INFO:soil.utils:Trial: 0
|
||
INFO:soil.utils: Running
|
||
INFO:soil.utils:Finished trial in 1.2258412837982178 seconds
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_erdos_renyi_graph_prob_0.0
|
||
INFO:soil.utils:Finished simulation in 5.597268104553223 seconds
|
||
INFO:soil.utils:Using config(s): Spread_erdos_renyi_graph_prob_0.1
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_erdos_renyi_graph_prob_0.1 : True
|
||
INFO:soil.utils:Trial: 0
|
||
INFO:soil.utils: Running
|
||
INFO:soil.utils:Finished trial in 1.3026399612426758 seconds
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_erdos_renyi_graph_prob_0.1
|
||
INFO:soil.utils:Finished simulation in 5.534018278121948 seconds
|
||
INFO:soil.utils:Using config(s): Spread_erdos_renyi_graph_prob_0.2
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_erdos_renyi_graph_prob_0.2 : True
|
||
INFO:soil.utils:Trial: 0
|
||
INFO:soil.utils: Running
|
||
INFO:soil.utils:Finished trial in 1.4764575958251953 seconds
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_erdos_renyi_graph_prob_0.2
|
||
INFO:soil.utils:Finished simulation in 6.170421123504639 seconds
|
||
INFO:soil.utils:Using config(s): Spread_erdos_renyi_graph_prob_0.3
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_erdos_renyi_graph_prob_0.3 : True
|
||
INFO:soil.utils:Trial: 0
|
||
INFO:soil.utils: Running
|
||
INFO:soil.utils:Finished trial in 1.5429913997650146 seconds
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_erdos_renyi_graph_prob_0.3
|
||
INFO:soil.utils:Finished simulation in 5.936013221740723 seconds
|
||
INFO:soil.utils:Using config(s): Spread_erdos_renyi_graph_prob_0.4
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_erdos_renyi_graph_prob_0.4 : True
|
||
INFO:soil.utils:Trial: 0
|
||
INFO:soil.utils: Running
|
||
INFO:soil.utils:Finished trial in 1.4097135066986084 seconds
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_erdos_renyi_graph_prob_0.4
|
||
INFO:soil.utils:Finished simulation in 5.732810974121094 seconds
|
||
INFO:soil.utils:Using config(s): Spread_barabasi_albert_graph_prob_0.0
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_barabasi_albert_graph_prob_0.0 : True
|
||
INFO:soil.utils:Trial: 0
|
||
INFO:soil.utils: Running
|
||
INFO:soil.utils:Finished trial in 0.751497745513916 seconds
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_barabasi_albert_graph_prob_0.0
|
||
INFO:soil.utils:Finished simulation in 2.3415369987487793 seconds
|
||
INFO:soil.utils:Using config(s): Spread_barabasi_albert_graph_prob_0.1
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_barabasi_albert_graph_prob_0.1 : True
|
||
INFO:soil.utils:Trial: 0
|
||
INFO:soil.utils: Running
|
||
INFO:soil.utils:Finished trial in 0.8503265380859375 seconds
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_barabasi_albert_graph_prob_0.1
|
||
INFO:soil.utils:Finished simulation in 2.5671920776367188 seconds
|
||
INFO:soil.utils:Using config(s): Spread_barabasi_albert_graph_prob_0.2
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_barabasi_albert_graph_prob_0.2 : True
|
||
INFO:soil.utils:Trial: 0
|
||
INFO:soil.utils: Running
|
||
INFO:soil.utils:Finished trial in 0.8511502742767334 seconds
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_barabasi_albert_graph_prob_0.2
|
||
INFO:soil.utils:Finished simulation in 2.55816912651062 seconds
|
||
INFO:soil.utils:Using config(s): Spread_barabasi_albert_graph_prob_0.3
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_barabasi_albert_graph_prob_0.3 : True
|
||
INFO:soil.utils:Trial: 0
|
||
INFO:soil.utils: Running
|
||
INFO:soil.utils:Finished trial in 0.8982968330383301 seconds
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_barabasi_albert_graph_prob_0.3
|
||
INFO:soil.utils:Finished simulation in 2.6871559619903564 seconds
|
||
INFO:soil.utils:Using config(s): Spread_barabasi_albert_graph_prob_0.4
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_barabasi_albert_graph_prob_0.4 : True
|
||
INFO:soil.utils:Trial: 0
|
||
INFO:soil.utils: Running
|
||
INFO:soil.utils:Finished trial in 0.9563727378845215 seconds
|
||
INFO:soil.utils:Dumping results to soil_output/Spread_barabasi_albert_graph_prob_0.4
|
||
INFO:soil.utils:Finished simulation in 2.5253307819366455 seconds
|
||
|
||
|
||
The results are conveniently stored in pickle (simulation), csv and
|
||
sqlite (history of agent and environment state) and gexf (dynamic
|
||
network) format.
|
||
|
||
.. code:: ipython3
|
||
|
||
!tree soil_output
|
||
!du -xh soil_output/*
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
[01;34msoil_output[00m
|
||
├── [01;34mSpread_barabasi_albert_graph_prob_0.0[00m
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.0.dumped.yml
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.0.simulation.pickle
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.0_trial_0.backup1508409808.7944386.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.0_trial_0.backup1508428617.9811945.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.0_trial_0.db.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.0_trial_0.environment.csv
|
||
│ └── Spread_barabasi_albert_graph_prob_0.0_trial_0.gexf
|
||
├── [01;34mSpread_barabasi_albert_graph_prob_0.1[00m
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.1.dumped.yml
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.1.simulation.pickle
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.1_trial_0.backup1508409810.9913027.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.1_trial_0.backup1508428620.3419535.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.1_trial_0.db.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.1_trial_0.environment.csv
|
||
│ └── Spread_barabasi_albert_graph_prob_0.1_trial_0.gexf
|
||
├── [01;34mSpread_barabasi_albert_graph_prob_0.2[00m
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.2.dumped.yml
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.2.simulation.pickle
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.2_trial_0.backup1508409813.2012305.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.2_trial_0.backup1508428622.91827.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.2_trial_0.db.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.2_trial_0.environment.csv
|
||
│ └── Spread_barabasi_albert_graph_prob_0.2_trial_0.gexf
|
||
├── [01;34mSpread_barabasi_albert_graph_prob_0.3[00m
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.3.dumped.yml
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.3.simulation.pickle
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.3_trial_0.backup1508409815.5177016.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.3_trial_0.backup1508428625.5117545.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.3_trial_0.db.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.3_trial_0.environment.csv
|
||
│ └── Spread_barabasi_albert_graph_prob_0.3_trial_0.gexf
|
||
├── [01;34mSpread_barabasi_albert_graph_prob_0.4[00m
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.4.dumped.yml
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.4.simulation.pickle
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.4_trial_0.backup1508409818.1516452.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.4_trial_0.backup1508428628.1986933.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.4_trial_0.db.sqlite
|
||
│ ├── Spread_barabasi_albert_graph_prob_0.4_trial_0.environment.csv
|
||
│ └── Spread_barabasi_albert_graph_prob_0.4_trial_0.gexf
|
||
├── [01;34mSpread_erdos_renyi_graph_prob_0.0[00m
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.0.dumped.yml
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.0.simulation.pickle
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.0_trial_0.backup1508409781.0791047.sqlite
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.0_trial_0.backup1508428588.625598.sqlite
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.0_trial_0.db.sqlite
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.0_trial_0.environment.csv
|
||
│ └── Spread_erdos_renyi_graph_prob_0.0_trial_0.gexf
|
||
├── [01;34mSpread_erdos_renyi_graph_prob_0.1[00m
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.1.dumped.yml
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.1.simulation.pickle
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.1_trial_0.backup1508409786.6177793.sqlite
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.1_trial_0.backup1508428594.3783743.sqlite
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.1_trial_0.db.sqlite
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.1_trial_0.environment.csv
|
||
│ └── Spread_erdos_renyi_graph_prob_0.1_trial_0.gexf
|
||
├── [01;34mSpread_erdos_renyi_graph_prob_0.2[00m
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.2.dumped.yml
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.2.simulation.pickle
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.2_trial_0.backup1508409791.9751768.sqlite
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.2_trial_0.backup1508428600.041021.sqlite
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.2_trial_0.db.sqlite
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.2_trial_0.environment.csv
|
||
│ └── Spread_erdos_renyi_graph_prob_0.2_trial_0.gexf
|
||
├── [01;34mSpread_erdos_renyi_graph_prob_0.3[00m
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.3.dumped.yml
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.3.simulation.pickle
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.3_trial_0.backup1508409797.606661.sqlite
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.3_trial_0.backup1508428606.2884977.sqlite
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.3_trial_0.db.sqlite
|
||
│ ├── Spread_erdos_renyi_graph_prob_0.3_trial_0.environment.csv
|
||
│ └── Spread_erdos_renyi_graph_prob_0.3_trial_0.gexf
|
||
└── [01;34mSpread_erdos_renyi_graph_prob_0.4[00m
|
||
├── Spread_erdos_renyi_graph_prob_0.4.dumped.yml
|
||
├── Spread_erdos_renyi_graph_prob_0.4.simulation.pickle
|
||
├── Spread_erdos_renyi_graph_prob_0.4_trial_0.backup1508409803.4306188.sqlite
|
||
├── Spread_erdos_renyi_graph_prob_0.4_trial_0.backup1508428612.3312593.sqlite
|
||
├── Spread_erdos_renyi_graph_prob_0.4_trial_0.db.sqlite
|
||
├── Spread_erdos_renyi_graph_prob_0.4_trial_0.environment.csv
|
||
└── Spread_erdos_renyi_graph_prob_0.4_trial_0.gexf
|
||
|
||
10 directories, 70 files
|
||
2.5M soil_output/Spread_barabasi_albert_graph_prob_0.0
|
||
2.5M soil_output/Spread_barabasi_albert_graph_prob_0.1
|
||
2.5M soil_output/Spread_barabasi_albert_graph_prob_0.2
|
||
2.5M soil_output/Spread_barabasi_albert_graph_prob_0.3
|
||
2.5M soil_output/Spread_barabasi_albert_graph_prob_0.4
|
||
3.6M soil_output/Spread_erdos_renyi_graph_prob_0.0
|
||
3.7M soil_output/Spread_erdos_renyi_graph_prob_0.1
|
||
3.7M soil_output/Spread_erdos_renyi_graph_prob_0.2
|
||
3.7M soil_output/Spread_erdos_renyi_graph_prob_0.3
|
||
3.7M soil_output/Spread_erdos_renyi_graph_prob_0.4
|
||
|
||
|
||
Analysing the results
|
||
---------------------
|
||
|
||
Loading data
|
||
~~~~~~~~~~~~
|
||
|
||
Once the simulations are over, we can use soil to analyse the results.
|
||
|
||
Soil allows you to load results for specific trials, or for a set of
|
||
trials if you specify a pattern. The specific methods are:
|
||
|
||
- ``analysis.read_data(<directory pattern>)`` to load all the results
|
||
from a directory. e.g. ``read_data('my_simulation/')``. For each
|
||
trial it finds in each folder matching the pattern, it will return
|
||
the dumped configuration for the simulation, the results of the
|
||
trial, and the configuration itself. By default, it will try to load
|
||
data from the sqlite database.
|
||
- ``analysis.read_csv(<csv_file>)`` to load all the results from a CSV
|
||
file. e.g.
|
||
``read_csv('my_simulation/my_simulation_trial0.environment.csv')``
|
||
- ``analysis.read_sql(<sqlite_file>)`` to load all the results from a
|
||
sqlite database . e.g.
|
||
``read_sql('my_simulation/my_simulation_trial0.db.sqlite')``
|
||
|
||
Let's see it in action by loading the stored results into a pandas
|
||
dataframe:
|
||
|
||
.. code:: ipython3
|
||
|
||
from soil.analysis import *
|
||
|
||
.. code:: ipython3
|
||
|
||
df = read_csv('soil_output/Spread_barabasi_albert_graph_prob_0.0/Spread_barabasi_albert_graph_prob_0.0_trial_0.environment.csv', keys=['id'])
|
||
df
|
||
|
||
|
||
|
||
|
||
.. raw:: html
|
||
|
||
<div>
|
||
<style>
|
||
.dataframe thead tr:only-child th {
|
||
text-align: right;
|
||
}
|
||
|
||
.dataframe thead th {
|
||
text-align: left;
|
||
}
|
||
|
||
.dataframe tbody tr th {
|
||
vertical-align: top;
|
||
}
|
||
</style>
|
||
<table border="1" class="dataframe">
|
||
<thead>
|
||
<tr style="text-align: right;">
|
||
<th></th>
|
||
<th>agent_id</th>
|
||
<th>t_step</th>
|
||
<th>key</th>
|
||
<th>value</th>
|
||
<th>value_type</th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<th>5</th>
|
||
<td>0</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>7</th>
|
||
<td>1</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>9</th>
|
||
<td>2</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>11</th>
|
||
<td>3</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>13</th>
|
||
<td>4</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>15</th>
|
||
<td>5</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>17</th>
|
||
<td>6</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>19</th>
|
||
<td>7</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21</th>
|
||
<td>8</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>23</th>
|
||
<td>9</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>25</th>
|
||
<td>10</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>27</th>
|
||
<td>11</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>29</th>
|
||
<td>12</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>31</th>
|
||
<td>13</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>33</th>
|
||
<td>14</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>35</th>
|
||
<td>15</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>37</th>
|
||
<td>16</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>39</th>
|
||
<td>17</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>41</th>
|
||
<td>18</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>43</th>
|
||
<td>19</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>45</th>
|
||
<td>20</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>47</th>
|
||
<td>21</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>49</th>
|
||
<td>22</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>51</th>
|
||
<td>23</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>53</th>
|
||
<td>24</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>55</th>
|
||
<td>25</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>57</th>
|
||
<td>26</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>59</th>
|
||
<td>27</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>61</th>
|
||
<td>28</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>63</th>
|
||
<td>29</td>
|
||
<td>0</td>
|
||
<td>id</td>
|
||
<td>neutral</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>...</th>
|
||
<td>...</td>
|
||
<td>...</td>
|
||
<td>...</td>
|
||
<td>...</td>
|
||
<td>...</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21025</th>
|
||
<td>470</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21027</th>
|
||
<td>471</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21029</th>
|
||
<td>472</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21031</th>
|
||
<td>473</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21033</th>
|
||
<td>474</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21035</th>
|
||
<td>475</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21037</th>
|
||
<td>476</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21039</th>
|
||
<td>477</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21041</th>
|
||
<td>478</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21043</th>
|
||
<td>479</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21045</th>
|
||
<td>480</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21047</th>
|
||
<td>481</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21049</th>
|
||
<td>482</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21051</th>
|
||
<td>483</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21053</th>
|
||
<td>484</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21055</th>
|
||
<td>485</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21057</th>
|
||
<td>486</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21059</th>
|
||
<td>487</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21061</th>
|
||
<td>488</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21063</th>
|
||
<td>489</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21065</th>
|
||
<td>490</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21067</th>
|
||
<td>491</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21069</th>
|
||
<td>492</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21071</th>
|
||
<td>493</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21073</th>
|
||
<td>494</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21075</th>
|
||
<td>495</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21077</th>
|
||
<td>496</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21079</th>
|
||
<td>497</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21081</th>
|
||
<td>498</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
<tr>
|
||
<th>21083</th>
|
||
<td>499</td>
|
||
<td>20</td>
|
||
<td>id</td>
|
||
<td>infected</td>
|
||
<td>str</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<p>10500 rows × 5 columns</p>
|
||
</div>
|
||
|
||
|
||
|
||
Soil can also process the data for us and return a dataframe with as
|
||
many columns as there are attributes in the environment and the agent
|
||
states:
|
||
|
||
.. code:: ipython3
|
||
|
||
env, agents = process(df)
|
||
agents
|
||
|
||
|
||
|
||
|
||
.. raw:: html
|
||
|
||
<div>
|
||
<style>
|
||
.dataframe thead tr:only-child th {
|
||
text-align: right;
|
||
}
|
||
|
||
.dataframe thead th {
|
||
text-align: left;
|
||
}
|
||
|
||
.dataframe tbody tr th {
|
||
vertical-align: top;
|
||
}
|
||
</style>
|
||
<table border="1" class="dataframe">
|
||
<thead>
|
||
<tr style="text-align: right;">
|
||
<th></th>
|
||
<th></th>
|
||
<th>id</th>
|
||
</tr>
|
||
<tr>
|
||
<th>t_step</th>
|
||
<th>agent_id</th>
|
||
<th></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<th rowspan="30" valign="top">0</th>
|
||
<th>0</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>1</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>10</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>100</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>101</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>102</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>103</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>104</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>105</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>106</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>107</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>108</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>109</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>11</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>110</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>111</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>112</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>113</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>114</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>115</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>116</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>117</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>118</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>119</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>12</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>120</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>121</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>122</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>123</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>124</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>...</th>
|
||
<th>...</th>
|
||
<td>...</td>
|
||
</tr>
|
||
<tr>
|
||
<th rowspan="30" valign="top">20</th>
|
||
<th>72</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>73</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>74</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>75</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>76</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>77</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>78</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>79</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>8</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>80</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>81</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>82</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>83</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>84</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>85</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>86</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>87</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>88</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>89</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>9</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>90</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>91</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>92</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>93</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>94</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>95</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>96</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>97</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>98</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>99</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<p>10500 rows × 1 columns</p>
|
||
</div>
|
||
|
||
|
||
|
||
The index of the results are the simulation step and the agent\_id.
|
||
Hence, we can access the state of the simulation at a given step:
|
||
|
||
.. code:: ipython3
|
||
|
||
agents.loc[0]
|
||
|
||
|
||
|
||
|
||
.. raw:: html
|
||
|
||
<div>
|
||
<style>
|
||
.dataframe thead tr:only-child th {
|
||
text-align: right;
|
||
}
|
||
|
||
.dataframe thead th {
|
||
text-align: left;
|
||
}
|
||
|
||
.dataframe tbody tr th {
|
||
vertical-align: top;
|
||
}
|
||
</style>
|
||
<table border="1" class="dataframe">
|
||
<thead>
|
||
<tr style="text-align: right;">
|
||
<th></th>
|
||
<th>id</th>
|
||
</tr>
|
||
<tr>
|
||
<th>agent_id</th>
|
||
<th></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<th>0</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>1</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>10</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>100</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>101</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>102</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>103</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>104</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>105</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>106</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>107</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>108</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>109</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>11</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>110</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>111</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>112</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>113</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>114</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>115</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>116</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>117</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>118</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>119</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>12</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>120</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>121</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>122</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>123</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>124</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>...</th>
|
||
<td>...</td>
|
||
</tr>
|
||
<tr>
|
||
<th>72</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>73</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>74</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>75</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>76</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>77</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>78</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>79</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>8</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>80</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>81</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>82</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>83</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>84</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>85</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>86</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>87</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>88</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>89</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>9</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>90</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>91</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>92</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>93</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>94</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>95</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>96</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>97</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>98</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>99</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<p>500 rows × 1 columns</p>
|
||
</div>
|
||
|
||
|
||
|
||
Or, we can perform more complex tasks such as showing the agents that
|
||
have changed their state between two simulation steps:
|
||
|
||
.. code:: ipython3
|
||
|
||
changed = agents.loc[1]['id'] != agents.loc[0]['id']
|
||
agents.loc[0][changed]
|
||
|
||
|
||
|
||
|
||
.. raw:: html
|
||
|
||
<div>
|
||
<style>
|
||
.dataframe thead tr:only-child th {
|
||
text-align: right;
|
||
}
|
||
|
||
.dataframe thead th {
|
||
text-align: left;
|
||
}
|
||
|
||
.dataframe tbody tr th {
|
||
vertical-align: top;
|
||
}
|
||
</style>
|
||
<table border="1" class="dataframe">
|
||
<thead>
|
||
<tr style="text-align: right;">
|
||
<th></th>
|
||
<th>id</th>
|
||
</tr>
|
||
<tr>
|
||
<th>agent_id</th>
|
||
<th></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<th>140</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>164</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>170</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>310</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>455</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
</div>
|
||
|
||
|
||
|
||
To focus on specific agents, we can swap the levels of the index:
|
||
|
||
.. code:: ipython3
|
||
|
||
agents1 = agents.swaplevel()
|
||
|
||
.. code:: ipython3
|
||
|
||
agents1.loc['0'].dropna(axis=1)
|
||
|
||
|
||
|
||
|
||
.. raw:: html
|
||
|
||
<div>
|
||
<style>
|
||
.dataframe thead tr:only-child th {
|
||
text-align: right;
|
||
}
|
||
|
||
.dataframe thead th {
|
||
text-align: left;
|
||
}
|
||
|
||
.dataframe tbody tr th {
|
||
vertical-align: top;
|
||
}
|
||
</style>
|
||
<table border="1" class="dataframe">
|
||
<thead>
|
||
<tr style="text-align: right;">
|
||
<th></th>
|
||
<th>id</th>
|
||
</tr>
|
||
<tr>
|
||
<th>t_step</th>
|
||
<th></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<th>0</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>1</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>2</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>3</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>4</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>5</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>6</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>7</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>8</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>9</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>10</th>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>11</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>12</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>13</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>14</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>15</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>16</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>17</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>18</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>19</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>20</th>
|
||
<td>infected</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
</div>
|
||
|
||
|
||
|
||
Plotting data
|
||
~~~~~~~~~~~~~
|
||
|
||
If you don't want to work with pandas, you can also use some pre-defined
|
||
functions from soil to conveniently plot the results:
|
||
|
||
.. code:: ipython3
|
||
|
||
plot_all('soil_output/Spread_barabasi_albert_graph_prob_0.0/', get_count, 'id');
|
||
|
||
|
||
|
||
.. image:: output_54_0.png
|
||
|
||
|
||
|
||
.. image:: output_54_1.png
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
plot_all('soil_output/Spread_barabasi*', get_count, 'id');
|
||
|
||
|
||
|
||
.. image:: output_55_0.png
|
||
|
||
|
||
|
||
.. image:: output_55_1.png
|
||
|
||
|
||
|
||
.. image:: output_55_2.png
|
||
|
||
|
||
|
||
.. image:: output_55_3.png
|
||
|
||
|
||
|
||
.. image:: output_55_4.png
|
||
|
||
|
||
|
||
.. image:: output_55_5.png
|
||
|
||
|
||
|
||
.. image:: output_55_6.png
|
||
|
||
|
||
|
||
.. image:: output_55_7.png
|
||
|
||
|
||
|
||
.. image:: output_55_8.png
|
||
|
||
|
||
|
||
.. image:: output_55_9.png
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
plot_all('soil_output/Spread_erdos*', get_value, 'prob_tv_spread');
|
||
|
||
|
||
|
||
.. image:: output_56_0.png
|
||
|
||
|
||
|
||
.. image:: output_56_1.png
|
||
|
||
|
||
|
||
.. image:: output_56_2.png
|
||
|
||
|
||
|
||
.. image:: output_56_3.png
|
||
|
||
|
||
|
||
.. image:: output_56_4.png
|
||
|
||
|
||
|
||
.. image:: output_56_5.png
|
||
|
||
|
||
|
||
.. image:: output_56_6.png
|
||
|
||
|
||
|
||
.. image:: output_56_7.png
|
||
|
||
|
||
|
||
.. image:: output_56_8.png
|
||
|
||
|
||
|
||
.. image:: output_56_9.png
|
||
|
||
|
||
Manually plotting with pandas
|
||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
||
Although the simplest way to visualize the results of a simulation is to
|
||
use the built-in methods in the analysis module, sometimes the setup is
|
||
more complicated and we need to explore the data a little further.
|
||
|
||
For that, we can use native pandas over the results.
|
||
|
||
Soil provides some convenience methods to simplify common operations:
|
||
|
||
- ``analysis.split_df`` to separate a history dataframe into
|
||
environment and agent parameters.
|
||
- ``analysis.get_count`` to get a dataframe with the value counts for
|
||
different attributes during the simulation.
|
||
- ``analysis.get_value`` to get the evolution of the value of an
|
||
attribute during the simulation.
|
||
|
||
And, as we saw earlier, ``analysis.process`` can turn a dataframe in
|
||
canonical form into a dataframe with a column per attribute.
|
||
|
||
.. code:: ipython3
|
||
|
||
p = read_sql('soil_output/Spread_barabasi_albert_graph_prob_0.0/Spread_barabasi_albert_graph_prob_0.0_trial_0.db.sqlite')
|
||
env, agents = split_df(p);
|
||
|
||
Let's look at the evolution of agent parameters in the simulation
|
||
|
||
.. code:: ipython3
|
||
|
||
res = agents.groupby(by=['t_step', 'key', 'value']).size().unstack(level=[1,2]).fillna(0)
|
||
res.plot();
|
||
|
||
|
||
|
||
.. image:: output_61_0.png
|
||
|
||
|
||
As we can see, ``event_time`` is cluttering our results,
|
||
|
||
.. code:: ipython3
|
||
|
||
del res['event_time']
|
||
res.plot()
|
||
|
||
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
<matplotlib.axes._subplots.AxesSubplot at 0x7fd795b17b38>
|
||
|
||
|
||
|
||
|
||
.. image:: output_63_1.png
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
processed = process_one(agents);
|
||
processed
|
||
|
||
|
||
|
||
|
||
.. raw:: html
|
||
|
||
<div>
|
||
<style>
|
||
.dataframe thead tr:only-child th {
|
||
text-align: right;
|
||
}
|
||
|
||
.dataframe thead th {
|
||
text-align: left;
|
||
}
|
||
|
||
.dataframe tbody tr th {
|
||
vertical-align: top;
|
||
}
|
||
</style>
|
||
<table border="1" class="dataframe">
|
||
<thead>
|
||
<tr style="text-align: right;">
|
||
<th></th>
|
||
<th></th>
|
||
<th>event_time</th>
|
||
<th>has_tv</th>
|
||
<th>id</th>
|
||
</tr>
|
||
<tr>
|
||
<th>t_step</th>
|
||
<th>agent_id</th>
|
||
<th></th>
|
||
<th></th>
|
||
<th></th>
|
||
</tr>
|
||
</thead>
|
||
<tbody>
|
||
<tr>
|
||
<th rowspan="30" valign="top">0</th>
|
||
<th>0</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>1</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>10</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>100</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>101</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>102</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>103</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>104</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>105</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>106</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>107</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>108</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>109</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>11</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>110</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>111</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>112</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>113</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>114</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>115</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>116</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>117</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>118</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>119</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>12</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>120</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>121</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>122</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>123</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>124</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>neutral</td>
|
||
</tr>
|
||
<tr>
|
||
<th>...</th>
|
||
<th>...</th>
|
||
<td>...</td>
|
||
<td>...</td>
|
||
<td>...</td>
|
||
</tr>
|
||
<tr>
|
||
<th rowspan="30" valign="top">20</th>
|
||
<th>73</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>74</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>75</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>76</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>77</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>78</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>79</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>8</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>80</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>81</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>82</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>83</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>84</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>85</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>86</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>87</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>88</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>89</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>9</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>90</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>91</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>92</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>93</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>94</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>95</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>96</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>97</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>98</th>
|
||
<td>0</td>
|
||
<td>False</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>99</th>
|
||
<td>0</td>
|
||
<td>True</td>
|
||
<td>infected</td>
|
||
</tr>
|
||
<tr>
|
||
<th>NewsEnvironmentAgent</th>
|
||
<td>10</td>
|
||
<td>False</td>
|
||
<td>0</td>
|
||
</tr>
|
||
</tbody>
|
||
</table>
|
||
<p>10521 rows × 3 columns</p>
|
||
</div>
|
||
|
||
|
||
|
||
Which is equivalent to:
|
||
|
||
.. code:: ipython3
|
||
|
||
get_count(agents, 'id', 'has_tv').plot()
|
||
|
||
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
<matplotlib.axes._subplots.AxesSubplot at 0x7fd799c15748>
|
||
|
||
|
||
|
||
|
||
.. image:: output_66_1.png
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
get_value(agents, 'event_time').plot()
|
||
|
||
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
<matplotlib.axes._subplots.AxesSubplot at 0x7fd79a228c88>
|
||
|
||
|
||
|
||
|
||
.. image:: output_67_1.png
|
||
|
||
|
||
Dealing with bigger data
|
||
------------------------
|
||
|
||
.. code:: ipython3
|
||
|
||
from soil import analysis
|
||
|
||
.. code:: ipython3
|
||
|
||
!du -xsh ../rabbits/soil_output/rabbits_example/
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
267M ../rabbits/soil_output/rabbits_example/
|
||
|
||
|
||
If we tried to load the entire history, we would probably run out of
|
||
memory. Hence, it is recommended that you also specify the attributes
|
||
you are interested in.
|
||
|
||
.. code:: ipython3
|
||
|
||
p = analysis.plot_all('../rabbits/soil_output/rabbits_example/', analysis.get_count, 'id')
|
||
|
||
|
||
|
||
.. image:: output_72_0.png
|
||
|
||
|
||
|
||
.. image:: output_72_1.png
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
df = analysis.read_sql('../rabbits/soil_output/rabbits_example/rabbits_example_trial_0.db.sqlite', keys=['id', 'rabbits_alive'])
|
||
|
||
.. code:: ipython3
|
||
|
||
states = analysis.get_count(df, 'id')
|
||
states.plot()
|
||
|
||
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
<matplotlib.axes._subplots.AxesSubplot at 0x7fd799b5b2b0>
|
||
|
||
|
||
|
||
|
||
.. image:: output_74_1.png
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
alive = analysis.get_value(df, 'rabbits_alive', 'rabbits_alive', aggfunc='sum').apply(pd.to_numeric)
|
||
alive.plot()
|
||
|
||
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
<matplotlib.axes._subplots.AxesSubplot at 0x7fd796161cf8>
|
||
|
||
|
||
|
||
|
||
.. image:: output_75_1.png
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
h = alive.join(states);
|
||
h.plot();
|
||
|
||
|
||
.. parsed-literal::
|
||
|
||
/home/jfernando/.local/lib/python3.6/site-packages/pandas/core/reshape/merge.py:551: UserWarning: merging between different levels can give an unintended result (1 levels on the left, 2 on the right)
|
||
warnings.warn(msg, UserWarning)
|
||
|
||
|
||
|
||
.. image:: output_76_1.png
|
||
|
||
|
||
.. code:: ipython3
|
||
|
||
states[[('id','newborn'),('id','fertile'),('id', 'pregnant')]].sum(axis=1).sub(alive['rabbits_alive'], fill_value=0)
|