mirror of
https://github.com/gsi-upm/soil
synced 2025-04-24 21:59:05 +00:00
299 lines
9.2 KiB
Python
299 lines
9.2 KiB
Python
from __future__ import annotations
|
|
|
|
import os
|
|
import sqlite3
|
|
import math
|
|
import random
|
|
import logging
|
|
import inspect
|
|
|
|
from typing import Any, Dict, Optional, Union
|
|
from collections import namedtuple
|
|
from time import time as current_time
|
|
from copy import deepcopy
|
|
from networkx.readwrite import json_graph
|
|
|
|
|
|
import networkx as nx
|
|
|
|
from mesa import Model
|
|
from mesa.datacollection import DataCollector
|
|
|
|
from . import agents as agentmod, config, serialization, utils, time, network
|
|
|
|
|
|
class BaseEnvironment(Model):
|
|
"""
|
|
The environment is key in a simulation. It controls how agents interact,
|
|
and what information is available to them.
|
|
|
|
This is an opinionated version of `mesa.Model` class, which adds many
|
|
convenience methods and abstractions.
|
|
|
|
The environment parameters and the state of every agent can be accessed
|
|
both by using the environment as a dictionary and with the environment's
|
|
:meth:`soil.environment.Environment.get` method.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
id="unnamed_env",
|
|
seed="default",
|
|
schedule=None,
|
|
dir_path=None,
|
|
interval=1,
|
|
agent_class=None,
|
|
agents: [tuple[type, Dict[str, Any]]] = {},
|
|
agent_reporters: Optional[Any] = None,
|
|
model_reporters: Optional[Any] = None,
|
|
tables: Optional[Any] = None,
|
|
**env_params,
|
|
):
|
|
|
|
super().__init__(seed=seed)
|
|
self.env_params = env_params or {}
|
|
|
|
self.current_id = -1
|
|
|
|
self.id = id
|
|
|
|
self.dir_path = dir_path or os.getcwd()
|
|
|
|
if schedule is None:
|
|
schedule = time.TimedActivation(self)
|
|
self.schedule = schedule
|
|
|
|
self.agent_class = agent_class or agentmod.BaseAgent
|
|
|
|
self.interval = interval
|
|
self.init_agents(agents)
|
|
|
|
self.logger = utils.logger.getChild(self.id)
|
|
|
|
self.datacollector = DataCollector(
|
|
model_reporters=model_reporters,
|
|
agent_reporters=agent_reporters,
|
|
tables=tables,
|
|
)
|
|
|
|
def _agent_from_dict(self, agent):
|
|
"""
|
|
Translate an agent dictionary into an agent
|
|
"""
|
|
agent = dict(**agent)
|
|
cls = agent.pop("agent_class", None) or self.agent_class
|
|
unique_id = agent.pop("unique_id", None)
|
|
if unique_id is None:
|
|
unique_id = self.next_id()
|
|
|
|
return serialization.deserialize(cls)(unique_id=unique_id, model=self, **agent)
|
|
|
|
def init_agents(self, agents: Union[config.AgentConfig, [Dict[str, Any]]] = {}):
|
|
"""
|
|
Initialize the agents in the model from either a `soil.config.AgentConfig` or a list of
|
|
dictionaries that each describes an agent.
|
|
|
|
If given a list of dictionaries, an agent will be created for each dictionary. The agent
|
|
class can be specified through the `agent_class` key. The rest of the items will be used
|
|
as parameters to the agent.
|
|
"""
|
|
if not agents:
|
|
return
|
|
|
|
lst = agents
|
|
override = []
|
|
if not isinstance(lst, list):
|
|
if not isinstance(agents, config.AgentConfig):
|
|
lst = config.AgentConfig(**agents)
|
|
if lst.override:
|
|
override = lst.override
|
|
lst = self._agent_dict_from_config(lst)
|
|
|
|
# TODO: check override is working again. It cannot (easily) be part of agents.from_config anymore,
|
|
# because it needs attribute such as unique_id, which are only present after init
|
|
new_agents = [self._agent_from_dict(agent) for agent in lst]
|
|
|
|
for a in new_agents:
|
|
self.schedule.add(a)
|
|
|
|
for rule in override:
|
|
for agent in agentmod.filter_agents(self.schedule._agents, **rule.filter):
|
|
for attr, value in rule.state.items():
|
|
setattr(agent, attr, value)
|
|
|
|
def _agent_dict_from_config(self, cfg):
|
|
return agentmod.from_config(cfg, random=self.random)
|
|
|
|
@property
|
|
def agents(self):
|
|
return agentmod.AgentView(self.schedule._agents)
|
|
|
|
def find_one(self, *args, **kwargs):
|
|
return agentmod.AgentView(self.schedule._agents).one(*args, **kwargs)
|
|
|
|
def count_agents(self, *args, **kwargs):
|
|
return sum(1 for i in self.agents(*args, **kwargs))
|
|
|
|
@property
|
|
def now(self):
|
|
if self.schedule:
|
|
return self.schedule.time
|
|
raise Exception(
|
|
"The environment has not been scheduled, so it has no sense of time"
|
|
)
|
|
|
|
def add_agent(self, agent_class, unique_id=None, **kwargs):
|
|
a = None
|
|
if unique_id is None:
|
|
unique_id = self.next_id()
|
|
|
|
a = agent_class(model=self, unique_id=unique_id, **args)
|
|
|
|
self.schedule.add(a)
|
|
return a
|
|
|
|
def log(self, message, *args, level=logging.INFO, **kwargs):
|
|
if not self.logger.isEnabledFor(level):
|
|
return
|
|
message = message + " ".join(str(i) for i in args)
|
|
message = " @{:>3}: {}".format(self.now, message)
|
|
for k, v in kwargs:
|
|
message += " {k}={v} ".format(k, v)
|
|
extra = {}
|
|
extra["now"] = self.now
|
|
extra["id"] = self.id
|
|
return self.logger.log(level, message, extra=extra)
|
|
|
|
def step(self):
|
|
"""
|
|
Advance one step in the simulation, and update the data collection and scheduler appropriately
|
|
"""
|
|
super().step()
|
|
self.logger.info(f"--- Step {self.now:^5} ---")
|
|
self.schedule.step()
|
|
self.datacollector.collect(self)
|
|
|
|
def __contains__(self, key):
|
|
return key in self.env_params
|
|
|
|
def get(self, key, default=None):
|
|
"""
|
|
Get the value of an environment attribute.
|
|
Return `default` if the value is not set.
|
|
"""
|
|
return self.env_params.get(key, default)
|
|
|
|
def __getitem__(self, key):
|
|
return self.env_params.get(key)
|
|
|
|
def __setitem__(self, key, value):
|
|
return self.env_params.__setitem__(key, value)
|
|
|
|
def __str__(self):
|
|
return str(self.env_params)
|
|
|
|
|
|
class NetworkEnvironment(BaseEnvironment):
|
|
"""
|
|
The NetworkEnvironment is an environment that includes one or more networkx.Graph intances
|
|
and methods to associate agents to nodes and vice versa.
|
|
"""
|
|
|
|
def __init__(
|
|
self, *args, topology: Union[config.NetConfig, nx.Graph] = None, **kwargs
|
|
):
|
|
agents = kwargs.pop("agents", None)
|
|
super().__init__(*args, agents=None, **kwargs)
|
|
|
|
self._set_topology(topology)
|
|
|
|
self.init_agents(agents)
|
|
|
|
def init_agents(self, *args, **kwargs):
|
|
"""Initialize the agents from a"""
|
|
super().init_agents(*args, **kwargs)
|
|
for agent in self.schedule._agents.values():
|
|
if hasattr(agent, "node_id"):
|
|
self._init_node(agent)
|
|
|
|
def _init_node(self, agent):
|
|
"""
|
|
Make sure the node for a given agent has the proper attributes.
|
|
"""
|
|
self.G.nodes[agent.node_id]["agent"] = agent
|
|
|
|
def _agent_dict_from_config(self, cfg):
|
|
return agentmod.from_config(cfg, topology=self.G, random=self.random)
|
|
|
|
def _agent_from_dict(self, agent, unique_id=None):
|
|
agent = dict(agent)
|
|
|
|
if not agent.get("topology", False):
|
|
return super()._agent_from_dict(agent)
|
|
|
|
if unique_id is None:
|
|
unique_id = self.next_id()
|
|
node_id = agent.get("node_id", None)
|
|
if node_id is None:
|
|
node_id = network.find_unassigned(self.G, random=self.random)
|
|
agent["node_id"] = node_id
|
|
agent["unique_id"] = unique_id
|
|
agent["topology"] = self.G
|
|
node_attrs = self.G.nodes[node_id]
|
|
node_attrs.update(agent)
|
|
agent = node_attrs
|
|
|
|
a = super()._agent_from_dict(agent)
|
|
self._init_node(a)
|
|
|
|
return a
|
|
|
|
def _set_topology(self, cfg=None, dir_path=None):
|
|
if cfg is None:
|
|
cfg = nx.Graph()
|
|
elif not isinstance(cfg, nx.Graph):
|
|
cfg = network.from_config(cfg, dir_path=dir_path or self.dir_path)
|
|
|
|
self.G = cfg
|
|
|
|
@property
|
|
def network_agents(self):
|
|
for a in self.schedule._agents:
|
|
if isinstance(a, agentmod.NetworkAgent):
|
|
yield a
|
|
|
|
def add_node(self, agent_class, unique_id=None, node_id=None, **kwargs):
|
|
if unique_id is None:
|
|
unique_id = self.next_id()
|
|
if node_id is None:
|
|
node_id = network.find_unassigned(
|
|
G=self.G, shuffle=True, random=self.random
|
|
)
|
|
|
|
if node_id in G.nodes:
|
|
self.G.nodes[node_id]["agent"] = None # Reserve
|
|
else:
|
|
self.G.add_node(node_id)
|
|
|
|
a = self.add_agent(
|
|
unique_id=unique_id, agent_class=agent_class, node_id=node_id, **kwargs
|
|
)
|
|
a["visible"] = True
|
|
return a
|
|
|
|
def agent_for_node_id(self, node_id):
|
|
return self.G.nodes[node_id].get("agent")
|
|
|
|
def populate_network(self, agent_class, weights=None, **agent_params):
|
|
if not hasattr(agent_class, "len"):
|
|
agent_class = [agent_class]
|
|
weights = None
|
|
for (node_id, node) in self.G.nodes(data=True):
|
|
if "agent" in node:
|
|
continue
|
|
a_class = self.random.choices(agent_class, weights)[0]
|
|
self.add_agent(node_id=node_id, agent_class=a_class, **agent_params)
|
|
|
|
|
|
Environment = NetworkEnvironment
|