""" This is an example that adds soil agents and environment in a normal mesa workflow. """ from mesa import Agent as MesaAgent from mesa.space import MultiGrid # from mesa.time import RandomActivation from mesa.datacollection import DataCollector from mesa.batchrunner import BatchRunner import networkx as nx from soil import NetworkAgent, Environment, serialization def compute_gini(model): agent_wealths = [agent.wealth for agent in model.agents] x = sorted(agent_wealths) N = len(list(model.agents)) B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x)) return 1 + (1 / N) - 2 * B class MoneyAgent(MesaAgent): """ A MESA agent with fixed initial wealth. It will only share wealth with neighbors based on grid proximity """ def __init__(self, unique_id, model, wealth=1): super().__init__(unique_id=unique_id, model=model) self.wealth = wealth def move(self): possible_steps = self.model.grid.get_neighborhood( self.pos, moore=True, include_center=False ) new_position = self.random.choice(possible_steps) self.model.grid.move_agent(self, new_position) def give_money(self): cellmates = self.model.grid.get_cell_list_contents([self.pos]) if len(cellmates) > 1: other = self.random.choice(cellmates) other.wealth += 1 self.wealth -= 1 def step(self): print("Crying wolf", self.pos) self.move() if self.wealth > 0: self.give_money() class SocialMoneyAgent(NetworkAgent, MoneyAgent): wealth = 1 def give_money(self): cellmates = set(self.model.grid.get_cell_list_contents([self.pos])) friends = set(self.get_neighboring_agents()) self.info("Trying to give money") self.info("Cellmates: ", cellmates) self.info("Friends: ", friends) nearby_friends = list(cellmates & friends) if len(nearby_friends): other = self.random.choice(nearby_friends) other.wealth += 1 self.wealth -= 1 def graph_generator(n=5): G = nx.Graph() for ix in range(n): G.add_edge(0, ix) return G class MoneyEnv(Environment): """A model with some number of agents.""" def __init__( self, width, height, N, generator=graph_generator, agent_class=SocialMoneyAgent, topology=None, **kwargs ): generator = serialization.deserialize(generator) agent_class = serialization.deserialize(agent_class, globs=globals()) topology = generator(n=N) super().__init__(topology=topology, N=N, **kwargs) self.grid = MultiGrid(width, height, False) self.populate_network(agent_class=agent_class) # Create agents for agent in self.agents: x = self.random.randrange(self.grid.width) y = self.random.randrange(self.grid.height) self.grid.place_agent(agent, (x, y)) self.datacollector = DataCollector( model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"} ) if __name__ == "__main__": fixed_params = { "generator": nx.complete_graph, "width": 10, "network_agents": [{"agent_class": SocialMoneyAgent, "weight": 1}], "height": 10, } variable_params = {"N": range(10, 100, 10)} batch_run = BatchRunner( MoneyEnv, variable_parameters=variable_params, fixed_parameters=fixed_params, iterations=5, max_steps=100, model_reporters={"Gini": compute_gini}, ) batch_run.run_all() run_data = batch_run.get_model_vars_dataframe() run_data.head() print(run_data.Gini)