{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-10-19T12:41:48.007238Z",
"start_time": "2017-10-19T14:41:47.980725+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"# Soil Tutorial"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-02T16:44:14.120953Z",
"start_time": "2017-07-02T18:44:14.117152+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Introduction"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_style": "center",
"collapsed": true,
"hideCode": false,
"hidePrompt": false,
"jupyter": {
"outputs_hidden": true
}
},
"source": [
"This notebook is an introduction to the soil agent-based social network simulation framework.\n",
"Soil is built on top of [Mesa](https://mesa.readthedocs.io/), a general simulation library, and it introduces features specifically tailored to social simulations.\n",
"\n",
"It will focus on a specific use case: studying the propagation of disinformation through TV and social networks.\n",
"In the following sections we will:\n",
"\n",
"* Cover the basics of mesa and Soil (environments, agents, etc.)\n",
"* Simulate a basic scenario with a single agent\n",
"* Add more complexity to our scenario\n",
"* Run simulations using different configurations\n",
"* Analyze the results of each simulation\n",
"\n",
"The simulations in this tutorial will be kept simple, for the sake of clarity.\n",
"However, they provide all the building blocks necessary to model, run and analyse more complex scenarios."
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-03T13:38:48.052876Z",
"start_time": "2017-07-03T15:38:48.044762+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"But before that, let's import the soil module and networkx."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-03T10:58:13.451481Z",
"start_time": "2017-11-03T11:58:12.643469+01:00"
},
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"from soil import *\n",
"import soil\n",
"import networkx as nx\n",
"\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-03T13:41:19.788717Z",
"start_time": "2017-07-03T15:41:19.785448+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Basic concepts"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Simulations are based on the concept of a **model** (or environment).\n",
"A model represents the world where the simulation will be run.\n",
"It usually contains:\n",
"\n",
" * All the simulation parameters (given in the constructor)\n",
" * A reference to every agent in the simulation\n",
" * A data collector, which will capture any relevant information for agents (agent reporters) or the model itself (model reporters)\n",
" * A scheduler (`soil.time.Scheduler` or `mesa.time.BaseScheduler`), which is responsible of coordinating the activation of agents at each simulation step\n",
" * A grid or space where agents can move (optional)\n",
" \n",
"Soil introduces the `soil.NetworkEnvironment` model class.\n",
"This type of environment contain a network topology (accessible through through `self.G`).\n",
"The topology can be manually provided to the environment, or it can be randomly generated through multiple network parameters.\n",
" \n",
"**Agents** are programmed with their individual behaviors, and they can communicate with the environment and with other agents. There are several types of agents, depending on their behavior and their capabilities. Some examples of built-in types of agents are:\n",
" - Network agents, which are linked to a node in the topology. They have additional methods to access their neighbors.\n",
" - FSM (Finite state machine) agents. Their behavior is defined in terms of states, and an agent will move from one state to another.\n",
" - Evented agents, an actor-based model of agents, which can communicate with one another through message passing.\n",
" - For convenience, a general `soil.Agent` class is provided, which inherits from Network, FSM and Evented at the same time.\n",
"\n",
"Soil provides several abstractions over events to make developing agents easier.\n",
"This means you can use events (timeouts, delays) in soil.\n",
"But, for the most part, we will assume your models will be step-based."
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-02T15:55:12.933978Z",
"start_time": "2017-07-02T17:55:12.930860+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"## Modeling behaviour"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-03T13:49:31.269687Z",
"start_time": "2017-07-03T15:49:31.257850+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"Our first step will be to model how every person in the social network reacts to hearing a piece of disinformation (news).\n",
"We will follow a very simple model based on a finite state machine.\n",
"\n",
"A person may be in one of two states: **neutral** (the default state) and **infected**.\n",
"A neutral person may hear about a piece of disinformation either on the TV (with probability **prob_tv_spread**) or through their friends.\n",
"Once a person has heard the news, they will spread it to their friends (with a probability **prob_neighbor_spread**).\n",
"Some users do not have a TV, so they will only be infected by their friends.\n",
"\n",
"The spreading probabilities will change over time due to different factors.\n",
"We will represent this variance using an additional agent which will not be a part of the social network."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### A simple model"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"class SimpleModel(soil.Environment):\n",
" max_steps_neutral = 3"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Modelling Agents\n",
"\n",
"The following sections will cover the basics of developing agents in SOIL.\n",
"\n",
"For more advanced patterns, please check the **examples** folder in the repository."
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"#### Basic agents"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-03T14:03:07.171127Z",
"start_time": "2017-07-03T16:03:07.165779+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"The most basic agent in Soil is ``soil.BaseAgent``.\n",
"These agents implement their behavior by overriding the `step` method, which will be run in every simulation step.\n",
"Only one agent will be running at any given time, and it will be doing so until the `step` function returns.\n",
"\n",
"Agents can access their environment through their ``self.model`` attribute.\n",
"This is most commonly used to get access to the environment parameters and methods.\n",
"Here is a simple example of an agent:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-03T14:03:07.171127Z",
"start_time": "2017-07-03T16:03:07.165779+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"class ExampleAgent(BaseAgent):\n",
" def init(self):\n",
" self.is_infected = False\n",
" self.steps_neutral = 0\n",
" \n",
" def step(self):\n",
" # Implement agent logic\n",
" if self.is_infected:\n",
" ... # Do something, like infecting other agents\n",
" return self.die(\"No need to do anything else\") # Stop forever\n",
" else:\n",
" ... # Do something\n",
" self.steps_neutral += 1\n",
" if self.steps_neutral > self.model.max_steps_neutral:\n",
" self.is_infected = True"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-03T14:03:07.171127Z",
"start_time": "2017-07-03T16:03:07.165779+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"Any kind of agent behavior can be implemented with this `step` function.\n",
"dead, it has two main drawbacks: 1) complex behaviors can get difficult both write and understand; 2) these behaviors are not composable."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's see how the agent works:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Agent 0 is alive and infected\n",
"Agent 0 is alive and infected\n",
"Agent 0 is alive and infected\n",
"Agent 0 is alive and not infected\n",
"Agent 0 is dead and not infected\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/j/.cache/pypoetry/virtualenvs/soil-cCX5yKRx-py3.10/lib/python3.10/site-packages/mesa/time.py:82: FutureWarning: The AgentSet is experimental. It may be changed or removed in any and all future releases, including patch releases.\n",
"We would love to hear what you think about this new feature. If you have any thoughts, share them with us here: https://github.com/projectmesa/mesa/discussions/1919\n",
" self._agents: AgentSet = AgentSet(agents, model)\n"
]
}
],
"source": [
"model = SimpleModel()\n",
"num_steps = model.max_steps_neutral+2\n",
"a = ExampleAgent(unique_id=0, model=model)\n",
"for i in range(num_steps):\n",
" ret = a.step()\n",
" print(f\"Agent {a.unique_id} is {'alive' if a.alive else 'dead'} and {'infected' if not a.is_infected else 'not infected'}\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Agent 0 is alive and infected @ 1\n",
"Agent 0 is alive and infected @ 2\n",
"Agent 0 is alive and infected @ 3\n",
"Agent 0 is alive and not infected @ 4\n",
"Agent 0 is dead and not infected @ inf\n"
]
}
],
"source": [
"model = SimpleModel()\n",
"a = model.add_agent(ExampleAgent)\n",
"for i in range(num_steps):\n",
" model.step()\n",
" print(f\"Agent {a.unique_id} is {'alive' if a.alive else 'dead'} and {'infected' if not a.is_infected else 'not infected'} @ {model.now}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-03T14:03:07.171127Z",
"start_time": "2017-07-03T16:03:07.165779+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"#### FSM agents\n",
"\n",
"One way to solve both issues is to model agents as **[Finite-state Machines](https://en.wikipedia.org/wiki/Finite-state_machine)** (FSM, for short).\n",
"FSM define a series of possible states for the agent, and changes between these states.\n",
"These states can be modelled and extended independently.\n",
"\n",
"This is modelled in Soil through the `soil.FSM` class.\n",
"Agents that inherit from ``soil.FSM`` do not need to specify a ``step`` method.\n",
"Instead, we describe each finite state with a function.\n",
"To change to another state, a function may return the new state, or the ``id`` of a state.\n",
"If no state is returned, the state remains unchanged.\n",
"\n",
"The current state of the agent can be checked with ``agent.state_id``.\n",
"That state id can be used to look for other agents in that specific state.\n",
"\n",
"Our previous example could be expressed like this:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-03T14:03:07.171127Z",
"start_time": "2017-07-03T16:03:07.165779+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"class FSMExample(FSM):\n",
"\n",
" def init(self):\n",
" self.steps_neutral = 0\n",
" \n",
" @state(default=True)\n",
" def neutral(self):\n",
" ... # Do something\n",
" self.steps_neutral += 1\n",
" if self.steps_neutral > self.model.max_steps_neutral:\n",
" return self.infected # Change state\n",
"\n",
" @state\n",
" def infected(self):\n",
" ... # Do something\n",
" return self.die(\"No need to do anything else\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Agent 0 is alive and neutral @ 1\n",
"Agent 0 is alive and neutral @ 2\n",
"Agent 0 is alive and neutral @ 3\n",
"Agent 0 is alive and infected @ 4\n",
"Agent 0 is dead and dead @ inf\n"
]
}
],
"source": [
"model = SimpleModel()\n",
"a = model.add_agent(FSMExample)\n",
"for i in range(num_steps):\n",
" ret = model.step()\n",
" print(f\"Agent {a.unique_id} is {'alive' if a.alive else 'dead'} and {a.state_id} @ {model.now}\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"#### Telling the scheduler when to wake up an agent\n",
"\n",
"By default, every agent will be called in every simulation step, and the time elapsed between two steps is controlled by the `default_interval` attribute in the environment.\n",
"\n",
"But agents may signal the scheduler how long to wait before calling them again by returning (or `yield`ing) a value other than `None`.\n",
"This is especially useful when an agent is going to be dormant for a long time.\n",
"There are two convenience methods to calculate the value to return: `Agent.delay`, which takes a time delay; and `Agent.at`, which takes an absolute time at which the agent should be awaken.\n",
"A return (or `yield`) value of `None` will default to a wait of 1 unit of time.\n",
"\n",
"When an `FSM` agent returns, it may signal two things: how long to wait, and a state to transition to.\n",
"This can be done by using the `delay` and `at` methods of each state."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"class FSMExampleDelayed(FSMExample):\n",
" \n",
" @state(default=True)\n",
" def neutral(self):\n",
" return self.infected.delay(self.model.max_steps_neutral)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Agent 0 is alive and infected @ 3.0\n",
"Agent 0 is dead and dead @ inf\n",
"Agent 0 is dead and dead @ inf\n",
"Agent 0 is dead and dead @ inf\n",
"Agent 0 is dead and dead @ inf\n"
]
}
],
"source": [
"model = SimpleModel()\n",
"a = model.add_agent(FSMExampleDelayed)\n",
"for i in range(num_steps):\n",
" ret = model.step()\n",
" print(f\"Agent {a.unique_id} is {'alive' if a.alive else 'dead'} and {a.state_id} @ {model.now}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-02T12:22:53.931963Z",
"start_time": "2017-07-02T14:22:53.928340+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Environment agents"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"In our simulation, we need a way to model how TV broadcasts news, and those that have a TV are susceptible to it.\n",
"We will only model one very viral TV broadcast, which we will call an `event`, which has a high chance of infecting users with a TV.\n",
"\n",
"\n",
"There are several ways to model this behavior.\n",
"We will do it with an Environment Agent.\n",
"Environment agents are regular agents that interact with the environment but are invisible to other agents."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-03T10:58:17.653736Z",
"start_time": "2017-11-03T11:58:17.612944+01:00"
},
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"class EventGenerator(BaseAgent):\n",
" def __init__(self, *args, **kwargs):\n",
" super().__init__(*args, **kwargs)\n",
"\n",
" def step(self):\n",
" # Do nothing until the time of the event\n",
" yield self.at(self.model.event_time)\n",
" self.debug(\"TV event happened\")\n",
" self.model.prob_tv_spread = 0.5\n",
" self.model.prob_neighbor_spread = min(self.model.prob_neighbor_spread*2, 1)\n",
" yield self.delay()\n",
" self.model.prob_tv_spread = 0\n",
"\n",
" while self.alive:\n",
" self.model.prob_neighbor_spread = self.model.prob_neighbor_spread * self.model.neighbor_factor\n",
" if self.model.prob_neighbor_spread < 0.01:\n",
" return self.die(\"neighbors can no longer spread the rumour\")\n",
" yield self.delay()"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Environment (Model)\n",
"\n",
"Let's define a environment model to test our event generator agent.\n",
"This environment will have a single agent (the event generator).\n",
"We will also tell the environment to save the value of `prob_tv_spread` after every step:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"class NewsEnvSimple(NetworkEnvironment):\n",
" \n",
" # Here we set the default parameters for our model\n",
" # We will be able to override them on a per-simulation basis\n",
" prob_tv_spread = 0.1\n",
" prob_neighbor_spread = 0.1\n",
" event_time = 10\n",
" neighbor_factor = 0.9\n",
"\n",
" \n",
" # This function initializes the model. It is run right at the end of the `__init__` function.\n",
" def init(self):\n",
" self.add_model_reporter(\"prob_tv_spread\") # save prob_tv_spread at every step\n",
" self.add_agent(EventGenerator)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Once the environment has been defined, we can quickly run our simulation through the `run` method on NewsEnv:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "86199270e7f74321bfc4481c95942d67",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"NewsEnvSimple: 0%| | 0/1 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
step
\n",
"
agent_count
\n",
"
prob_tv_spread
\n",
"
\n",
"
\n",
"
time
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0.0
\n",
"
0
\n",
"
1
\n",
"
0.1
\n",
"
\n",
"
\n",
"
10.0
\n",
"
1
\n",
"
1
\n",
"
0.1
\n",
"
\n",
"
\n",
"
11.0
\n",
"
2
\n",
"
1
\n",
"
0.5
\n",
"
\n",
"
\n",
"
12.0
\n",
"
3
\n",
"
1
\n",
"
0.0
\n",
"
\n",
"
\n",
"
13.0
\n",
"
4
\n",
"
1
\n",
"
0.0
\n",
"
\n",
"
\n",
"
14.0
\n",
"
5
\n",
"
1
\n",
"
0.0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" step agent_count prob_tv_spread\n",
"time \n",
"0.0 0 1 0.1\n",
"10.0 1 1 0.1\n",
"11.0 2 1 0.5\n",
"12.0 3 1 0.0\n",
"13.0 4 1 0.0\n",
"14.0 5 1 0.0"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"its = NewsEnvSimple.run(iterations=1, max_time=14)\n",
"its[0].model_df()"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"As we can see, the event occurred right after `t=10`, so by `t=11` the value of `prob_tv_spread` was already set to `0.5`.\n",
"\n",
"You may notice nothing happened between `t=0` and `t=1`.\n",
"That is because there aren't any other agents in the simulation, and our event generator explicitly waited until `t=10`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also get more information if we run the simulation with logging set to DEBUG:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "468d9985226a4f0cac12f62e566bce1b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"NewsEnvSimple: 0%| | 0/1 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"NewsEnvSimple.run(iterations=1, max_time=14);"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Network agents"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-03T14:03:07.171127Z",
"start_time": "2017-07-03T16:03:07.165779+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"In our disinformation scenario, we will model our agents as a FSM with two states: ``neutral`` (default) and ``infected``.\n",
"\n",
"Here's the code:"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-03T10:58:16.051690Z",
"start_time": "2017-11-03T11:58:16.006044+01:00"
},
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"class NewsSpread(Agent):\n",
" has_tv = False\n",
" infected_by_friends = False\n",
" \n",
" # The state decorator is used to define the states of the agent\n",
" @state(default=True)\n",
" def neutral(self):\n",
" # The agent might have been infected by their infected friends since the last time they were checked\n",
" if self.infected_by_friends:\n",
" # Automatically transition to the infected state\n",
" return self.infected\n",
" # If the agent has a TV, they might be infected by the evenn\n",
" if self.has_tv:\n",
" if self.prob(self.model.prob_tv_spread):\n",
" self.info(\"INFECTED\")\n",
" return self.infected\n",
" \n",
" @state\n",
" def infected(self):\n",
" for neighbor in self.iter_neighbors(state_id=self.neutral.id):\n",
" if self.prob(self.model.prob_neighbor_spread):\n",
" neighbor.infected_by_friends = True\n",
" return self.delay(7) # Wait for 7 days before trying to infect their friends again"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"We can check that our states are well defined:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"data": {
"text/plain": [
"['dead', 'neutral', 'infected']"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"NewsSpread.states()"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Environment (Model)"
]
},
{
"cell_type": "markdown",
"metadata": {
"cell_style": "split",
"hideCode": false,
"hidePrompt": false
},
"source": [
"Let's modify our simple simulation.\n",
"We will add a network of agents of type NewsSpread.\n",
"\n",
"Only one agent (0) will have a TV (in blue)."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"cell_style": "split",
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgMAAAGFCAYAAABg2vAPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcyklEQVR4nO3df3Cc9Z3Y8ffKa/2w1xLYYCjgUNnKJJY5ajAT0uT4oWJzsUPSy7SZ6UzTcDO2znaLb+Y602SKTRqCHa6dm+kcZmq7Fkkh7XQ60xvKBew7GyJiE7gcPwIEy6VYVsDYIcT4rB82krzW9o9HC8aRdlf2Pvto9/t+zTBitft895P8ozfPs/t9UrlcLockSQpWXdIDSJKkZBkDkiQFzhiQJClwxoAkSYEzBiRJCpwxIElS4IwBSZICly7lRWNjYxw7dow5c+aQSqXinkmSJJVBLpdjcHCQq666irq6yf/7v6QYOHbsGAsWLCjbcJIkqXKOHDnCNddcM+nzJcXAnDlzPlqsubm5PJNJkqRYDQwMsGDBgo/+jk+mpBjIXxpobm42BiRJqjLFLvH7AUJJkgJX0pkBSZIUg6EhOHQIRkagoQHa2iCTqfgYxoAkSZXU0wPbt8OuXXD4MJx78+BUChYuhFWrYN06aG+vyEheJpAkqRL6+uDOO2HJEti2DXp7PxkCED3u7Y2eX7Iken1fX+yjGQOSJMWtqyv6r/zu7uhxNlv49fnnu7uj47q6Yh3PGJAkKU5btkBnJwwPF4+A82Wz0XGdndE6MTEGJEmKS1cXbNpUnrU2bYJHHinPWucxBiRJikNfH2zYUPLLVwApoLHQi+65J5bPEBgDkiTFYe3aki8LvAg8XcoLs9lo3TIzBiRJKreeHti7t+QY+GfApUBLsRdms9G6Bw9e5ICfZAxIklRu27dDurStfLYCR4Cdpa6dTkdfPSwjY0CSpHLbtaukswKjwLeAxURnB0qSzcLu3Rc+2wSMAUmSymlwMNpZsATfAIaBv5zqe/T2RlsZl4kxIElSOU20s+AE3gL+N3AX0ZmBKcnlonsalIkxIElSOY2MlPSyPyS6QdD/jPl9SuGNiiRJKqeGhqIv2Qv0EH1O4NVzfp8FxoDngH8ALLrI9ymVMSBJUjm1tUV3HyxwqeDA+M+/ZOLPC9wCLAV+MdkCqVT0PmViDEiSVE6ZTHQb4t7eSV+yEvjNBL//z0RnB/4dcFOh91i0KHqfMjEGJEkqt1Wror0AJvl64WeAByf4/TaibxdM9NxH0mlYufKiRzyXHyCUJKnc1q2b+h0KS5XNwvr1ZV3SGJAkqdza22HFipJ3Icw7SXRmYFLpdLTu4il/GbEgY0CSpDjs2DHlGCgqnY7WLTNjQJKkOLS2wtat5V3z4YejdcvMGJAkKS5r1sDmzeVZa8sWWL26PGudxxiQJClOGzfCzp3Q2Dj1ywbpdHRcVxfce28882EMSJIUvzVroKcHOjqix8WiIP98R0d0XExnBPKMAUmSKqG1FfbsgQMHoq8G5ncqPFd+Z8H166MI2LMnls8InM9NhyRJqqT2dnjooejfh4aiuw+OjET3GmhrK+vOgqUyBiRJSkomA0uXJj2FlwkkSQqdMSBJUuCMAUmSAmcMSJIUOGNAkqTAGQOSJAXOGJAkKXDGgCRJgTMGJEkKnDEgSVLgjAFJkgJnDEiSFDhjQJKkwBkDkiQFzhiQJClwxoAkSYEzBiRJCpwxIElS4IwBSZICZwxIkhQ4Y0CSpMAZA5IkBc4YkCQpcMaAJEmBMwYkSQqcMSBJUuCMAUmSAmcMSJIUOGNAkqTAGQOSJAXOGJAkKXDGgCRJgTMGJEkKnDEgSVLgjAFJkgJnDEiSFDhjQJKkwBkDkiQFzhiQJClwxoAkSYEzBiRJCpwxIElS4IwBSZICZwxIkhQ4Y0CSpMAZA5IkBc4YkCQpcMaAJEmBMwYkSQqcMSBJUuCMAUmSAmcMSJIUOGNAkqTAGQOSJAXOGJAkKXDGgCRJgTMGJEkKnDEgSVLgjAFJkgJnDEiSFDhjQJKkwBkDkiQFzhiQJClwxoAkSYEzBiRJCpwxIElS4IwBSZICZwxIkhQ4Y0CSpMAZA5IkBc4YkCQpcMaAJEmBMwYkSQqcMSBJUuCMAUmSAmcMSJIUOGNAkqTAGQOSJAXOGJAkKXDGgCRJgTMGJEkKnDEgSVLgjAFJkgJnDEiSFDhjQJKkwBkDkiQFzhiQJClwxoAkSYEzBiRJCpwxIElS4IwBSZICZwxIkhQ4Y0CSpMClkx4AgKEhOHQIRkagoQHa2iCTSXoqSZKCkFwM9PTA9u2waxccPgy53MfPpVKwcCGsWgXr1kF7e2JjSpJU6yp/maCvD+68E5YsgW3boLf3kyEA0ePe3uj5JUui1/f1VXxUSZJCUNkY6OqK/iu/uzt6nM0Wfn3++e7u6LiurnjnkyQpQJWLgS1boLMThoeLR8D5stnouM7OaB1JklQ2lYmBri7YtKk8a23aBI88Up61JElSBWKgrw82bJjwqSeAa4CZQGp8mBbgvmJr3nOPnyGQJKlM4o+BtWsnvSzwKjAM/D7wr4A/HP/9ZuAbhdbMZqN1JUnSRUvlcud/lP93DQwM0NLSQn9/P83NzaWv3tMTfRtgCkaJzg6MASOlrL948ZTWlyQpFKX+/Y73zMD27ZCe2lYG9UAzUPQjhul09NVDSZJ0UeLddGjXrpK+OfA+8PfAUeCh8cfXFjsom4Xduy92QkmSghdfDAwORjsLluB24OA5j68Guks5sLc32srYrYslSbpg8V0mmGhnwUn8OfAfgU5gPtHnBU6VcmAuF93TQJIkXbD4zgyMFP3430dWjf8D8F+BecDngQFKqJUpvI8kSfpd8Z0ZaGi44ENXEp0Z+JuY30eSJMUZA21t0d0HL8Dp8Z/vFXthKhW9jyRJumDxxUAmE92GuIADE/zuNPDX4/++sth7LFrkhwclSbpI8e4zsGpVwX0GVgBzgQ7gbmA5cCnwIfBV4MpCa6fTsLJoLkiSpCLijYF16wruM/DPie5JsA94DPgJkAHuJbpvQUHZLKxfX545JUkKWLwx0N4OK1ZMenbgIeAD4CyQI/pK4QdA0ZsUp9PRum5FLEnSRYv/RkU7dkx5S+Ki0uloXUmSdNHij4HWVti6tbxrPvxwtK4kSbpo8ccAwJo1sHlzedbasgVWry7PWpIkqUIxALBxI+zcCY2NU79skE5Hx3V1wb33xjOfJEmBqlwMQHSGoKcHOjqix0Wi4Gx+06KOjug4zwhIklR2lY0BiK7179kDBw5EXw2caKfCVIrDdXXsTKejCNizx88ISJIUk8rHQF57Ozz0ELz1FgwMwC9+AX/7t9HPgQH+fO1a1p85w7O/+U1iI0qSFIJULlf8PsMDAwO0tLTQ399Pc3NzJebi/fff54orrqCjo4Of/OQnFXlPSZJqSal/v5M7M1DE/PnzWbhwIc899xxjY2NJjyNJUs2atjEAsHbtWs6cOcMPfvCDpEeRJKlmTdvLBACjo6M0NTXR3t7OL3/5y4q9ryRJtaDqLxMA1NfXs2zZMg4cOMDQ0FDS40iSVJOmdQwAfPvb3yaXy/H9738/6VEkSapJ0/oyQV5TUxPz5s3j3Xffrfh7S5JUrWriMkHe8uXLOXr0KH19fUmPIklSzamKGHjggQcAuO+++xKeRJKk2lMVMbB06VLmzZvHj3/846RHkSSp5lRFDAB8/etfZ2BggH379iU9iiRJNaVqYuD+++//xE9JklQeVRMD+e2J9+/f7/bEkiSVUdXEAEBnZydnzpzhhz/8YdKjSJJUM6pin4G8/PbES5Ys4fXXX09sDkmSqkFN7TOQV19fz4033sgbb7zh9sSSJJVJVcUAfLw98YMPPpj0KJIk1YSqukyQ5/bEkiQVV5OXCfLuuOMOjh49yttvv530KJIkVb2qjIHvfe97gNsTS5JUDlUZAzfeeCNz587liSeeSHoUSZKqXlXGAHy8PfFzzz2X9CiSJFW1qo2B7373u5/4KUmSLkzVxsCVV15Ja2sr+/btc3tiSZIuQtXGAHy8PfGjjz6a9CiSJFWtqtxnIM/tiSVJmlxN7zOQd+72xKdPn056HEmSqlJVxwC4PbEkSRerqi8T5DU1NXHZZZdx5MiRpEeRJGnaCOIyQd4dd9zBu+++6/bEkiRdgJqIgfz2xN/5zncSnkSSpOpTEzHg9sSSJF24mogBiLYn7u/vd3tiSZKmqGZiIL8t8f3335/sIJIkVZmaiQG3J5Yk6cLUTAxAtD3x6OgoP/rRj5IeRZKkqlET+wzk5bcnvu6663jttdeSHkeSpESV+vc7XcGZYldfX88NN9zAK6+8wunTp5k1axYMDcGhQzAyAg0N0NYGmUzSo0qSNG3U1GUCgG9961t8Npfj9dtvj/7wNzfDDTfA5z8f/Wxujn7/J38CPT1JjytJUuJq6jIBfX2wdi3s3UuWIqc90mnIZmHFCtixA1pbKzSkJEmVEdR2xAB0dUF7O3R3AyVc/8hmo5/d3dFxXV2xjidJ0nRVGzGwZQt0dsLw8Md/5EuVzUbHdXZG60iSFJjqj4GuLti0qTxrbdoEjzxSnrUkSaoS1R0DfX2wYcOETz0KXA80AimiywYLgL8ptuY990TrSpIUiOqOgbVrJ70ssBE4AHwG+CZwO3AM+BLweKE1s9loXUmSAlG9MdDTA3v3ThoD9wH9wGtEZwmeBv56/Ll/W2jdbDZa9+DBMg4rSdL0Vb0xsH179PXASawFzt9aaAXQBPym2NrpNGzbdlHjSZJULao3BnbtmvI3B8aAEWBWsRdms7B79wUOJklSdanOGBgchMOHp3zYvyEKgq+U8uLe3mgrY0mSalx1xkBvLxTfOPETdgHbiS4d7CjlgFwuuqeBJEk1rjpjYGRkSi9/HfinwAzgp0B9TO8jSVI1qs67FjY0lPzSd4DPA2eB/wPcGNP7SJJUrarzzEBbG6RSRV92Evg94EOiSwRfncp7pFLR+0iSVOOqMwYyGVi4sOBLRoHFwADwXeCPp/oeixZF7yNJUo2rzhgAWLWq4D4DNwPvAVeM/1x/3j8FpdOwcmV55pQkaZpL5XLFP5Zf6v2QK6qnB5YsmfTpS4h2IJxM0f/RPT2wePHU55IkaZoo9e939Z4ZaG+HFSsmPTtwkugP/mT/TCqdjtY1BCRJgajeGADYsaPgpYILkk5H60qSFIjqjoHWVti6tbxrPvxwtK4kSYGo7hgAWLMGNm8uz1pbtsDq1eVZS5KkKlH9MQCwcSPs3AmNjVO/bJBOR8d1dcG998YznyRJ01htxABEZwh6eqCjI3pcLAryz3d0RMd5RkCSFKjaiQGIrvXv2QMHDsD69RPuVDgG0e/Xr48iYM8ePyMgSQpa9e4zUKqhoejugyMj/Os//VMee+EFBs6epa6utjpIkqTz1f4+A6XKZGDpUrj5Zq74gz/gFPD8888nPZUkSdNG7cfAOVatWgXA7t27E55EkqTpI6gYWLZsGalUip///OdJjyJJ0rQRVAzU1dXR0tLCm2++mfQokiRNG0HFAMC1117L+++/n/QYkiRNG8HFwNKlSxkdHeX48eNJjyJJ0rQQXAx0jG9K9NRTTyU8iSRJ00NwMfDlL38ZgO7u7oQnkSRpegguBi677DJmzpzJq6++mvQokiRNC8HFAMD8+fN5++23kx5DkqRpIcgY+OxnP0t/fz9jY2NJjyJJUuKCjIGbb76ZXC7HK6+8kvQokiQlLsgYWLlyJQC7du1KeBJJkpIXZAx84QtfAOCFF15IeBJJkpIXZAzU1dUxZ84cDh48mPQokiQlLsgYAPjUpz7Fe++9l/QYkiQlLtgYuP766xkZGWFgYCDpUSRJSlSwMXDbbbcBsHv37oQnkSQpWcHGwFe+8hUAnnnmmYQnkSQpWcHGwFVXXUU6nXavAUlS8IKNAYDLL7+cvr6+pMeQJClRQcfApz/9aU6ePJn0GJIkJSroGPjc5z7H2NgYb7zxRtKjSJKUmKBj4M477wTgySefTHgSSZKSE3QM5L9e+LOf/SzhSSRJSk7QMVBfX8/s2bPp6elJehRJkhITdAwALFiwgF//+tdJjyFJUmKCj4HrrruODz/8kNOnTyc9iiRJiQg+Bm699VYA9u7dm/AkkiQlI/gYuOuuuwB4+umnE55EkqRkBB8Dra2tzJgxg5deeinpUSRJSkTwMQAwb948ent7kx5DkqREGAPAokWL+OCDD5IeQ5KkRBgDwE033cTY2BhvvfVW0qNIklRxxgAfb0v81FNPJTyJJEmVZwwAy5cvB2D//v0JTyJJUuUZA0BjYyNNTU3evVCSFCRjYNzVV1/N0aNHkx5DkqSKMwbGLVmyhFOnTjE6Opr0KJIkVZQxMO6LX/wiAM8880zCk0iSVFnGwLj8tsTeo0CSFBpjYNzixYupq6vjxRdfTHoUSZIqyhg4x6WXXsqhQ4eSHkOSpIoyBs6xcOFCjh8/nvQYkiRVlDFwjmXLlpHNZnnnnXeSHkWSpIoxBs5xxx13AG5LLEkKizFwji996UsA7Nu3L+FJJEmqnHTSA0wnmUyGxsZG/u/Lb/Lq/3qTkaEzNGRm0nbb1WSuzCQ9niRJsTAGxvX81SG233eU+cNv8NpbrdzwLz4+aZJijIXpt1nV/ivWPXA17V9tS3BSSZLKK5XL5XLFXjQwMEBLSwv9/f00NzdXYq6K6dt3hLVfe5+9J5aR5gxZZk762vzzK+a+zI7H59N664IKTipJ0tSU+vc76M8MdN29n/bbLqP7xPUABUPg3Oe7T1xP+22X0XW3tzyWJFW/YGNgy4pn6XzsFoZpLBoB58syk2Ea6XzsFraseDaeASVJqpAgY6Dr7v1sevr28Uep854dAG4GZow/lwH+bIJVouM2PX07j/yRZwgkSdUruBjo23eEDY/dBEz2UYnfA/4OuBH4l0R/9P898F8meX2Oex69ib59R8o+qyRJlRBcDKz92vtkSfO7ZwQAfgi8A3wZeBH478ARoi9dfHuSFVNkSbP2a+/HMa4kSbELKgZ6/uoQe08sK/AZgW3jP7ef87tLgH8CDAE/n/CoLDPZe2IZB5/sLdeokiRVTFAxsP2+o6Q5U+AVvUA9cM15v18+/vPJSY9Mc4ZtG9+9uAElSUpAUDGwq+cfFvnmwClg9gS//8z4z8OTHpllJrsPXnsR00mSlIxgYmDw2CCHs8U2CTrLxJsy5jdqOF3w6N4zn2LovaELmE6SpOQEEwO9+4+RK/o/dwaQneD3A+M/ZxU8Okcdh3569AKmkyQpOcHEwMhQoc8K5M0mulRwvjfHfy4s0/tIkjR9BBMDDZlSdhlcCIwC538QcO/4z7vK9D6SJE0fwcRA221Xk2KsyKvWnfcToksEzxKdNbi54NEpxmi77eoLHVGSpEQEEwOZKzMsTBfbJXA10dcKnwI+B3xj/PEZ4MGi77Fo5jtkrsxc5KSSJFVWMDEAsKr9V0X2GQD4JXAT8DLwP4AxYDOwoeBRac6wcvHb5RhTkqSKCioG1j1wdQl3KLyEaCvis0T3LxgCNhZdO8tM1m85f7MiSZKmv6BioP2rbayY+3IJZwemJs0ZVsx9mcV3LSrrupIkVUJQMQCw4/H5pMky+V0LpypHmiw7Hp9fpvUkSaqs4GKg9dYFbP3mS0x818ILkeLhu1+i9dZiuxtKkjQ9BRcDAGsevYXNy58df3ShZwii47aseJbV/+2WcowlSVIigowBgI17b2fnN/fTyPCUP0OQ5gyNDNN1937u3XN7PANKklQhwcYARGcIen56nI65rwMUjYL88x1zX6fnp8c9IyBJqglBxwBEnyHY88EyDjxxiPXXP0/bzF/9zk6FKcZom/kr1l//PD0/7mXPB8v8jIAkqWakcrlc0YvmAwMDtLS00N/fT3Nzc7GXV72h94Z4bdf/449Xr6dj+a382Y/+gzsLSpKqTql/v4M/MzCRzJUZ/vEfLaWHv+Pv5x8zBCRJNc0YmERdXfR/zdDQUMKTSJIUL2OggLq6OmNAklTzjIEC6urqOHXqVNJjSJIUK2OggHQ6zenTp5MeQ5KkWBkDBaTTaYaHh5MeQ5KkWBkDBdTX1xsDkqSaZwwUUF9fz8jISNJjSJIUK2OggIaGBmNAklTzjIECmpqaOHNmajcxkiSp2hgDBTQ1NZHNZpMeQ5KkWBkDBcyaNYuzZ88mPYYkSbEyBgqYPXs2Y2NjxV8oSVIVMwYKyGQylHBTR0mSqpoxUMCcOXMAGB0dTXgSSZLiYwwUkL/38/HjxxOeRJKk+BgDBbS0tADGgCSpthkDBVxyySWAMSBJqm3GQAH5GDhx4kSyg0iSFCNjoIC5c+cCxoAkqbYZAwXMmzcPgJMnTyY7iCRJMTIGCjAGJEkhMAYKuPzyywHo7+9PeBJJkuJjDBSQ/8zA4OBgwpNIkhQfY6CAdDoNGAOSpNpmDBSRSqUYGhpKegxJkmJjDBQxY8YMTp06lfQYkiTFxhgoYsaMGZw+fTrpMSRJio0xUEQ6nebDDz9MegxJkmJjDBQxc+ZMhoeHkx5DkqTYGANF1NfXMzIykvQYkiTFxhgooqGhgdHR0aTHkCQpNsZAEY2NjcaAJKmmGQNFNDU1kc1mkx5DkqTYGANFzJo1i7NnzyY9hiRJsTEGipg9e7YxIEmqacZAEZlMhlwul/QYkiTFxhgoIpPJADA2NpbwJJIkxcMYKKK5uRmAEydOJDyJJEnxMAaKaGlpAeC3v/1twpNIkhSPdNIDTHeXNTbyj4CRfftgZATa2mD80oEkSbUglSvh03EDAwO0tLTQ39//0WnzmtbTA9u3w65d5Hp7SZ37XCoFCxfCqlWwbh20tyc1pSRJBZX699vLBOfq64M774QlS2DbNjg/BAByOejtjZ5fsiR6fV9fEtNKklQWxkBeV1f0X/nd3dHjYrsO5p/v7o6O6+qKdz5JkmJiDABs2QKdnTA8XDwCzpfNRsd1dkbrSJJUZYyBri7YtKk8a23aBI88Up61JEmqkLBjoK8PNmyY9On3gNuAy4j+j0oBa4qtec89foZAklRVwo6BtWsLXhY4BOwDTgItpa6ZzUbrSpJUJcKNgZ4e2Lu3YAxcD7wGZIG/KHXdbDZa9+DBi59RkqQKCDcGtm+HdOE9l5qJgmDK0unoq4eSJFWBcGNg166pf3OgVNks7N4dz9qSJJVZmDEwOAiHD8f7Hr29MDQU73tIklQGYcZAb2+0k2Cccjk4dCje95AkqQzCjIGRkdp6H0mSLkKYMdDQUFvvI0nSRQgzBtraorsPximVit5HkqRpLswYyGSi2xDHadGi6H0kSZrmwowBgFWriu4zAPB1YDnwn8Yf7x5/vBx4Z7KD0mlYubIMQ0qSFL9wY2DdupL2GXgceAY4MP742PjjZygQA9ksrF9fhiElSYpfuDHQ3g4rVhQ9O5AFcpP88/sTHZBOR+suXlzeeSVJikm4MQCwY0dJlwqmJJ2O1pUkqUqEHQOtrbB1a3nXfPjhaF1JkqpE2DEAsGYNbN5cnrW2bIHVq8uzliRJFWIMAGzcCDt3QmPj1C8bpNPRcV1dcO+98cwnSVKMjIG8NWugpwc6OqLHxaIg/3xHR3ScZwQkSVXKGDhXayvs2QMHDkRfDZxop8L8zoLr10cRsGePnxGQJFW1Mn+Uvka0t8NDD0X/PjQU3X1wZCS610BbmzsLSpJqijFQTCYDS5cmPYUkSbHxMoEkSYEzBiRJCpwxIElS4IwBSZICZwxIkhQ4Y0CSpMAZA5IkBc4YkCQpcMaAJEmBMwYkSQqcMSBJUuBKujdBLpcDYGBgINZhJElS+eT/buf/jk+mpBgYHBwEYMGCBRc5liRJqrTBwUFaWlomfT6VK5YLwNjYGMeOHWPOnDmkUqmyDihJkuKRy+UYHBzkqquuoq5u8k8GlBQDkiSpdvkBQkmSAmcMSJIUOGNAkqTAGQOSJAXOGJAkKXDGgCRJgTMGJEkK3P8HI6v4qsHGNX8AAAAASUVORK5CYII=",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from soil import analysis\n",
"for res in it:\n",
" analysis.plot(res)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"hideCode": false,
"hidePrompt": false,
"run_control": {
"frozen": true
}
},
"source": [
"## Running in more scenarios\n",
"\n",
"In real life, you probably want to run several simulations, varying some of the parameters so that you can compare and answer your research questions.\n",
"\n",
"For instance:\n",
" \n",
"* Does the outcome depend on the structure of our network? We will use different generation algorithms to compare them (Barabasi-Albert and Erdos-Renyi)\n",
"* How does neighbor spreading probability affect my simulation? We will try probability values in the range of [0, 0.4], in intervals of 0.1."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"class NewsEnvComplete(Environment):\n",
" prob_tv = 0.1\n",
" prob_tv_spread = 0\n",
" prob_neighbor_spread = 0.1\n",
" event_time = 10\n",
" neighbor_factor = 0.5\n",
" generator = \"erdos_renyi_graph\"\n",
" n = 100\n",
"\n",
" def init(self):\n",
" self.add_agent(EventGenerator)\n",
" opts = {\"n\": self.n}\n",
" if self.generator == \"erdos_renyi_graph\":\n",
" opts[\"p\"] = 0.05\n",
" elif self.generator == \"barabasi_albert_graph\":\n",
" opts[\"m\"] = 2\n",
" self.create_network(generator=self.generator, **opts)\n",
"\n",
" self.populate_network([NewsSpread,\n",
" NewsSpread.w(has_tv=True)],\n",
" [1-self.prob_tv, self.prob_tv])\n",
" self.add_model_reporter('prob_tv_spread')\n",
" self.add_model_reporter('prob_neighbor_spread')\n",
" self.add_agent_reporter('state_id', lambda a: getattr(a, \"state_id\", None))"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"11"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(its.values())[0][3].count_agents(state_id='infected')"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "522fa16a8a52488781e69f025ec51cc1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"newspread: 0%| | 0/1 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" N = 100\n",
" prob_neighbor_spread = 0\n",
" generator = erdos_renyi_graph\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a46911e00cf04c7d9504c70d3105bfc9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"newspread: 0%| | 0/1 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" N = 100\n",
" prob_neighbor_spread = 0\n",
" generator = barabasi_albert_graph\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f3202fff4879428b8505f4fd7c7605e1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"newspread: 0%| | 0/1 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" N = 100\n",
" prob_neighbor_spread = 0.25\n",
" generator = erdos_renyi_graph\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6e3bee309cd043b19b4ea90f1ea3e039",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"newspread: 0%| | 0/1 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" N = 100\n",
" prob_neighbor_spread = 0.25\n",
" generator = barabasi_albert_graph\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7369e8dc45d545899c07a0e1de2cec52",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"newspread: 0%| | 0/1 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" N = 100\n",
" prob_neighbor_spread = 0.5\n",
" generator = erdos_renyi_graph\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a1cac9f81c46470fb9b20eab88bfe0da",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"newspread: 0%| | 0/1 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" N = 100\n",
" prob_neighbor_spread = 0.5\n",
" generator = barabasi_albert_graph\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f48b611e76bb4363a14182dd5fea6059",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"newspread: 0%| | 0/1 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" N = 100\n",
" prob_neighbor_spread = 0.75\n",
" generator = erdos_renyi_graph\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5d8fffaacc084c0b9b14de13e0c968fb",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"newspread: 0%| | 0/1 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" N = 100\n",
" prob_neighbor_spread = 0.75\n",
" generator = barabasi_albert_graph\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d50a638f8b3b45909d9e7b56418abcc5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"newspread: 0%| | 0/1 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" N = 100\n",
" prob_neighbor_spread = 1.0\n",
" generator = erdos_renyi_graph\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f494cf391b354761b23c8c772d330422",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"newspread: 0%| | 0/1 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" N = 100\n",
" prob_neighbor_spread = 1.0\n",
" generator = barabasi_albert_graph\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Ns = [100]\n",
"probabilities = [0, 0.25, 0.5, 0.75, 1.0]\n",
"generators = [\"erdos_renyi_graph\", \"barabasi_albert_graph\"]\n",
"\n",
"its = {}\n",
"for N in Ns:\n",
" for prob_neighbor_spread in probabilities:\n",
" for generator in generators:\n",
" params = dict(N=N, prob_neighbor_spread=prob_neighbor_spread, generator=generator)\n",
" env = NewsEnvComplete.run(name=f\"newspread\",\n",
" iterations=5,\n",
" max_time=30,\n",
" level=logging.WARNING,\n",
" parameters=params)\n",
" its[(N, prob_neighbor_spread, generator)] = env\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"10"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(its)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Storing results and analyzing them"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This time, we set `dump=True` because we want to store our results to a database, so that we can later analyze them.\n",
"\n",
"But since we do not care about existing results in the database, we will also set`overwrite=True`."
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d5004870a00c48de8fd16e47b91e47ec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"newspread: 0%| | 0/10 [00:00, ?configuration/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" n = 100\n",
" generator = erdos_renyi_graph\n",
" prob_neighbor_spread = 0\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" n = 100\n",
" generator = erdos_renyi_graph\n",
" prob_neighbor_spread = 0.25\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" n = 100\n",
" generator = erdos_renyi_graph\n",
" prob_neighbor_spread = 0.5\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" n = 100\n",
" generator = erdos_renyi_graph\n",
" prob_neighbor_spread = 0.75\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" n = 100\n",
" generator = erdos_renyi_graph\n",
" prob_neighbor_spread = 1.0\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" n = 100\n",
" generator = barabasi_albert_graph\n",
" prob_neighbor_spread = 0\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" n = 100\n",
" generator = barabasi_albert_graph\n",
" prob_neighbor_spread = 0.25\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" n = 100\n",
" generator = barabasi_albert_graph\n",
" prob_neighbor_spread = 0.5\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" n = 100\n",
" generator = barabasi_albert_graph\n",
" prob_neighbor_spread = 0.75\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"- Running for parameters: \n",
" n = 100\n",
" generator = barabasi_albert_graph\n",
" prob_neighbor_spread = 1.0\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/5 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"it = NewsEnvComplete.run(name=f\"newspread\",\n",
" iterations=5,\n",
" max_time=30,\n",
" level='WARNING',\n",
" dump=True,\n",
" overwrite=True,\n",
" matrix=dict(n=[N],\n",
" generator=generators,\n",
" prob_neighbor_spread=probabilities))"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"DEFAULT_ITERATIONS = 5\n",
"assert len(it) == len(probabilities) * len(generators) * DEFAULT_ITERATIONS"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-03T11:05:18.043194Z",
"start_time": "2017-07-03T13:05:18.034699+02:00"
},
"cell_style": "center",
"hideCode": false,
"hidePrompt": false
},
"source": [
"The results are conveniently stored in sqlite (history of agent and environment state) and the configuration is saved in a YAML file.\n",
"\n",
"You can also export the results to GEXF format (dynamic network) and CSV using .`run(dump=['gexf', 'csv'])` or the command line flags `--graph --csv`."
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"ExecuteTime": {
"end_time": "2017-11-01T14:05:56.404540Z",
"start_time": "2017-11-01T15:05:56.122876+01:00"
},
"cell_style": "split",
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[01;34msoil_output\u001b[0m\n",
"└── \u001b[01;34mnewspread\u001b[0m\n",
" ├── \u001b[00mnewspread_1712844336.8642576.dumped.yml\u001b[0m\n",
" ├── \u001b[00mnewspread_1712844450.0526526.dumped.yml\u001b[0m\n",
" ├── \u001b[00mnewspread_1712846070.381033.dumped.yml\u001b[0m\n",
" ├── \u001b[00mnewspread_1712846089.2092683.dumped.yml\u001b[0m\n",
" ├── \u001b[00mnewspread_1712846145.296178.dumped.yml\u001b[0m\n",
" ├── \u001b[00mnewspread_1712846219.0644977.dumped.yml\u001b[0m\n",
" ├── \u001b[00mnewspread_1712846305.368385.dumped.yml\u001b[0m\n",
" ├── \u001b[00mnewspread_1712846671.6566656.dumped.yml\u001b[0m\n",
" ├── \u001b[00mnewspread_1712849017.0672383.dumped.yml\u001b[0m\n",
" ├── \u001b[00mnewspread_1712849444.2514122.dumped.yml\u001b[0m\n",
" └── \u001b[00mnewspread.sqlite\u001b[0m\n",
"\n",
"1 directory, 11 files\n",
"4,0K\tsoil_output/newspread/.ipynb_checkpoints\n",
"21M\tsoil_output/newspread\n"
]
}
],
"source": [
"!tree soil_output\n",
"!du -xh soil_output/*"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-02T10:40:14.384177Z",
"start_time": "2017-07-02T12:40:14.381885+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"### Analysing the results"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"#### Loading data"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"source": [
"Once the simulations are over, we can use soil to analyse the results.\n",
"\n",
"There are two main ways: directly using the iterations returned by the `run` method, or loading up data from the results database.\n",
"This is particularly useful to store data between sessions, and to accumulate results over multiple runs.\n",
"\n",
"The mainThe main method to load data from the database is `read_sql`, which can be used in two ways:\n",
"\n",
"* `analysis.read_sql()` to load all the results from a sqlite database . e.g. `read_sql('my_simulation/file.db.sqlite')`\n",
"* `analysis.read_sql(name=)` will look for the default path for a simulation named ``"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The result in both cases is a named tuple with four dataframes:\n",
"\n",
"* `configuration`, which contains configuration parameters per simulation\n",
"* `parameters`, which shows the parameters used **in every iteration** of every simulation\n",
"* `env`, with the data collected from the model in each iteration (as specified in `model_reporters`)\n",
"* `agents`, like `env`, but for `agent_reporters`"
]
},
{
"cell_type": "markdown",
"metadata": {
"ExecuteTime": {
"end_time": "2017-07-03T14:44:30.978223Z",
"start_time": "2017-07-03T16:44:30.971952+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"source": [
"Let's see it in action by loading the stored results into a pandas dataframe:"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"ExecuteTime": {
"end_time": "2017-10-19T15:57:44.101253Z",
"start_time": "2017-10-19T17:57:44.039710+02:00"
},
"hideCode": false,
"hidePrompt": false
},
"outputs": [],
"source": [
"res = analysis.read_sql(name=\"newspread\", include_agents=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Plotting data\n",
"\n",
"Once we have loaded the results from the file, we can use them just like any other dataframe.\n",
"\n",
"Here is an example of plotting the ratio of infected users in each of our simulations:"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHHCAYAAABtF1i4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/rUlEQVR4nOzdd1xT5/7A8U9ISBhhi4II4sCNCxe0dVQsjvJTa+1Vb0VbFxZ3bUW7rFixVXG0Wruuq9bbal23al11XBdeZ22luEBaFVBkyCbJ+f0ROTUyowzH83698tJz8j3P+Z4QyJNnHYUkSRKCIAiCIAjVxKK6ExAEQRAE4ekmKiOCIAiCIFQrURkRBEEQBKFaicqIIAiCIAjVSlRGBEEQBEGoVqIyIgiCIAhCtRKVEUEQBEEQqpWojAiCIAiCUK1EZUQQBEEQhGolKiOCYCZvb29efPHFCitv//79KBQKNmzYUGbs8OHD8fb2NtmnUCiYOXOmvL1y5UoUCgXx8fEVlmNJkpKSePnll3FxcUGhULBo0aJKP2dVGz58OFqttrrTMFtmZiYjR47Ezc0NhULBpEmTiI+PR6FQsHLlyupO76Hc/54XHn+iMvIUK/zQUigUHDp0qMjzkiTh6emJQqGo0A9foeotW7asUj6AJk+ezM6dO5k+fTpr1qyhZ8+eFX4O4cHMmTOHlStXMnbsWNasWcPQoUOrOyWzbN++XVQ4niKq6k5AqH5WVlZ89913PPvssyb7Dxw4wF9//YVGo6mmzIT7ffXVVxgMhlJjhg4dyqBBg0x+bsuWLaNGjRoMHz68QvP55Zdf6Nu3L1OnTq3QcoWH98svv9CpUyc++OADeZ8kSeTk5GBpaVmNmZXP9u3bWbp0abEVkpycHFQq8fH1JBEtIwK9e/dm/fr16HQ6k/3fffcdfn5+uLm5VVNmVSMrK6u6Uyg3S0vLMiuHSqUSKysrFApFpeeTnJyMo6NjhZWXm5tbZmVLKJ/ifjYKhQIrKyuUSmWV51ORv2dWVlaiMvKEEZURgcGDB5OSksLu3bvlffn5+WzYsIEhQ4YUe4zBYGDRokU0b94cKysratWqxZgxY0hNTTWJ27JlC3369KF27dpoNBoaNGhAREQEer3eJK5r1660aNGC8+fP061bN2xsbPDw8OCTTz4p1zUoFArGjRvH2rVrady4MVZWVvj5+XHw4EGTuJkzZ6JQKDh//jxDhgzByclJbhHS6XRERETQoEEDNBoN3t7ezJgxg7y8vGLPuWvXLlq3bo2VlRXNmjVj48aNJs/fvn2bqVOn4uvri1arxd7enl69enH27Nliy9Pr9cyYMQM3NzdsbW35v//7P/7880+TmOLGjNzv/jEj3t7e/P777xw4cEDuluvatStXrlxBoVCwcOHCImUcOXIEhULBunXrSj2HJEksXbpULrfQlStXGDhwIM7OztjY2NCpUye2bdtmUkbhWJl///vfvPvuu3h4eGBjY0NGRkaJ11bR7zuA6OhoevfujZOTE7a2trRs2ZLFixcXibt27Rr9+vVDq9Xi6urK1KlTiy2vODt27KBLly7Y2dlhb29P+/bt+e6770xi1q9fj5+fH9bW1tSoUYNXX32Va9eumcQUjl8pLZfC1zUuLo5t27bJP5v4+PgSx4ysX7+eZs2aYWVlRYsWLdi0aVOR91phufv37zc5trgyC/O8fPkyvXv3xs7Ojn/+858A/Pe//2XgwIF4eXmh0Wjw9PRk8uTJ5OTkmBy/dOlSADn/e99fxY0ZOX36NL169cLe3h6tVkv37t05duyYSUzh+/bw4cNMmTIFV1dXbG1t6d+/Pzdv3iz+hydUCVG1FPD29sbf359169bRq1cvwPjHMz09nUGDBrFkyZIix4wZM4aVK1fy2muvMWHCBOLi4vjss884ffo0hw8flpuBV65ciVarZcqUKWi1Wn755Rfef/99MjIymDdvnkmZqamp9OzZk5deeolXXnmFDRs2MG3aNHx9feW8SnPgwAG+//57JkyYgEajYdmyZfTs2ZPjx4/TokULk9iBAwfi4+PDnDlzkCQJgJEjR7Jq1Spefvll3nzzTaKjo4mMjCQmJoZNmzaZHH/x4kX+8Y9/EBoayrBhw1ixYgUDBw7k559/pkePHoDxA3nz5s0MHDiQevXqkZSUxBdffEGXLl04f/48tWvXNinzo48+QqFQMG3aNJKTk1m0aBGBgYGcOXMGa2vrMq+/JIsWLWL8+PFotVreeecdAGrVqkX9+vV55plnWLt2LZMnTzY5Zu3atdjZ2dG3b99iy+zcubM8DqFHjx6EhITIzyUlJREQEEB2djYTJkzAxcWFVatW8X//939s2LCB/v37m5QVERGBWq1m6tSp5OXloVarS7yWin7f7d69mxdffBF3d3cmTpyIm5sbMTEx/PTTT0ycOFGO0+v1BAUF0bFjR+bPn8+ePXtYsGABDRo0YOzYsaW+/itXruT111+nefPmTJ8+HUdHR06fPs3PP/8sV/YLr6l9+/ZERkaSlJTE4sWLOXz4MKdPnzZp4Sgrl6ZNm7JmzRomT55MnTp1ePPNNwFwdXUt9gN327Zt/OMf/8DX15fIyEhSU1MZMWIEHh4epV5XWXQ6HUFBQTz77LPMnz8fGxsbwFjxyc7OZuzYsbi4uHD8+HE+/fRT/vrrL9avXw8Yf87Xr19n9+7drFmzpsxz/f777zz33HPY29vz9ttvY2lpyRdffEHXrl05cOAAHTt2NIkfP348Tk5OfPDBB8THx7No0SLGjRvH999//1DXLDwESXhqrVixQgKk//3vf9Jnn30m2dnZSdnZ2ZIkSdLAgQOlbt26SZIkSXXr1pX69OkjH/ff//5XAqS1a9ealPfzzz8X2V9Y3r3GjBkj2djYSLm5ufK+Ll26SIC0evVqeV9eXp7k5uYmDRgwoMxrASRAOnHihLzv6tWrkpWVldS/f3953wcffCAB0uDBg02OP3PmjARII0eONNk/depUCZB++eUXeV/dunUlQPrxxx/lfenp6ZK7u7vUpk0beV9ubq6k1+tNyouLi5M0Go00a9Ysed++ffskQPLw8JAyMjLk/T/88IMESIsXL5b3DRs2TKpbt26Ra//ggw/k7cKfa1xcnLyvefPmUpcuXaT7ffHFFxIgxcTEyPvy8/OlGjVqSMOGDSsSfz9ACgsLM9k3adIkCZD++9//yvvu3Lkj1atXT/L29pZfk8Lrrl+/frHvk/tV9PtOp9NJ9erVk+rWrSulpqaaxBoMBvn/w4YNkwCTn5kkSVKbNm0kPz+/UnNOS0uT7OzspI4dO0o5OTnFniM/P1+qWbOm1KJFC5OYn376SQKk999//4Fyuf/3VpKM7z9AWrFihbzP19dXqlOnjnTnzh153/79+yXA5L1W+PPat29fmWUW5hkeHl7kNSnuZxMZGSkpFArp6tWr8r6wsDCppI+o+9/z/fr1k9RqtXT58mV53/Xr1yU7Ozupc+fO8r7C343AwECTn/HkyZMlpVIppaWlFXs+ofKJbhoBgFdeeYWcnBx++ukn7ty5w08//VRiF8369etxcHCgR48e3Lp1S374+fmh1WrZt2+fHHvvN/o7d+5w69YtnnvuObKzs/njjz9MytVqtbz66qvytlqtpkOHDly5cqVc1+Dv74+fn5+87eXlRd++fdm5c2eR5vTQ0FCT7e3btwMwZcoUk/2F3yrv72KoXbu2yTd8e3t7QkJCOH36NImJiQBoNBosLIy/Ynq9npSUFLRaLY0bN+bUqVNF8g8JCcHOzk7efvnll3F3d5dzqwyvvPIKVlZWrF27Vt63c+dObt26ZfKzMMf27dvp0KGDyYBorVbL6NGjiY+P5/z58ybxw4YNK1fLT0W/706fPk1cXByTJk0qdmzF/e5/zzz33HNlvjd3797NnTt3CA8Px8rKqthznDhxguTkZN544w2TmD59+tCkSZMi770HzaU4169f59y5c4SEhJhMX+7SpQu+vr5ml3e/4lqN7v3ZZGVlcevWLQICApAkidOnT5t9Dr1ez65du+jXrx/169eX97u7uzNkyBAOHTpUpOtv9OjRJj/j5557Dr1ez9WrV80+v1AxRGVEAIxNuIGBgXz33Xds3LgRvV7Pyy+/XGzsxYsXSU9Pp2bNmri6upo8MjMzSU5OlmN///13+vfvj4ODA/b29ri6usofcunp6Sbl1qlTp8iHgJOTU5HxACXx8fEpsq9Ro0ZkZ2cXaZ6uV6+eyfbVq1exsLCgYcOGJvvd3NxwdHQs8keqYcOGRXJt1KgRgDxWw2AwsHDhQnx8fNBoNNSoUQNXV1d+/fXXItdeXP4KhYKGDRtW6nohjo6OBAcHm4xfWLt2LR4eHjz//PMPVObVq1dp3Lhxkf1NmzaVn7/X/T+LklT0++7y5csARbrwimNlZYWrq6vJvvK8N8tzjsLXo7jXrEmTJkVerwfNpbRz3/++L2mfOVQqFXXq1CmyPyEhgeHDh+Ps7CyPeenSpQtQ9G9Cedy8eZPs7OwS33MGg6HI2CsvLy+TbScnJ4AHeg2FiiHGjAiyIUOGMGrUKBITE+nVq1eJsyQMBgM1a9Y0+TZ9r8I/lGlpaXTp0gV7e3tmzZpFgwYNsLKy4tSpU0ybNq3IrImSRvhLd8d0VKSSvolX5AyUOXPm8N577/H6668TERGBs7MzFhYWTJo06ZGaMRISEsL69es5cuQIvr6+bN26lTfeeENu1als5R0PU1nvu/KojtknJamuXEr63ShpEO+9LYP3xvbo0YPbt28zbdo0mjRpgq2tLdeuXWP48OFV9ntRlX9rhPIRlRFB1r9/f8aMGcOxY8dKHcjVoEED9uzZwzPPPFPqB8n+/ftJSUlh48aNdO7cWd4fFxdXoXkXunjxYpF9Fy5cwMbGpsg3yfvVrVsXg8HAxYsX5W/wYByMmZaWRt26dU3iL126hCRJJn+gL1y4ACDPQNiwYQPdunXjm2++MTk2LS2NGjVqlJm/JElcunSJli1blpp7eZRWyerZsyeurq6sXbuWjh07kp2d/VALZNWtW5fY2Ngi+wu7R+5/Lcurot93DRo0AOC3334jMDDwgXIqT86F5yippaHw9YiNjS3SGhUbG/vAr1d5FJZ96dKlIs/dv6+w9SAtLc1kvzldG+fOnePChQusWrXKZNDzvTP5CpX3i4Grqys2NjYlvucsLCzw9PQsd45C9RDdNIJMq9Xy+eefM3PmTIKDg0uMe+WVV9Dr9URERBR5TqfTyX+sCr993PttIz8/n2XLllVs4ncdPXrUZCzGn3/+yZYtW3jhhRfK/DbZu3dvgCLLmUdFRQHG/vt7Xb9+3WSGTUZGBqtXr6Z169byuixKpbLIN63169cXma5ZaPXq1dy5c0fe3rBhAzdu3CjXTKKy2NraFvkQKaRSqRg8eDA//PADK1euxNfX96EqQL179+b48eMcPXpU3peVlcWXX36Jt7c3zZo1e6ByK/p917ZtW+rVq8eiRYuKvDYV9Q35hRdewM7OjsjISHJzc4s9R7t27ahZsybLly83mUa+Y8cOYmJiirz3KlLt2rVp0aIFq1evJjMzU95/4MABzp07ZxJbt25dlEplkeny5vw+F/ezkSSp2KnUtra2QNHKT3FlvvDCC2zZssWkSzMpKUlezNHe3r7cOQrVQ7SMCCaGDRtWZkyXLl0YM2YMkZGRnDlzhhdeeAFLS0suXrzI+vXrWbx4MS+//DIBAQE4OTkxbNgwJkyYgEKhYM2aNZXWFNqiRQuCgoJMpvYCfPjhh2Ue26pVK4YNG8aXX34pN/MfP36cVatW0a9fP7p162YS36hRI0aMGMH//vc/atWqxb/+9S+SkpJYsWKFHPPiiy8ya9YsXnvtNQICAjh37hxr1641GWR3L2dnZ5599llee+01kpKSWLRoEQ0bNmTUqFEP8aoY+fn58fnnnzN79mwaNmxIzZo1Tb6Fh4SEsGTJEvbt28fHH3/8UOcKDw+Xp4lPmDABZ2dnVq1aRVxcHD/++OMDd/9U9PvOwsKCzz//nODgYFq3bs1rr72Gu7s7f/zxB7///js7d+58qNcBjAObFy5cyMiRI2nfvr28ts3Zs2fJzs5m1apVWFpa8vHHH/Paa6/RpUsXBg8eLE/t9fb2LjLtuqLNmTOHvn378swzz/Daa6+RmprKZ599RosWLUwqKA4ODgwcOJBPP/0UhUJBgwYN+Omnn0zG6pSlSZMmNGjQgKlTp3Lt2jXs7e358ccfix2rUTgYfcKECQQFBaFUKhk0aFCx5c6ePZvdu3fz7LPP8sYbb6BSqfjiiy/Iy8sr91pFQjWrjik8wqPh3qm9pSluiqAkSdKXX34p+fn5SdbW1pKdnZ3k6+srvf3229L169flmMOHD0udOnWSrK2tpdq1a0tvv/22tHPnziJTBLt06SI1b968yDmKm8paHO5OMf32228lHx8fSaPRSG3atCkyDbFwau/NmzeLlFFQUCB9+OGHUr169SRLS0vJ09NTmj59uskU5Htfj507d0otW7aUNBqN1KRJE2n9+vUmcbm5udKbb74pubu7S9bW1tIzzzwjHT16VOrSpYvJNNvCKZPr1q2Tpk+fLtWsWVOytraW+vTpYzLVsaTXg3JM7U1MTJT69Okj2dnZSUCx03ybN28uWVhYSH/99VfRF7gEha/7/S5fviy9/PLLkqOjo2RlZSV16NBB+umnn0xiCq/7/tetLBX5vpMkSTp06JDUo0cPyc7OTrK1tZVatmwpffrpp/Lzw4YNk2xtbYvkUfheKo+tW7dKAQEBkrW1tWRvby916NBBWrdunUnM999/L7Vp00bSaDSSs7Oz9M9//rPIz8KcXMo7tVeSJOnf//631KRJE0mj0UgtWrSQtm7dKg0YMEBq0qSJSdzNmzelAQMGSDY2NpKTk5M0ZswY6bfffit2am9xeUqSJJ0/f14KDAyUtFqtVKNGDWnUqFHS2bNni5Sh0+mk8ePHS66urpJCoTC5vvvf85IkSadOnZKCgoIkrVYr2djYSN26dZOOHDliElPS37ySpi0LVUchSWLEjvD4UygUhIWF8dlnn1V3Ko+tNm3a4OzszN69e6s7FeER0Lp1a1xdXYsdzyEIFU2MGREEgRMnTnDmzBmTQYXC06GgoKDIfan279/P2bNn6dq1a/UkJTx1xJgRQXiK/fbbb5w8eZIFCxbg7u7OP/7xj+pOSahi165dIzAwkFdffZXatWvzxx9/sHz5ctzc3IosriYIlUVURgThKbZhwwZmzZpF48aNWbduXZFVQoUnn5OTE35+fnz99dfcvHkTW1tb+vTpw9y5c3Fxcanu9ISnhBgzIgiCIAhCtRJjRgRBEARBqFaiMiIIgiAIQrV6LMaMGAwGrl+/jp2dXYXeO0QQBEEQhMojSRJ37tyhdu3apS54+FhURq5fvy7uLSAIgiAIj6k///yz2Ls4F3osKiN2dnaA8WLEPQYEQRAE4fGQkZGBp6en/DlekseiMlLYNWNvby8qI4IgCILwmClriIUYwCoIgiAIQrUSlRFBEARBEKqVqIwIgiAIglCtHosxI4IgCI86vV5PQUFBdachCFXK0tISpVL50OWIyoggCMJDkCSJxMRE0tLSqjsVQagWjo6OuLm5PdQ6YKIyIgiC8BAKKyI1a9bExsZGLMwoPDUkSSI7O5vk5GQA3N3dH7gsURkRBEF4QHq9Xq6IiDvcCk8ja2trAJKTk6lZs+YDd9mIAayCIAgPqHCMiI2NTTVnIgjVp/D9/zBjpkRlRBAE4SGJrhnhaVYR739RGREEQRAEoVqZXRk5ePAgwcHB1K5dG4VCwebNm8s8Zv/+/bRt2xaNRkPDhg1ZuXLlA6QqCIIgPIq6du3KpEmTqjuNSrV//34UCoWYNVVJzK6MZGVl0apVK5YuXVqu+Li4OPr06UO3bt04c+YMkyZNYuTIkezcudPsZAVBEAShOgQEBHDjxg0cHBxKjPnyyy/p2rUr9vb2ZlVcli5dire3N1ZWVnTs2JHjx49XUNaPD7Nn0/Tq1YtevXqVO3758uXUq1ePBQsWANC0aVMOHTrEwoULCQoKMvf0FSr5Ti4ZqbkYdFKJMTZOGvn/eZkF6AsMJcZaO6rlvrMyYx3UKCyMsflZBejyS461sldjobwbm61Dl6cvJdYSC6Wxjpmfo0OXW0qsnSUWKmNsQa6OgpySYzVaS5SWDxCbp6cgW1dirNpWhUptHH2ty9OTX97YfD35WSXHWtqosNQYY/UFBvIySx5YZWmtxNJKZXasQWcg907JsSorJWrru7F6A7kZpcRqlKht7v46pqdRx7t2ibGCUB0kSUKv16NSPTqTMKsyJ7VajZubW6kx2dnZ9OzZk549ezJ9+vRylfv9998zZcoUli9fTseOHVm0aBFBQUHExsZSs2bNikj9sVDpP8GjR48SGBhosi8oKKjUJr28vDzy8vLk7YyMjErJLXTNSRqcz8ZbV/xUJD0SUY658na/TDU+JcQCLHDIwXB3HE+fLEuaFZT88i52yCH/buwL2Za0yi85dpl9Dll327Cez7bEr5TYr+xySVMaK1fP5ajolGdZYuxKu1xu3o3tlKviudySY9dq87iuMlaY/HKVPJ+rLjH2B9s8rloaY1vmKQnKKTl2k20el+7GNs1X8mJ2ybE/2eQTozZWgnzyLeiXrSkxdqd1Pr9qjLHeBRYMzCo5dq91PqfuxnroLBiSWXLsQasCoq2MlaCaOgXDMq1KjD2qKeCQtTHWSa9g5J2SY09odOyzLmBEygWGObdlf95Gui4aV2K8IDwsg8HAxx9/zJdffkliYiKNGjXivffe4+WXXwaM3RLdunVj+/btvPvuu5w7d45du3bRvn17xo4dy8aNG7Gzs2Pq1KlFyk5NTWXixIn85z//IS8vjy5durBkyRJ8fHwAuHr1KuPGjePQoUPk5+fj7e3NvHnz6N27d6k5l5RT586dy3Ute/bsYdq0aZw/f57WrVuzYsUKGjduTHx8PPXr1+f48eO0a9dOPt+iRYtYuHAhcXFxHDx4kG7dupGamoqjo2Ox+RV+ru3fv7/cP4eoqChGjRrFa6+9Bhi/wG/bto1//etfhIeHl7ucx12lV0YSExOpVauWyb5atWqRkZFBTk6OPEf5XpGRkXz44YeVnRqWSgskBegovmXEoACN6p6eLIuSY8EYW1gZUVgoSo9VWqCwKH9sYR1IoSw9B7VKgeZuK0pZ5VoqLdCojM9blBmrkF8LpdKi1FjVvbG60stVWVigufsuVOpLj1XeU65KX3oOJrGGMsq1uCdWKj3W4p5YS8yIVZQeq7Awvn9edWqFhcKChlatSowVHm2SJJFTUHLLYWWytlSWe2ZDZGQk3377LcuXL8fHx4eDBw/y6quv4urqSpcuXeS48PBw5s+fT/369XFycuKtt97iwIEDbNmyhZo1azJjxgxOnTpF69at5WOGDx/OxYsX2bp1K/b29kybNo3evXtz/vx5LC0tCQsLIz8/n4MHD2Jra8v58+fRarXlvs77cyrvtbzzzjssWLAAV1dXQkNDef311zl8+DDe3t4EBgayYsUKk8rIihUrGD58OBYWlTPXIz8/n5MnT5q0olhYWBAYGMjRo0cr5ZyPqkenve0e06dPZ8qUKfJ2RkYGnp6eFX6e78f4lxkz2YzyJopYEfuQ/gr/byWfQahsOQV6mr1fPWPizs8KwkZd9p/1vLw85syZw549e/D3N/4drF+/PocOHeKLL74w+QCfNWsWPXr0ACAzM5NvvvmGb7/9lu7duwOwatUq6tSpI8cXVkIOHz5MQEAAAGvXrsXT05PNmzczcOBAEhISGDBgAL6+vvK5zXFvTuZcy0cffSRvh4eH06dPH3Jzc7GysmLkyJGEhoYSFRWFRqPh1KlTnDt3ji1btpiVmzlu3bqFXq8v9gv7H3/8UWnnfRRVemXEzc2NpKQkk31JSUnY29sX2yoCoNFo0GhKbioXhCeRwVDyuCFBqEiXLl0iOztb/kAvlJ+fT5s2bUz23dtScPnyZfLz8+nYsaO8z9nZmcaNG8vbMTExqFQqkxgXFxcaN25MTEwMABMmTGDs2LHs2rWLwMBABgwYQMuWLcud/705mXMt956jcOny5ORkvLy86NevH2FhYWzatIlBgwaxcuVKunXrhre3d7nzEh5cpVdG/P392b59u8m+3bt3yzVYQRCMslJu82fWH3jaNuF2XiJuBQWoLEsexyM8mqwtlZyfVT2D860ty7cUd2ZmJgDbtm3Dw8PD5Ln7vwja2tpWTHL3GDlyJEFBQWzbto1du3YRGRnJggULGD9+fLmOvzcnc67F8p7fp8LurMIvAWq1mpCQEFasWMFLL73Ed999x+LFi82/ODPUqFEDpVJZ7Bf2sgbLPmnMroxkZmZy6dIleTsuLo4zZ87g7OyMl5cX06dP59q1a6xevRqA0NBQPvvsM95++21ef/11fvnlF3744Qe2bdtWcVchCE+AW9euciR5C2BsFna52AKPZk2rNynBbAqFolxdJdWpWbNmaDQaEhISTLoxytKgQQMsLS2Jjo7Gy8sLMA5WvXDhglxO06ZN0el0REdHy900KSkpxMbG0qxZM7ksT09PQkNDCQ0NZfr06Xz11VflroxUxLUUZ+TIkbRo0YJly5ah0+l46aWXHqq8sqjVavz8/Ni7dy/9+vUDjJWjvXv3Mm7c0zWA3ezfmBMnTtCtWzd5u3Bsx7Bhw1i5ciU3btwgISFBfr5evXps27aNyZMns3jxYurUqcPXX39d7dN6BeFRcysh3mT72plzojIiVIrCWTCTJ0/GYDDw7LPPkp6ezuHDh7G3t2fYsGHFHqfVahkxYgRvvfUWLi4u1KxZk3feecdkgKePjw99+/Zl1KhRfPHFF9jZ2REeHo6Hhwd9+/YFjLNOevXqRaNGjUhNTWXfvn00bfpg7/UHvZbiNG3alE6dOjFt2jRef/31EocSlCQxMZHExET5C/u5c+ews7PDy8sLZ2dnALp3707//v3lysaUKVMYNmwY7dq1o0OHDixatIisrCx5ds3TwuzKSNeuXZGkkmcFFLe6ateuXTl9+rS5pxKEp0p6bAJqCyvyDcbp5KnxCWUcIQgPLiIiAldXVyIjI7ly5QqOjo60bduWGTNmlHrcvHnzyMzMJDg4GDs7O958803S09NNYlasWMHEiRN58cUXyc/Pp3Pnzmzfvl3uJtHr9YSFhfHXX39hb29Pz549WbhwYZVfS3FGjBjBkSNHeP31180+dvny5SYzQTt37gz8PSsHjONubt26Jcf84x//4ObNm7z//vskJibSunVrfv755yKDWp90Cqm0msUjIiMjAwcHB9LT07G3t6/udAShUsS8vQU7C2cyC9KQMJDIRbotKLqGg/DoyM3NJS4ujnr16mFlVfI6MsLjIyIigvXr1/Prr79WdyqPjdJ+D8r7+S1ulCcIjwBdbh62CuMy03pdDnaWzljqSl5hVhCEipWZmclvv/3GZ5999kBjV4SHIyojgvAISIm5ioVCSYE+l5w7fwKgN5R/EShBeBKEhoai1WqLfYSGhlbquceNG4efnx9du3Z9oC4a4eE82kO+BeEpkRF7HWuUZOYmY8gz3v7A0iB+PYWny6xZs4pdXh6o9C76lStXijvKVyPx104QHgF51zKwxom8rOvkScb1D1QWomVEeLrUrFnzqbo5nPA30U0jCI+CVOO9TPTp19BZGBdh0ijFKsSCIDwdRGVEEB4BmnzjCHRlagIaRZpxn9K8NQ4EQRAeV6IyIgjVLDsjnd9vH+ZSxinUt65i7aAgW5dBtu5OdacmCIJQJcSYEUGoZil/XuXynTPY6Aromp+NY/NarN//OQB14wNw8a5bzRkKgiBULtEyIgjV7GbCVQDscvIAqNHGDzDe8CzhpFi5WBCEJ5+ojAhCNcu6kIyz2g27HONiyGqvRigUxjEkty7HVWdqwhOsa9euTJo0qdrO7+3tzaJFiyqt/P3796NQKEhLS6uQ8u5/vSo7/6eNqIwIQjVzuVGDHh7DcLf1AYWEsqYn7V2607vOKFQ3DdWdniA8lgICArhx4wYODg7VnYrZyltRlCSJ999/H3d3d6ytrQkMDOTixYulHjNz5kwUCoXJo0mTJhWU+YMTlRFBqEZ6nQ4bgx0AqttXUVmDQqVCq1BiZ+mMuqCgmjMUhPKTJAndI3IbA7VajZubGwqForpTKbf8/Hyz4j/55BOWLFnC8uXLiY6OxtbWlqCgIHJzc0s9rnnz5ty4cUN+HDp06GHSrhCiMiII1Sjt4l+oLCzRGwrQpF5H6WhcZTJXMv5B14kl4YVKpNPpGDduHA4ODtSoUYP33nvP5K7sa9asoV27dtjZ2eHm5saQIUNITk6Wny/sCtmxYwd+fn5oNBoOHTrE5cuX6du3L7Vq1UKr1dK+fXv27NlT5Px37txh8ODB2Nra4uHhwdKlS02ej4qKwtfXF1tbWzw9PXnjjTfIzMyUn7969SrBwcE4OTlha2tL8+bN2b59u0lu5emmSUlJYfDgwXh4eGBjY4Ovry/r1q0r87iy8k9LS2PkyJG4urpib2/P888/z9mzZ+XnZ86cSevWrfn666/lm8wNHz6cAwcOsHjxYrnlIj4+vsi5JUli0aJFvPvuu/Tt25eWLVuyevVqrl+/zubNm0vNW6VS4ebmJj9q1KhR5rVWNlEZEYRqlBZzDYAsQxoWkgFV/VYAFCiMLSIqvfgVfWzlZ5X8KMg1IzanfLEPYNWqVahUKo4fP87ixYuJiori66+/lp8vKCggIiKCs2fPsnnzZuLj4xk+fHiRcsLDw5k7dy4xMTG0bNmSzMxMevfuzd69ezl9+jQ9e/YkODiYhIQEk+PmzZtHq1atOH36NOHh4UycOJHdu3fLz1tYWLBkyRJ+//13Vq1axS+//MLbb78tPx8WFkZeXh4HDx7k3LlzfPzxx2i15lfgc3Nz8fPzY9u2bfz222+MHj2aoUOHcvz48VKPKyv/gQMHkpyczI4dOzh58iRt27ale/fu3L59W465dOkSP/74Ixs3buTMmTMsXrwYf39/Ro0aJbdceHp6Fjl3XFwciYmJBAYGyvscHBzo2LEjR48eLTXvixcvUrt2berXr88///nPIj+X6iCm9gpCNcr9MxUNDuRzBw2gcnEBIF9lCYDSwq4asxMeypzaJT/n8wL8c/3f2/MaQkF28bF1n4XXtv29vcgXslOKxs1MNztFT09PFi5ciEKhoHHjxpw7d46FCxcyatQoAJMbxtWvX58lS5bQvn17MjMzTT70Z82aRY8ePeRtZ2dnWrVqJW9HRESwadMmtm7dyrhx4+T9zzzzDOHh4QA0atSIw4cPs3DhQrms+weMzp49m9DQUJYtWwZAQkICAwYMwNfXV87xQXh4eJjcE2f8+PHs3LmTH374gQ4dOpR4XGn5Hzp0iOPHj5OcnIxGY1xNef78+WzevJkNGzYwevRowNg1s3r1alxdXeVy1Wo1NjY2uLm5lXjuxMREAGrVqmWyv1atWvJzxenYsSMrV66kcePG3Lhxgw8//JDnnnuO3377DTu76vt7I752CUI1MqQYW0AkKQ0AZQ1jZURhYew7FkvCC5WpU6dOJmMq/P39uXjxInq98fYEJ0+eJDg4GC8vL+zs7OjSpQtAkW/S7dq1M9nOzMxk6tSpNG3aFEdHR7RaLTExMUWO8/f3L7IdExMjb+/Zs4fu3bvj4eGBnZ0dQ4cOJSUlhexsY8VtwoQJzJ49m2eeeYYPPviAX3/99YFeB71eT0REBL6+vjg7O6PVatm5c2eZLQal5X/27FkyMzNxcXExuftwXFwcly9flo+pW7euSUWksvXq1YuBAwfSsmVLgoKC2L59O2lpafzwww9VlkNxRMuIIFQjda4aLEB109iPrMo2/pFS2SqhADRKq+pMT3gYM66X/JxCabr91qVSYu/7zjjp3IPnZIasrCyCgoIICgpi7dq1uLq6kpCQQFBQUJGBlra2tibbU6dOZffu3cyfP5+GDRtibW3Nyy+/bNYAzfj4eF588UXGjh3LRx99hLOzM4cOHWLEiBHk5+djY2PDyJEjCQoKYtu2bezatYvIyEgWLFjA+PHjzbrWefPmsXjxYhYtWiSPUZk0aZLZA0rvlZmZibu7O/v37y/ynKOjo/z/+1+78ipsNUlKSsLd3V3en5SUROvWrctdjqOjI40aNeLSpVLeg1VAVEYEoZrk5+ZwPGkbjuqaNE65hB5QuTgDYFPHieyLGeSIJeEfX2ozPmQqK7YM0dHRJtvHjh3Dx8cHpVLJH3/8QUpKCnPnzpXHLJw4caJc5R4+fJjhw4fTv39/wPjBXNwgzGPHjhXZbtq0KWBslTEYDCxYsAALC2OFrLhv756enoSGhhIaGsr06dP56quvzK6MHD58mL59+/Lqq68CYDAYuHDhAs2aNSv1uNLyb9u2LYmJiahUKry9vc3KR61Wy61TJalXrx5ubm7s3btXrnxkZGQQHR3N2LFjy32uzMxMLl++zNChQ83KsaKJbhpBqCYpfyaQnJvANYvLqFKNYwCUbh4A1GzXmP/8+Tn7E9eRkZRUnWkKT7CEhASmTJlCbGws69at49NPP2XixIkAeHl5oVar+fTTT7ly5Qpbt24lIiKiXOX6+PjIAzLPnj3LkCFDMBiKrplz+PBhPvnkEy5cuMDSpUtZv369fP6GDRtSUFAgn3/NmjUsX77c5PhJkyaxc+dO4uLiOHXqFPv27ZMrA+bw8fFh9+7dHDlyhJiYGMaMGUNSOX7vSss/MDAQf39/+vXrx65du4iPj+fIkSO88847ZVbqvL29iY6OJj4+nlu3bhX72ikUCiZNmsTs2bPZunUr586dIyQkhNq1a9OvXz85rnv37nz22Wfy9tSpUzlw4ICcT//+/VEqlQwePLicr1blEJURQagmNxOMq6vW8PJGl238FqRy9wbAo6Uvhb+eV/93qjrSE54CISEh5OTk0KFDB8LCwpg4caI8sNLV1ZWVK1eyfv16mjVrxty5c5k/f365yo2KisLJyYmAgACCg4MJCgqibdu2ReLefPNNTpw4QZs2bZg9ezZRUVEEBQUB0KpVK6Kiovj4449p0aIFa9euJTIy0uR4vV5PWFgYTZs2pWfPnjRq1Ege3GqOd999l7Zt2xIUFETXrl1xc3Mz+UAvSWn5KxQKtm/fTufOnXnttddo1KgRgwYN4urVq0UGnd5v6tSpKJVKmjVrJnePFeftt99m/PjxjB49Wh5Y/PPPP2Nl9Xf37uXLl7l165a8/ddffzF48GAaN27MK6+8gouLC8eOHavScSvFUUj3Tip/RGVkZODg4EB6ejr29vbVnY4gVIhjS9by55kzuPk3ocaCeYACn52bUNU1roYYNegVJCmbNp168vzkcaUXJlSL3Nxc4uLi5DUiBOFpVNrvQXk/v8WYEUGoJnY3bPGv+X9k6m8ioTAuBV/776mJ7V0CqWHlRlJS9Q4sEwRBqGyim0YQqoHBYMBabxyIaKs1Lmql1IDCUi3H2CkssbN0wlIsCS8ID6VXr14m02vvfcyZM6e60xMQLSOCUC3uJCShtrDCIBmw1yrIBFSOpitH5krGSkiBruJmTwjC0+jrr78mJyen2OecnZ2rOBuhOKIyIgjV4PbvV7EEssnAQWGsbCjr+ZrEiCXhBaFieHh4VHcKQhnEXzlBqAbZ8cZ7UxRY69DdMk7rVbmY3qwqT2n8rqBUiJvlCYLwZBOVEUGoBoZbeQBY1FCju2m8j0ThfWkKKRR3l4S3EEvCC4LwZBOVEUGoBpbZxlYPG28X9Gd3AaDMNp01o7Q13jNELAkvCMKTTlRGBKGK6QoKOHD9B/6b9CPOrbzRpWcCfy8FX8jazYEsXbpYEl4QhCeeGMAqCFXs9rU/ycxPpcAyH/s6tUjJyAVAVct0kJ1z6/psPWRccbJ5ejDWDg5VnqsgCEJVEC0jglDFbiXEA1DD0xuFQoEuSweA0t3LJM6zbWvA2FUTL5aEFx5hXbt2ZdKkSdWdRqXav38/CoWCtLS06k7liSQqI4JQxXJ+TaGZYwB13Jog6XTojQ0jqOrUN4mzsrVFoTCOF0mKvVDVaQqCcI+AgABu3LiBQyktlLm5uYSFheHi4oJWq2XAgAGl3nCvoKCAadOm4evri62tLbVr1yYkJITr16+bxHl7G7+43PuYO3duhV3bo0BURgShimluqPB1eg5Xa0/0iVdBMrZ+qOr4FIntWCOIPnVGo7hW/IJNglBVJElCp9NVdxomqjIntVqNm5sbCoWixJjJkyfzn//8h/Xr13PgwAGuX7/OSy+9VGJ8dnY2p06d4r333uPUqVNs3LiR2NhY/u///q9I7KxZs7hx44b8GD9+fIVc16NCVEYEoYpZFVgDoG1YC/014wwapUZCYWVTJFarUKG1dEKVn1+lOQpPPoPBQGRkJPXq1cPa2ppWrVqxYcMG+fnCbokdO3bg5+eHRqPh0KFDZGVlERISglarxd3dnQULFhQpOzU1lZCQEJycnLCxsaFXr15cvHhRfv7q1asEBwfj5OSEra0tzZs3Z/v27WXmXFJO5b2WvXv30q5dO2xsbAgICCA2NhaA+Ph4LCwsOHHihMn5Fi1aRN26dTEYDGV206Snp/PNN98QFRXF888/j5+fHytWrODIkSMcO3as2GMcHBzYvXs3r7zyCo0bN6ZTp0589tlnnDx5ssideu3s7HBzc5MftrZP1srMojIiCFUo80YKVhbGPyIuvvXQpWcBoLQv/g9LrqFwSfiiFRXh0SRJEtkF2dXyMOcm7JGRkaxevZrly5fz+++/M3nyZF599VUOHDhgEhceHs7cuXOJiYmhZcuWvPXWWxw4cIAtW7awa9cu9u/fz6lTpmOahg8fzokTJ9i6dStHjx5FkiR69+5Nwd37LIWFhZGXl8fBgwc5d+4cH3/8MVpt+Rf3uz+n8l7LO++8w4IFCzhx4gQqlYrXX38dMHaDBAYGsmLFCpP4FStWMHz4cCwsyv6oPHnyJAUFBQQGBsr7mjRpgpeXF0ePHi33taWnp6NQKHB0dDTZP3fuXFxcXGjTpg3z5s175FqpHpaYTSMIVej27/FYAFmGDOo4aEnPNy5opvJuXmx8AcYWEaVOfG94XOTocuj4XcdqOXf0kGhsLMuuuObl5TFnzhz27NmDv78/APXr1+fQoUN88cUXdOnSRY6dNWsWPXr0ACAzM5NvvvmGb7/9lu7duwOwatUq6tSpI8dfvHiRrVu3cvjwYQICAgBYu3Ytnp6ebN68mYEDB5KQkMCAAQPw9fWVz22Oe3My51o++ugjeTs8PJw+ffqQm5uLlZUVI0eOJDQ0lKioKDQaDadOneLcuXNs2bKlXDklJiaiVquLVCJq1apFYmJiucrIzc1l2rRpDB48GHt7e3n/hAkTaNu2Lc7Ozhw5coTp06dz48YNoqKiylXu40BURgShCmVduYkdtuRbGVdg1afcAkBZw6XY+L+XhH+ymmSF6nXp0iWys7PlD/RC+fn5tGnTxmRfu3bt5P9fvnyZ/Px8Onb8u7Ll7OxM48aN5e2YmBhUKpVJjIuLC40bNyYmJgYwfriOHTuWXbt2ERgYyIABA2jZsmW58783J3Ou5d5zuLu7A5CcnIyXlxf9+vUjLCyMTZs2MWjQIFauXEm3bt3w9vYud14Po6CggFdeeQVJkvj8889NnpsyZYrJNajVasaMGUNkZCQazZOxQrOojAhCFdIl5QC2KJzVxu3kwqXgaxR/gLwkvLoq0hMqgLXKmugh0dV27vLIzDQutLdt27YiN5G7/8OtMsYmjBw5kqCgILZt28auXbuIjIxkwYIF5R6UeW9O5lyLpaWl/P/CgagGgwEwDlANCQlhxYoVvPTSS3z33XcsXry43Nfk5uZGfn4+aWlpJq0jSUlJuLm5lXpsYUXk6tWr/PLLLyatIsXp2LEjOp2O+Ph4k4rg40xURgShCllkGf8AWns5AqA7uxMA1X1LwRdS3v1sEUvCPz4UCkW5ukqqU7NmzdBoNCQkJJh0Y5SlQYMGWFpaEh0djZeXcV2c1NRULly4IJfTtGlTdDod0dHRcjdNSkoKsbGxNGvWTC7L09OT0NBQQkNDmT59Ol999dUDzRB50GspzsiRI2nRogXLli1Dp9OVOhPmfn5+flhaWrJ3714GDBgAQGxsLAkJCXL3UXEKKyIXL15k3759uLgU30p6rzNnzmBhYUHNmjXLnd+jTlRGBKGKGAx69v61Biu0vBw6GwBdmvFbndLZqdhj1K5asm6kky2WhBcqkJ2dHVOnTmXy5MkYDAaeffZZ0tPTOXz4MPb29gwbNqzY47RaLSNGjOCtt97CxcWFmjVr8s4775gM8PTx8aFv376MGjWKL774Ajs7O8LDw/Hw8KBv374ATJo0iV69etGoUSNSU1PZt28fTZs2rdJrKU7Tpk3p1KkT06ZN4/XXX8faunwtTWCcGTNixAimTJmCs7Mz9vb2jB8/Hn9/fzp16iTHNWnShMjISPr3709BQQEvv/wyp06d4qeffkKv18vjS5ydnVGr1Rw9epTo6Gi6deuGnZ0dR48elQfoOjkV/3fjcSQqI4JQRdISb1BQkIekBkev2gDo7xjXD1HVql3sMY6+dfnpeBSgoHXOK6itRQuJUDEiIiJwdXUlMjKSK1eu4OjoSNu2bZkxY0apx82bN4/MzEyCg4Oxs7PjzTffJD093SRmxYoVTJw4kRdffJH8/Hw6d+7M9u3b5W4SvV5PWFgYf/31F/b29vTs2ZOFCxdW+bUUZ8SIERw5ckSeaWOOhQsXYmFhwYABA8jLyyMoKIhly5aZxMTGxsqv17Vr19i6dSsArVu3Nonbt28fXbt2RaPR8O9//5uZM2eSl5dHvXr1mDx5ssk4kieBQjJnLlg1ycjIwMHBgfT09DL70gThURV79BA/LZqLWwMf/jnH+If3ol9TdFng/dmHWAe+UuSYrNu3WT42BIC+E9+hYUDJzb1C1cvNzSUuLo569ephZSUqik+CiIgI1q9fz6+//lrdqTw2Svs9KO/nt5gvKAhVJPfULTrW6ENdV+OIfslgQJ9j/C6g8qhX7DG2zs6AcRBe4m9/VEmegvA0yszM5LfffuOzzz574lY3fRyIyoggVBGLRAlvuxa4aI1dMoZb15AMxgGtymKWgi/k79qbPnXGYPhLjBsRnmyhoaFotdpiH6GhoZV67nHjxuHn50fXrl0fqItGeDhizIggVBFNngYsQFvfFQDdX8YZNBaWEhZ2jiUep1VYorV0JCU3ryrSFIRqM2vWLKZOnVrsc5XdRb9y5UpWrlxZqecQSiYqI4JQBXJS72BjYQeAcwtvAPSpxpYOpX3pI/ZzDca1RgoKHu3pooLwsGrWrPlETVcVyk900whCFUg5FwdAjiET21rOAOgKjAuZqeo2K/E4gPzCJeELKjFBQRCEaiQqI4JQBTIvJwGQp86V9+lupQCgKmORozwLJQAWiCXhBUF4MonKiCBUgYJE4915cVLK+3TJN4CS70sjE0vCC4LwhBOVEUGoAgV3cjBIBjQefw/C05/9GQBVVvFLwReysDLeO0MsCS8IwpNKVEYEoZJJksTh65vYeHUhDh285P2FS8GrnB1LPd7SRUtWQTrZejG1VxCEJ5OojAhCJbtz6yb5OdlIFhIuXp7yfl1GNgDKEpaCL2Tf1J2f/lrOoaQf0RWIUazCo6dr165MmjSputOoVPv370ehUJCWllbdqTyRRGVEECrZzQTjTBpnD0+Uqr9vYa7PNFYsVG6exR5XqE671nf/Z+D6b+crI0VBEMoQEBDAjRs3cHBwKDEmNzeXsLAwXFxc0Gq1DBgwgKSkpFLLHT58OAqFwuTRs2fPik7/kScqI4JQyXKib9Ld/VUaubQ32a/LLn0p+ELOtWsDxsGr13/9rVJyFISySJKETqer7jRMVGVOarUaNzc3FApFiTGTJ0/mP//5D+vXr+fAgQNcv36dl156qcyye/bsyY0bN+THunXrKjL1x4KojAhCJZOSC6hh5YGDvau8z5CajKQvXAq+YZllBLi+SJ86YyiIT620PIWni8FgIDIyknr16mFtbU2rVq3YsGGD/Hxht8SOHTvw8/NDo9Fw6NAhsrKyCAkJQavV4u7uzoIFC4qUnZqaSkhICE5OTtjY2NCrVy8uXrwoP3/16lWCg4NxcnLC1taW5s2bs3379jJzLimn8l7L3r17adeuHTY2NgQEBBAbGwtAfHw8FhYWnDhxwuR8ixYtom7duhgMhjK7adLT0/nmm2+Iiori+eefx8/PjxUrVnDkyBGOHTtW6nVpNBrc3Nzkh5OTU5mvxZPmgSojS5cuxdvbGysrKzp27Mjx48dLjV+0aBGNGzfG2toaT09PJk+eTG5ubqnHCMKTwjLH2DVjU6+GvE/3p/EPs0IpYeFU9oqTthZqtJaOKMXvzSNPkiQM2dnV8jDnJuyRkZGsXr2a5cuX8/vvvzN58mReffVVDhw4YBIXHh7O3LlziYmJoWXLlrz11lscOHCALVu2sGvXLvbv38+pU6dMjhk+fDgnTpxg69atHD16FEmS6N27NwV3xzyFhYWRl5fHwYMHOXfuHB9//DFarbbcud+fU3mv5Z133mHBggWcOHEClUol34PG29ubwMBAVqxYYRK/YsUKhg8fjoVF2R+VJ0+epKCggMDAQHlfkyZN8PLy4ujRo6Ueu3//fmrWrEnjxo0ZO3YsKSkp5X0pnhhmLwf//fffM2XKFJYvX07Hjh1ZtGgRQUFBxMbGFruM73fffUd4eDj/+te/CAgI4MKFC3IfWVRUVIVchCA8qgqycrHBuAy8U7N7Bq+mZgCgsrMqtdm3UJ7BeF+avPzSl44Xqp+Uk0NsW79qOXfjUydR2JR924C8vDzmzJnDnj178Pf3B6B+/focOnSIL774gi5dusixs2bNokePHoDxzrbffPMN3377Ld27dwdg1apV1KlTR46/ePEiW7du5fDhwwQEBACwdu1aPD092bx5MwMHDiQhIYEBAwbg6+srn9sc9+ZkzrV89NFH8nZ4eDh9+vQhNzcXKysrRo4cSWhoKFFRUWg0Gk6dOsW5c+fYsmVLuXJKTExErVbj6Ohosr9WrVokJiaWeFzPnj156aWXqFevHpcvX2bGjBn06tWLo0ePolQqSzzuSWN2ZSQqKopRo0bx2muvAbB8+XK2bdvGv/71L8LDw4vEHzlyhGeeeYYhQ4YAxhro4MGDiY6OfsjUBeHRl/J7HBYKC/IMOdT2rCXv1+Ubf/WUdRuXq5x86e6S8PkVn6Pw9Ll06RLZ2dnyB3qh/Px82rRpY7KvXbt28v8vX75Mfn4+HTt2lPc5OzvTuPHf7+OYmBhUKpVJjIuLC40bNyYmJgaACRMmMHbsWHbt2kVgYCADBgygZcuW5c7/3pzMuZZ7z+Hu7g5AcnIyXl5e9OvXj7CwMDZt2sSgQYNYuXIl3bp1w9vbu9x5PYhBgwbJ//f19aVly5Y0aNCA/fv3yxW+p4FZlZH8/HxOnjzJ9OnT5X0WFhYEBgaW2AwVEBDAt99+y/Hjx+nQoQNXrlxh+/btDB06tMTz5OXlkZf39x1KMzIyzElTEB4ZGRcTsUFFrirLpKlXn1K4FHyNkg41kXf3WAtJ3CzvUaewtqbxqZPVdu7yyMw0rnGzbds2PDw8TJ7TaDQm27a2FX8bgpEjRxIUFMS2bdvYtWsXkZGRLFiwgPHjx5fr+HtzMudaLC3/ns1W2CJpMBgXFVSr1YSEhLBixQpeeuklvvvuOxYvXlzua3JzcyM/P5+0tDST1pGkpCTc3NzKXU79+vWpUaMGly5dEpWRkty6dQu9Xk+tWrVM9teqVYs//vij2GOGDBnCrVu3ePbZZ+WRz6GhocyYMaPE80RGRvLhhx+ak5ogPJLyr2VggzMGB9OuGF2Ssdm2rPvSFJIoXBLesoxIobopFIpydZVUp2bNmqHRaEhISDDpxihLgwYNsLS0JDo6Gi8v4wJ+qampXLhwQS6nadOm6HQ6oqOj5W6alJQUYmNjadbs75tCenp6EhoaSmhoKNOnT+err74qd2WkIq6lOCNHjqRFixYsW7YMnU5Xrpkwhfz8/LC0tGTv3r0MGDAAgNjYWBISEuTuo/L466+/SElJkVtunhZmd9OYa//+/cyZM4dly5bRsWNHLl26xMSJE4mIiOC9994r9pjp06czZcoUeTsjIwNPz9LXYhCER1HmnVQsdUrUte1M9uvO7ABAmX2xuMOKUGjufnsTS8ILFcDOzo6pU6cyefJkDAYDzz77LOnp6Rw+fBh7e3uGDRtW7HFarZYRI0bw1ltv4eLiQs2aNXnnnXdMWv18fHzo27cvo0aN4osvvsDOzo7w8HA8PDzo27cvAJMmTaJXr140atSI1NRU9u3bR9OmTav0WorTtGlTOnXqxLRp03j99dexLmdLE4CDgwMjRoxgypQpODs7Y29vz/jx4/H396dTp05yXJMmTYiMjKR///5kZmby4YcfMmDAANzc3Lh8+TJvv/02DRs2JCgoyKzX4XFnVmWkRo0aKJXKIou4lNYM9d577zF06FBGjhwJGPvEsrKyGD16dJE3cSGNRlOkeU0QHkenk/aQnZ7G4DHzTfbr0+4OYC3nFD6VkxWZt9PI0WVWeI7C0ykiIgJXV1ciIyO5cuUKjo6OtG3bttRWa4B58+aRmZlJcHAwdnZ2vPnmm6Snp5vErFixgokTJ/Liiy+Sn59P586d2b59u9xNotfrCQsL46+//sLe3p6ePXuycOHCKr+W4owYMYIjR47IM23MsXDhQiwsLBgwYAB5eXkEBQWxbNkyk5jY2Fj59VIqlfz666+sWrWKtLQ0ateuzQsvvEBERMRT9xmokMyZCwZ07NiRDh068OmnnwLG/jYvLy/GjRtX7ABWPz8/AgMD+fjjj+V969atY8SIEdy5c6dco4UzMjJwcHAgPT0de3v7MuMF4VGQlZbK8jFDQaFgwsr1WFr93aoR3701Odfy8HhzMPaj3i+zrFPrN7Jvw78AFRO/XY/KUnTXPApyc3OJi4ujXr16WFmJVqsnQUREBOvXr+fXX3+t7lQeG6X9HpT389vsdUamTJnCV199xapVq4iJiWHs2LFkZWXJs2tCQkJMBrgGBwfz+eef8+9//5u4uDh2797Ne++9R3Bw8FM1bUl4+tyKjwfAyc3dpCICoM80jgEpayn4Qh7yrAAdt67EVVSKgiDclZmZyW+//cZnn332QGNXhIdj9piRf/zjH9y8eZP333+fxMREWrduzc8//ywPak1ISDDpenn33XdRKBS8++67XLt2DVdXV4KDg/noo48q7ioE4RGUFZ1IX69x3La/VeQ5XbYBUKD08C5XWbUa1sP466rjrzO/4ta4UUWmKgiPhNDQUL799ttin3v11VdZvnx5pZ173LhxrFu3jn79+j1QF43wcMzupqkOoptGeBydi9iEU1YN0mun03zCi/J+Q2Y6se2MA9oaHdiJspZXuco7Nn4FTmpXbrr8xbMzQislZ8E8opumYiUnJ5e4lIO9vX2xC2sK1a8iumkqfTaNIDytVJlKUICVl+kgVf2fFwBQWEhYuNYp7tBi2VposLV0ICXrQoXmKQiPipo1a4oKx1NK3ChPECqBPl/39zLwTU3HhehS746k12pQlOOeF4Xy9HeXhM8T38AFQXiyiMqIIFSC239cRalQoTPk49jAdFVIXa5x4LbK08esMvMlY2VEmf/I96wKgiCYRVRGBKESpMdeAyDbIhMLlemsMV2KcUCrskb5Vl8tlHd3+WqFQdwsTxCEJ4uojAhCJcj9y9gVo7cr2oqhT7oBlP++NIXkJeEV6ofMThAE4dEiKiOCUAlS79wgKScepUfR8R26Mz8DoMoq31LwMks9AGrl07UyoyAITz5RGRGEShCTdJT9id9j36HobBldmrHVROXsaFaZSkc1mQVp5OjFkvDCw+vatSuTJk2qtvN7e3uzaNGiSit///79KBQK0tLSKqS8+1+vys7/aSMqI4JQwfKys7hz6yYANby8izyvT88GQFmz/LcVB7Bu4MS2v77gSPLWh85REJ50AQEB3LhxAwcHh+pOxWzlrShu3LiRF154ARcXFxQKBWfOnClX+evXr6dJkyZYWVnh6+vL9u3bHy7hCvBUrzOSlZZKQVoO6EuenWBh//c9QAzZOtCVHKuwU6G4O8jQrNgcPRQYSo7VqlBYGGOlHD1SabG2KhTKu7G5eqT8csbm6ZHySom1UaJQWZQv1lqJwvJubL4BKVdf8bEFBqScUmKtlCjU5YzVWKDQGAeZSjoDUnY5Y/USUpauSMyty/HYqOxROmiw0mqLPK8rXAq+lkeR50rj3rIF/AeggNt//oWzZ/nXKBGEqiBJEnq9HpWq+j9a1Gp1iTdwfVTl5+ejVpd/TFhWVhbPPvssr7zyCqNGjSrXMUeOHGHw4MFERkby4osv8t1339GvXz9OnTpFixYtHjT1h1b975hqtGXBRzTKaIWbtXexz+slPRvi/77b6rM1X8LDtuTpmD/EzUPC+CHdyTWYutpmJcZujF9IgWT8UGpXoycN7FqVnGfCUnLvNs23ce5OI4d2JcZu+/NLMnWpAPg6daaZo3+JsTuv/Yu0fOM3+KYO/rR07lxi7J7r35KSZ5wh0si+HW1cupcYu//G9yTlxgNQ364V7Wv0LDH2v0k/cj37EgB1bZvRqWZwibFHk7eSkBUDgIeND8/WeqnE2P/d+pkrd84CUMvam65u/ygx9lTKHi5mnASghsaD7rVfLTH219sHiEk/BoCjuiZBHq8VibECgj3Hckt9o9gy9Nl6QIGydt0Sz1Mc96ZNACWgJ+HkaVEZER6aTqdj3LhxrFmzBktLS8aOHcusWbPkL0pr1qxh8eLFxMbGYmtry/PPP8+iRYvkhcn2799Pt27d2L59O++++y7nzp1j165deHp6MmXKFI4dO0ZWVhZNmzYlMjKSwMBAk/PfuXOHwYMHs3XrVhwdHZkxYwZhYWHy81FRUaxYsYIrV67g7OxMcHAwn3zyCdq7lfyrV68ybtw4Dh06RH5+Pt7e3sybN4/evXvLuaWmpuLo6Fjq65CSksK4ceM4ePAgqampNGjQgBkzZjB48OBSjysr/7S0NKZOncqWLVvIy8ujXbt2LFy4kFatjH/vZ86cyebNmxk3bhwfffQRV69eJSQkhAMHDnDgwAEWL14MQFxcHN7e3kXOP3ToUADi794HqzwWL15Mz549eeuttwDjjQF3797NZ599VqnL7Zflqe6mUapUSBjQS7piHwZJh8pSLT8khVRirP6+WBSUGqs0I1alsvw71qKMclUqOVZhoSg11uKechXK0mOVKuU9sRZllPt3rIVF6bFKpar85SrvKVepLDVWYWEhxyqVqtLLvSfWQlV6rEm5KssS4/INuWhbuhd5z0m52ejzjH/oVXUamPV+VVla8mzNl3jRM5TsC4kV8jsgVJ6CPH2JD12Bvvyx+eWLfRCrVq1CpVJx/PhxFi9eTFRUFF9//fXf5yooICIigrNnz7J582bi4+MZPnx4kXLCw8OZO3cuMTExtGzZkszMTHr37s3evXs5ffo0PXv2JDg4mISEBJPj5s2bR6tWrTh9+jTh4eFMnDiR3bt3y89bWFiwZMkSfv/9d1atWsUvv/zC22+/LT8fFhZGXl4eBw8e5Ny5c3z88cdyRcUcubm5+Pn5sW3bNn777TdGjx7N0KFDOX78eKnHlZX/wIEDSU5OZseOHZw8eZK2bdvSvXt3bt++LcdcunSJH3/8kY0bN3LmzBkWL16Mv78/o0aN4saNG9y4cQNPz/LdULM8jh49WqRSGBQUxNGjRyvsHA9C3JtGEKpQwaWzXHpxECgkmpz7DYWZzdm/Tfw3jtYeJKhPEjBrUuUkKZRbaffkWBr6S4nH1W3hwovj/m4N/WLCfnQldKnW9nGk/5tt5e1vpv6X3MyCInFhy583K/euXbuSnJzM77//LreEhIeHs3XrVs6fP1/sMSdOnKB9+/bcuXMHrVYrtz5s3ryZvn37lnq+Fi1aEBoayrhx4wDjANCmTZuyY8cOOWbQoEFkZGSUOIZhw4YNhIaGcuuWca2eli1bMmDAAD744IMisea0jBTnxRdfpEmTJsyfb2wd79q1K61bt5YHrZaV/6FDh+jTpw/JycloNH/PgGvYsCFvv/02o0ePZubMmcyZM0e+iWyh+89Vlvj4eOrVq8fp06dp3bp1qbFqtZpVq1aZtPosW7aMDz/8kKSkpHKd734VcW+ap7plRBCqmu62sQtNaas2uyICkGfINf6bK9YaER5ep06d5IoIgL+/PxcvXkSvN7a0nDx5kuDgYLy8vLCzs6NLly4ARVo42rUz7TrOzMxk6tSpNG3aFEdHR7RaLTExMUWO8/f3L7IdExMjb+/Zs4fu3bvj4eGBnZ0dQ4cOJSUlhexs4yDwCRMmMHv2bJ555hk++OADfv311wd6HfR6PREREfj6+uLs7IxWq2Xnzp1F8r1fafmfPXuWzMxMXFxc0Gq18iMuLo7Lly/Lx9StW9ekIvK0eqrHjAhCVdPnGuv/5nbRFMo3GJeEt8gteQCx8GgYvbhLic8p7vsa+Pq850qOVZhuh3wU8DBplVtWVhZBQUEEBQWxdu1aXF1dSUhIICgoiPz8fJNYW1tbk+2pU6eye/du5s+fT8OGDbG2tubll18uclxp4uPjefHFFxk7diwfffQRzs7OHDp0iBEjRpCfn4+NjQ0jR44kKCiIbdu2sWvXLiIjI1mwYAHjx48361rnzZvH4sWLWbRoEb6+vtja2jJp0iSz8r1fZmYm7u7u7N+/v8hz97bU3P/aVTY3N7ciLSBJSUnVPthXVEYEoQrpbqUAoHIxbyn4Qn8vCW9TYTkJlcNSoyw7qJJjyxIdHW2yfezYMXx8fFAqlfzxxx+kpKQwd+5ceczCiRMnylXu4cOHGT58OP379weMH8zFDbI8duxYke2mTZsCxlYZg8HAggULsLh7Q8kffvihSBmenp6EhoYSGhrK9OnT+eqrr8yujBw+fJi+ffvy6qvGwesGg4ELFy7QrFnJkxDKyr9t27YkJiaiUqmKHXxaGrVaLbdOVTR/f3/27t1rMnV49+7dRVp5qprophGEKqRLvrsUvJn3pSlkkJeEF98jhIeXkJDAlClTiI2NZd26dXz66adMnDgRAC8vL9RqNZ9++ilXrlxh69atRERElKtcHx8feUDm2bNnGTJkCAZD0da8w4cP88knn3DhwgWWLl3K+vXr5fM3bNiQgoIC+fxr1qwpMttj0qRJ7Ny5k7i4OE6dOsW+ffvkyoA5fHx82L17N0eOHCEmJoYxY8aUa/xEafkHBgbi7+9Pv3792LVrF/Hx8Rw5coR33nmnzEqdt7c30dHRxMfHc+vWrWJfO4Dbt29z5swZeYxPbGwsZ86cITHx7wHuISEhTJ8+Xd6eOHEiP//8MwsWLOCPP/5g5syZnDhxQh7LU11EZUQQqpD+tHFgntLcpeALqYwDF9XKosvMC4K5QkJCyMnJoUOHDoSFhTFx4kRGjx4NgKurKytXrmT9+vU0a9aMuXPnyoM5yxIVFYWTkxMBAQEEBwcTFBRE27Zti8S9+eabnDhxgjZt2jB79myioqIICgoCoFWrVkRFRfHxxx/TokUL1q5dS2RkpMnxer2esLAwmjZtSs+ePWnUqBHLli0z+3V49913adu2LUFBQXTt2hU3Nzf69etX5nGl5a9QKNi+fTudO3fmtddeo1GjRgwaNIirV69Sq1atUsudOnUqSqWSZs2ayd1jxdm6dStt2rShT58+gHEAbZs2bUwqbQkJCdy48fcyAwEBAXz33Xd8+eWXtGrVig0bNrB58+ZqXWMExGwaQahS1/7xHBlnb1FzYCdcIlaYffz+9z7DLduL23m3CPjs9UrIUDBHabMIBOFpIWbTCMJjRp+eBYDK9cEGi1nWs2fbX19y9Oa2ikxLEAShWonKiCBUId0d45gPZa3aD3R87WaF/eF53Lk7GFYQhNL16tXLZHrtvY85c+ZUd3oCYjaNIFQpXZYOUKAycyn4QnVa+QIKQOLqiZO06PlCRaYnCE+kr7/+mpycnGKfc3Z2ruJshOKIyoggVBGpIB+9cZkQlA+4zoiltRXP1RqIg9qF1PN/Qsm3/REE4S4PD/NuSilUPdFNIwhVRH/9CkjGVg1V7QerjADYWlhjq7JHupNZcckJgiBUI1EZEYQqoksx3hxLaWOJQvPgMy/y9Mbm5twcsSS8IAhPBlEZEYQqossxzqJXeXg/VDn5d+9Po8ipnBUaBUEQqpqojAhCFdGnGGe/KF1qPFQ58pLweuuHzkkQBOFRICojglBFdEl3l4J/wPvSFNJLxlGwGkXF3aNEEAShOonKiCBUEd0Z41LwquwHXAq+kEoHgNpCrPgpPBq6du1qcuO1J9H+/ftRKBSkpaVVdypPJFEZEYQqok9NB0Dp5PBQ5ShsldwpSCVHL2bTCEJVCQgI4MaNGzg4lPz7m5ubS1hYGC4uLmi1WgYMGFDmDfcUCkWxj3nz5skx3t7eRZ6fO3duhV3bo0BURgShiujSjZUHVY2aD1WOso4V2//6kuhbP1dEWoJQLpIkodPpqjsNE1WZk1qtxs3NDcXdMVvFmTx5Mv/5z39Yv349Bw4c4Pr167z00kullnvjxg2Tx7/+9S8UCgUDBgwwiZs1a5ZJ3Pjx4yvkuh4VojIiCFVEl2GcBfOgS8EXcmvWCABJyiU3U7SOCA/GYDAQGRlJvXr1sLa2lu/gWqiwW2LHjh34+fmh0Wg4dOgQWVlZhISEoNVqcXd3Z8GCBUXKTk1NJSQkBCcnJ2xsbOjVqxcXL/7dPXn16lWCg4NxcnLC1taW5s2bs3379jJzLimn8l7L3r17adeuHTY2NgQEBBAbGwtAfHw8FhYWnDhxwuR8ixYtom7duhgMhjK7adLT0/nmm2+Iiori+eefx8/PjxUrVnDkyBGOHTtW4jW5ubmZPLZs2UK3bt2oX7++SZydnZ1JnK2tbZmv1+NEVEYEoYros4zf4FTuXg9VjmfbNvL/E06ceaiyhIonSRIFubnV8jDnJuyRkZGsXr2a5cuX8/vvvzN58mReffVVDhw4YBIXHh7O3LlziYmJoWXLlrz11lscOHCALVu2sGvXLvbv38+pU6dMjhk+fDgnTpxg69atHD16FEmS6N27NwUFBQCEhYWRl5fHwYMHOXfuHB9//DFarbbcud+fU3mv5Z133mHBggWcOHEClUrF668b73zt7e1NYGAgK1aY3kl7xYoVDB8+HAuLsj8qT548SUFBAYGBgfK+Jk2a4OXlxdGjR8t1XUlJSWzbto0RI0YUeW7u3Lm4uLjQpk0b5s2b98i1Uj0ssRy8IFQBSadDd/fWGKo69UsPLoO1vT1dag3CXu1E2m9XoOuzFZChUFF0eXksGfZytZx7wqoNWFqVPbA5Ly+POXPmsGfPHvz9/QGoX78+hw4d4osvvqBLly5y7KxZs+jRowcAmZmZfPPNN3z77bd0794dgFWrVlGnTh05/uLFi2zdupXDhw8TEBAAwNq1a/H09GTz5s0MHDiQhIQEBgwYgK+vr3xuc9ybkznX8tFHH8nb4eHh9OnTh9zcXKysrBg5ciShoaFERUWh0Wg4deoU586dY8uWLeXKKTExEbVajaOjo8n+WrVqkZiYWK4yVq1ahZ2dXZGunQkTJtC2bVucnZ05cuQI06dP58aNG0RFRZWr3MeBqIwIQhXQJ/95dyl4UNbxeejybJTW2KjsSUm/8tBlCU+fS5cukZ2dLX+gF8rPz6dNmzYm+9q1ayf///Lly+Tn59OxY0d5n7OzM40bN5a3Y2JiUKlUJjEuLi40btyYmJgYwPjhOnbsWHbt2kVgYCADBgygZcuW5c7/3pzMuZZ7z+Hu7g5AcnIyXl5e9OvXj7CwMDZt2sSgQYNYuXIl3bp1w9vbu9x5Pax//etf/POf/8TqvgrllClT5P+3bNkStVrNmDFjiIyMRKPRVFl+lUlURgShCuhTbgFgYaXEwsbuocvL02WDBnKzLB+6LKFiqTQaJqzaUHZgJZ27PDLvjjXatm1bkZvI3f/hVhljE0aOHElQUBDbtm1j165dREZGsmDBgnIPyrw3J3OuxdLy79+XwoGoBoMBMA5QDQkJYcWKFbz00kt89913LF68uNzX5ObmRn5+PmlpaSatI0lJSbi5uZV5/H//+19iY2P5/vvvy4zt2LEjOp2O+Ph4k4rg40xURgShCuiyjH/wHna8SCF5SfjsJ6vf+EmgUCjK1VVSnZo1a4ZGoyEhIcGkG6MsDRo0wNLSkujoaLy8jO/l1NRULly4IJfTtGlTdDod0dHRcjdNSkoKsbGxNGvWTC7L09OT0NBQQkNDmT59Ol999dUDzRB50GspzsiRI2nRogXLli1Dp9OVORPmXn5+flhaWrJ37155JkxsbCwJCQly91FpvvnmG/z8/GjVqlWZsWfOnMHCwoKaNR9uZt6jRFRGBKEK6O62jDzs6quFcgtnF+oe7Q894dFkZ2fH1KlTmTx5MgaDgWeffZb09HQOHz6Mvb09w4YNK/Y4rVbLiBEjeOutt3BxcaFmzZq88847JgM8fXx86Nu3L6NGjeKLL77Azs6O8PBwPDw86Nu3LwCTJk2iV69eNGrUiNTUVPbt20fTpk2r9FqK07RpUzp16sS0adN4/fXXsbYu/y0XHBwcGDFiBFOmTMHZ2Rl7e3vGjx+Pv78/nTp1kuOaNGlCZGQk/fv3l/dlZGSwfv36YmcmHT16lOjoaLp164adnR1Hjx6VB+g6OTmVO79HnaiMCEIV0N9dCl5Z4+HuS1PIIOUDoEEsCS88mIiICFxdXYmMjOTKlSs4OjrStm1bZsyYUepx8+bNIzMzk+DgYOzs7HjzzTdJT083iVmxYgUTJ07kxRdfJD8/n86dO7N9+3a5m0Sv1xMWFsZff/2Fvb09PXv2ZOHChVV+LcUZMWIER44ckWfamGPhwoVYWFgwYMAA8vLyCAoKYtmyZSYxsbGxRV6vf//730iSxODBg4uUqdFo+Pe//83MmTPJy8ujXr16TJ482WQcyZNAIZkzF6yaZGRk4ODgQHp6Ovb29tWdjiCYLXniAFJ2nsepcwPcvvzpocv7ZcIiGtn4kZTzF36Li/4BE6pGbm4ucXFx1KtXr8igQ+HxFBERwfr16/n111+rO5XHRmm/B+X9/BbrjAhCFdDdTgNA5fhwS8HLrBXcKbhNtk4seiYIFSEzM5PffvuNzz777Ilb3fRxICojglAF9Gl3gIrrplHUtmT7X1/xv5TdFVKeIDwKQkND0Wq1xT5CQ0Mr9dzjxo3Dz8+Prl27PlAXjfBwxJgRQagChUvBqx5yKfhCNRs3gCPGJeELcnKxtBZdBMLjb9asWUydOrXY5yq7i37lypWsXLmyUs8hlExURgShCuiyjMtgq9wqZmqvV7t2sALAwLVfz+HdsX2FlCsI1almzZpP1HRVofxEZUQQKplkMKDPlgAFyjr1KqRMuxoudHUbjJ2lEylnLonKiCAIjzUxZkQQKpkhJRHJYFwYRFUBS8EXsrGwwUZlR0FqWoWVKQiCUB1EZUQQKpnuVjIAFmoLLBwqZtEzgDx9NgA5WWKtEUEQHm+iMiIIlUyfZVyyXelWp4xI8+Qb7t4GOCu/QssVBEGoaqIyIgiVTHcrBai4peAL5Rb+J1/MpBEE4fEmKiOCUMl0ycal4FU1KrYyopfyANCIX2PhAXTt2pVJkyZV2/m9vb1ZtGhRpZW/f/9+FAoFaWlpFVLe/a9XZef/tBF/xQShkunP7ABAmXWpYgu2ME4XVluU77bxgvA0CQgI4MaNGzg4VNCqx1WovBVFSZJ4//33cXd3x9ramsDAQC5evFjqMd7e3igUiiKPsLAwk/Pf/3xlLzonKiOCUMl0t28DoHKs2EWbDFYSdwpuk6PPqtByBeFBSZKETqer7jQAUKvVuLm5oVAoyg5+ROTnmzf+65NPPmHJkiUsX76c6OhobG1tCQoKIjc3t8Rj/ve//3Hjxg35sXu3cRXngQMHmsSNGjXKJO6TTz4x/4LMICojglDJdBW8FHwhqabF3SXh91ZoucLTQ6fTMW7cOBwcHKhRowbvvfce9947dc2aNbRr1w47Ozvc3NwYMmQIycnJ8vOFXSE7duzAz88PjUbDoUOHuHz5Mn379qVWrVpotVrat2/Pnj17ipz/zp07DB48GFtbWzw8PFi6dKnJ81FRUfj6+mJra4unpydvvPEGmZl/34/p6tWrBAcH4+TkhK2tLc2bN2f79u0muZWnmyYlJYXBgwfj4eGBjY0Nvr6+rFu3rszjyso/LS2NkSNH4urqir29Pc8//zxnz56Vn585cyatW7fm66+/lm8yN3z4cA4cOMDixYvlVon4+Pgi55YkiUWLFvHuu+/St29fWrZsyerVq7l+/TqbN28uMWdXV1fc3Nzkx08//USDBg3o0qWLSZyNjY1JXGWvgCsqI4JQyfQZxlkvqlruFVpujQbGBdQkKRddQUGFli08PEO+vsSHVGAwI1ZfrtgHsWrVKlQqFcePH2fx4sVERUXx9ddfy88XFBQQERHB2bNn2bx5M/Hx8QwfPrxIOeHh4cydO5eYmBhatmxJZmYmvXv3Zu/evZw+fZqePXsSHBxMQkKCyXHz5s2jVatWnD59mvDwcCZOnCh/UwewsLBgyZIl/P7776xatYpffvmFt99+W34+LCyMvLw8Dh48yLlz5/j444/RarVmvw65ubn4+fmxbds2fvvtN0aPHs3QoUM5fvx4qceVlf/AgQNJTk5mx44dnDx5krZt29K9e3du320tBbh06RI//vgjGzdu5MyZMyxevBh/f3+TlglPT88i546LiyMxMZHAwEB5n4ODAx07duTo0aPluu78/Hy+/fZbXn/99SItSGvXrqVGjRq0aNGC6dOnk52dXa4yH5RYgVUQKpku09j0qnIr+gflYXi1bwvfA+hJjL1AnRbNK7R84eFcf/9Iic9ZNXaixmst5O0bEceKVFAKqes5UHNMS3k78ePjGLKKdoXUmfuc2Tl6enqycOFCFAoFjRs35ty5cyxcuJBRo0YBmNwwrn79+ixZsoT27duTmZlp8qE/a9YsevToIW87OzvTqlUreTsiIoJNmzaxdetWxo0bJ+9/5plnCA8PB6BRo0YcPnyYhQsXymXdP2B09uzZhIaGsmzZMgASEhIYMGAAvr6+co4PwsPDw+SeOOPHj2fnzp388MMPdOjQocTjSsv/0KFDHD9+nOTkZDQa47iu+fPns3nzZjZs2MDo0aMBY4Vg9erVuLq6yuWq1Wq5ZaIkiYmJANSqVctkf61ateTnyrJ582bS0tKKVDCHDBlC3bp1qV27Nr/++ivTpk0jNjaWjRs3lqvcByEqI4JQyXR3l4JXeVTMUvCFnD3r0M1tCFpLR26eOC8qI4LZOnXqZPKN2N/fnwULFqDX61EqlZw8eZKZM2dy9uxZUlNTMRiMFaaEhASaNWsmH9euXTuTcjMzM5k5cybbtm3jxo0b6HQ6cnJyirSM+Pv7F9m+d4bKnj17iIyM5I8//iAjIwOdTkdubi7Z2dnY2NgwYcIExo4dy65duwgMDGTAgAG0bNkSc+n1eubMmcMPP/zAtWvXyM/PJy8vDxsbm1KPKy3/s2fPkpmZict9U/pzcnK4fPmyvF23bl2TikhV+uabb+jVqxe1a5vewLOwogTg6+uLu7s73bt35/LlyzRo0KBSchGVEUGoRIa0FCSd8Y+9sk7DCi/fRmmLjcqOtFt/VnjZwsOpPSugxOfubxJ3f69TKbGm227TSv6mXpGysrIICgoiKCiItWvX4urqSkJCAkFBQUUGWtra2ppsT506ld27dzN//nwaNmyItbU1L7/8slkDNOPj43nxxRcZO3YsH330Ec7Ozhw6dIgRI0aQn5+PjY0NI0eOJCgoiG3btrFr1y4iIyNZsGAB48ePN+ta582bx+LFi1m0aJE8RmXSpElmDyi9V2ZmJu7u7uzfv7/Ic46OjvL/73/tyquw1SQpKQl397+7gJOSkmjdunWZx1+9epU9e/aUq7WjY8eOgLFLqbIqIw80ZmTp0qV4e3tjZWVFx44dy+xXS0tLIywsDHd3dzQaDY0aNZIHGQnCk0x309hcqlApsHAuucn1QeXrjP242XfEkvCPGgu1ssSHwtLCjFhluWIfRHR0tMn2sWPH8PHxQalU8scff5CSksLcuXN57rnnaNKkicng1dIcPnyY4cOH079/f3x9fXFzcyt2EOaxY8eKbDdt2hSAkydPYjAYWLBgAZ06daJRo0Zcv369SBmenp6EhoayceNG3nzzTb766qtyXr1pvn379uXVV1+lVatW1K9fnwsXLpR5XGn5t23blsTERFQqFQ0bNjR51ChjMLtarUavL30cUL169XBzc2Pv3r8HsGdkZBAdHV2kxaY4K1asoGbNmvTp06fM2DNnzgCYVHoqmtmVke+//54pU6bwwQcfcOrUKVq1akVQUFCJb9L8/Hx69OhBfHw8GzZsIDY2lq+++goPD4+HTl4QHnXyeJGa7igsKn68eN7dJeGlzLwKL1t48iUkJDBlyhRiY2NZt24dn376KRMnTgTAy8sLtVrNp59+ypUrV9i6dSsRERHlKtfHx0cekHn27FmGDBkid/Hc6/Dhw3zyySdcuHCBpUuXsn79evn8DRs2pKCgQD7/mjVrWL58ucnxkyZNYufOncTFxXHq1Cn27dsnVwbM4ePjw+7duzly5AgxMTGMGTOGpKSkMo8rLf/AwED8/f3p168fu3btIj4+niNHjvDOO+9w4sSJUsv19vYmOjqa+Ph4bt26Vexrp1AomDRpErNnz2br1q2cO3eOkJAQateuTb9+/eS47t2789lnn5kcazAYWLFiBcOGDUOlMu0guXz5MhEREZw8eZL4+Hi2bt1KSEgInTt3fqAusHKTzNShQwcpLCxM3tbr9VLt2rWlyMjIYuM///xzqX79+lJ+fr65p5Klp6dLgJSenv7AZQhCdcjYvVs637iJdGXgK5VS/sGwr6U/px2U9oZ9WSnlC6XLycmRzp8/L+Xk5FR3Kmbr0qWL9MYbb0ihoaGSvb295OTkJM2YMUMyGAxyzHfffSd5e3tLGo1G8vf3l7Zu3SoB0unTpyVJkqR9+/ZJgJSammpSdlxcnNStWzfJ2tpa8vT0lD777DOpS5cu0sSJE+WYunXrSh9++KE0cOBAycbGRnJzc5MWL15sUk5UVJTk7u4uWVtbS0FBQdLq1atNzjdu3DipQYMGkkajkVxdXaWhQ4dKt27dKjW34qSkpEh9+/aVtFqtVLNmTendd9+VQkJCpL59+5q8Xubmn5GRIY0fP16qXbu2ZGlpKXl6ekr//Oc/pYSEBEmSJOmDDz6QWrVqVSSf2NhYqVOnTpK1tbUESHFxccXmbTAYpPfee0+qVauWpNFopO7du0uxsbEmMXXr1pU++OADk307d+6UgCKxkiRJCQkJUufOnSVnZ2dJo9FIDRs2lN56661SP39L+z0o7+e3QpLumVRehsJ+ug0bNpjUvIYNG0ZaWhpbtmwpckzv3r1xdnbGxsaGLVu24OrqypAhQ5g2bRpKZfFNi3l5eeTl/f1NLyMjA09PT9LT0yt9rrMgVKTU774lcdZHaLt1w/PzZRVe/v43ltHQ3perdy7wzNIRFV6+ULrc3Fzi4uLkNSIE4WlU2u9BRkYGDg4OZX5+m9VufOvWLfR6vVlTia5cucKGDRvQ6/Vs376d9957jwULFjB79uwSzxMZGYmDg4P8KG6OtSA8DnRnjGOjlNkVvBT8XQYLYzeQWimWhBcE4fFV6YueGQwGatasyZdffomfnx//+Mc/eOedd4r0/d1r+vTppKeny48//xQzBYTHkz6lcpaCLyRpDGTkp5CjE0vCC0JJevXqhVarLfYxZ86c6k5PwMypvTVq1ECpVBYZ2JOUlFTi4izu7u5YWlqadMk0bdqUxMRE8vPzUavVRY7RaDTyIjGC8DjTpWUAoKrgpeDl8l0M7Dj7NRYKLZ0ZUynnEITH3ddff01OTk6xzzk7O1dxNkJxzKqMqNVq/Pz82Lt3rzxmxGAwsHfvXpNV9e71zDPP8N1332EwGLC4O5vgwoULuLu7F1sREYQniS7dOPVWVbPip/UCuNSrC2fBIJV8YyxBeNqJ2ZuPPrO7aaZMmcJXX33FqlWriImJYezYsWRlZfHaa68BEBISwvTp0+X4sWPHcvv2bSZOnMiFCxfYtm0bc+bMMbldsSA8qfR3p/Yq3epUSvl12hYuua0j+XJcpZxDEAShspm9Aus//vEPbt68yfvvv09iYiKtW7fm559/lge1JiQkyC0gYFyQZufOnUyePJmWLVvi4eHBxIkTmTZtWsVdhSA8onRZBkCBqrZ3pZRfo349nnf/J7YqBxKjz1KzQcUuOS8IglAVHmg5+HHjxpXYLVPc0rf+/v5FVqoThCedISsDQ4FxLW9VJSwFD6CytMRGqcVGZUf6zdhKOYcgCEJlq/TZNILwtNIn353ubqHAopZXpZ0n7+5Mmqx0RRmRgiAIjyZRGRGESqK7u0S7yrVmpSwFXyhff3dJ+DtiSXhBEB5PojIiCJVEl5ICgOq+W4hXtFyMiygbciwr9TyCIAiVRVRGBKGS6JNuAKCs5MqIzmBsEbEq940dBAG6du3KpEmTqu383t7eLFq0qNLK379/PwqFgrS0tAop7/7Xq7Lzf9qIyoggVJLCpeBVOZcr9TwGhXH6sKWFuDeKIBQKCAjgxo0bODg4VHcqZitvRVGSJN5//33c3d2xtrYmMDCQixcvVn6ClUBURgShkujkpeDtKvU8klpvXBJeL5aEF6qXJEnodLrqTgMwLtLp5uaGQvH4DOzOz883K/6TTz5hyZIlLF++nOjoaGxtbQkKCiI39/FbBFFURgShkuhT0wFQVtJS8IXynQrYce1rTt0+UKnnEcyTn59f4qOgoKDCYx+ETqdj3LhxODg4UKNGDd577z3uvZH7mjVraNeuHXZ2dri5uTFkyBCSk5Pl5wu7Qnbs2IGfnx8ajYZDhw5x+fJl+vbtS61atdBqtbRv3549e/YUOf+dO3cYPHgwtra2eHh4sHTpUpPno6Ki8PX1xdbWFk9PT9544w0yMzPl569evUpwcDBOTk7Y2trSvHlztm/fbpJbebppUlJSGDx4MB4eHtjY2ODr68u6devKPK6s/NPS0hg5ciSurq7Y29vz/PPPc/bsWfn5mTNn0rp1a77++mv5jrfDhw/nwIEDLF68GIVCgUKhID4+vsi5JUli0aJFvPvuu/Tt25eWLVuyevVqrl+/zubNm8vM/VHzQOuMCIJQNl26saVC5Vo5S8EXcqpbB34HgyRm0zxKSrsBm4+PD//85z/l7Xnz5hWpdBSqW7euvMI1wKJFi8jOzi4SN3PmTLNzXLVqFSNGjOD48eOcOHGC0aNH4+XlxahRowAoKCggIiKCxo0bk5yczJQpUxg+fLj8gV8oPDyc+fPnU79+fZycnPjzzz/p3bs3H330ERqNhtWrVxMcHExsbCxeXn9Pc583bx4zZszgww8/ZOfOnUycOJFGjRrRo0cPACwsLFiyZAn16tXjypUrvPHGG7z99tssW7YMgLCwMPLz8zl48CC2tracP38erVZr9uuQm5uLn58f06ZNw97enm3btjF06FAaNGhAhw4dSjyurPwHDhyItbU1O3bswMHBgS+++ILu3btz4cIF+Z44ly5d4scff2Tjxo0olUrq1q3LhQsXaNGiBbNmzQLA1dW1yLnj4uJITEwkMDBQ3ufg4EDHjh05evQogwYNMvt1qE6iMiIIlUR3dyl4Va3KvS9G7ZYtYDtAPrevX8e5du1KPZ/w5PD09GThwoUoFAoaN27MuXPnWLhwoVwZef311+XY+vXrs2TJEtq3b09mZqbJh/6sWbPkD2Aw3nyuVatW8nZERASbNm1i69atJgtmPvPMM4SHhwPQqFEjDh8+zMKFC+Wy7h8wOnv2bEJDQ+XKSEJCAgMGDMDX11fO8UF4eHgwdepUeXv8+PHs3LmTH374odTKSGn5Hzp0iOPHj5OcnCzf+HX+/Pls3ryZDRs2MHr0aMDY0rV69WqTCodarcbGxqbEG9ACJCYa1zEqXP28UK1ateTnHieiMiIIlUSfpQcUKGvXrdTz1G7RjED3odio7Ek8dhbnl0Rl5FEwY8aMEp+7fxzDW2+9Ve7YipwB06lTJ5Py/f39WbBgAXq9HqVSycmTJ5k5cyZnz54lNTUVg8EAGCsBzZo1k49r166dSbmZmZnMnDmTbdu2cePGDXQ6HTk5OSQkJJjE+fv7F9m+d4bKnj17iIyM5I8//iAjIwOdTkdubi7Z2dnY2NgwYcIExo4dy65duwgMDGTAgAG0bNnS7NdBr9czZ84cfvjhB65du0Z+fj55eXnY2NiUelxp+Z89e5bMzExc7ptNl5OTw+XLfw9qr1u3brEtH08bMWZEECqBlJuDPq9yl4IvVLgkvLVKS05iUqWeSyg/tVpd4sPS0rLCYytaVlYWQUFB2Nvbs3btWv73v/+xadMmoOhAS1tbW5PtqVOnsmnTJubMmcN///tfzpw5g6+vr1ljW+Lj43nxxRdp2bIlP/74IydPnpTHZBSWM3LkSK5cucLQoUM5d+4c7dq149NPPzX7WufNm8fixYuZNm0a+/bt48yZMwQFBT3wWBwwVsjc3d05c+aMySM2Ntak8nn/a1deha0mSUmmv/NJSUmltqg8qkTLiCBUAt3Nu82kClC6e1f6+fL0WVhb2pOZKhYbEcovOjraZPvYsWP4+PigVCr5448/SElJYe7cuXh6egJw4sSJcpV7+PBhhg8fTv/+/QHjB3NxgzDvv2fZsWPHaNq0KQAnT57EYDCwYMEC+earP/zwQ5EyPD09CQ0NJTQ0lOnTp/PVV18xfvz4cuV5b759+/bl1VdfBcBgMHDhwgWT1p/ilJZ/27ZtSUxMRKVS4e3tbVY+arUavV5faky9evVwc3Nj7969tG7dGoCMjAyio6MZO3asWed7FIiWEUGoBPo7xiXalS41UFhW/LfW++XdXRLekJ5T6ecSnhwJCQlMmTKF2NhY1q1bx6effsrEiRMB8PLyQq1W8+mnn3LlyhW2bt1KREREucr18fFh48aNnDlzhrNnzzJkyBC5i+dehw8f5pNPPuHChQssXbqU9evXy+dv2LAhBQUF8vnXrFnD8uXLTY6fNGkSO3fuJC4ujlOnTrFv3z65MmAOHx8fdu/ezZEjR4iJiWHMmDFFWhyKU1r+gYGB+Pv7069fP3bt2kV8fDxHjhzhnXfeKbNS5+3tTXR0NPHx8dy6davY106hUDBp0iRmz57N1q1bOXfuHCEhIdSuXZt+/fqZ/RpUN1EZEYRKIK8xUsmrrxbKlYx/rAw5orFTKL+QkBBycnLo0KEDYWFhTJw4UR5Y6erqysqVK1m/fj3NmjVj7ty5zJ8/v1zlRkVF4eTkREBAAMHBwQQFBdG2bdsicW+++SYnTpygTZs2zJ49m6ioKIKCggBo1aoVUVFRfPzxx7Ro0YK1a9cSGRlpcrxerycsLIymTZvSs2dPGjVqJA9uNce7775L27ZtCQoKomvXrri5uZXrA720/BUKBdu3b6dz58689tprNGrUiEGDBnH16tUig07vN3XqVJRKJc2aNcPV1bXIWJtCb7/9NuPHj2f06NHywOKff/4ZK6vHbwFEhXTvpPJHVEZGBg4ODqSnp2Nvb1/d6QhCmdI2/MCNdz/ANsAfr3/9q9LPd+CN5TSwb078nRieXTq60s8nGOXm5hIXFyevESEIT6PSfg/K+/ktWkYEoRLoz+4AQJkTVzXnE0vCC4LwGBOVEUGoBLpbd+/Y62D+AkwPwqAqMC4Jr8ssO1gQnjK9evVCq9UW+yhtcTqh6ogOZkGoBLq7S8GralTRmBGHHHbEfo1SYU9X3qiScwrC4+Lrr78mJ6f4wd2FK6EK1UtURgShEujTjS0UykpeCr6QYx0PiBVLwgtCcTw8KncVZOHhiW4aQagEujvGSoHKrWpWQ3Vr0QQAiTyybt+uknMKgiBUFNEyIgiVQJelAxSo3L3KjK0IXq1b06P2MKyVWq4dO0Oj3s9XyXkFQRAqgmgZEYQKJhXko881/l/p0aBKzqm2sZaXhM/880aVnFMQBKGiiMqIIFQw/a1kkO7el6aKKiMAebosADLTdFV2TkEQhIogKiOCUMF0d7IBUDo6orAq/a6fFSlPbzyvLk0sCS8IwuNFVEYEoYLpU4xrjCiraCn4QnmFS8Jnil9roWxdu3Zl0qRJ1XZ+b29vFi1aVGnl79+/H4VCQVpaWoWUd//rVdn5P22e6gGsups3kdJugK6U6ZD298yGyL4NutySY+3cQWFsnicnFQpK+YaqdQeLwth0KMgqJbYWWCjLGVsTLO7+WHPTIb+UWFtXUN69PXneHeOjJDYuoNLcjc2EvIxSYp1BdXcl0PwsYx4lsXYGy8LYbMhNKyXWCSytjf8vyIWcUmaNWDmA+u6tuXW5xp9dSTT2oLm7OJkuD7JTSom1Mz4A9AWQdbNISN6ZI8CD35dGb9ChwEK+U2l5FRiM72ON4ZG/w4MgVLqAgABu3LiBg4NDdaditq5du9K6desyKzuSJPHBBx/w1VdfkZaWxjPPPMPnn3+Oj49PicdERkayceNG/vjjD6ytrQkICODjjz+mcePGJuc/cOCAyXFjxowpcqPCivRUV0b+Gj+BnDNnqjsN4QmlyjV/Kfhjl1dzJ/5DMh1607/dp2Ydq+fukvAKjdnnFYSKIEkSer0elar6P1rUajVublWzzk9Fyc/PR60u/12+P/nkE5YsWcKqVauoV68e7733HkFBQZw/f77EeyUdOHCAsLAw2rdvj06nY8aMGbzwwgucP38eW1tbOW7UqFHMmjVL3raxqdwu56e6PVdhaYlCpUChlEp+aDR/P8yKtajAWPXfsZZlxKrvjVWWEWtZBbGqMmJVDxarLiPW8t5YyzJilRUea6GWsAt6wez35O2EBVgowD5ju9nHGjQ67hSkkqUvpYVLqDJ6fXYpjzwzYnPLFfsgdDod48aNw8HBgRo1avDee+9x771T16xZQ7t27bCzs8PNzY0hQ4aQnJwsP1/YFbJjxw78/PzQaDQcOnSIy5cv07dvX2rVqoVWq6V9+/bs2bOnyPnv3LnD4MGDsbW1xcPDg6VLl5o8HxUVha+vL7a2tnh6evLGG2+Qmfn3LQ+uXr1KcHAwTk5O2Nra0rx5c7Zv326SW3m6aVJSUhg8eDAeHh7Y2Njg6+vLunXryjyurPzT0tIYOXIkrq6u2Nvb8/zzz3P27Fn5+ZkzZ9K6dWu+/vpr+SZzw4cP58CBAyxevBiFQoFCoSA+Pr7IuSVJYtGiRbz77rv07duXli1bsnr1aq5fv87mzZtLzPnnn39m+PDhNG/enFatWrFy5UoSEhI4efKkSZyNjQ1ubm7yo7JvUlv91ddqVHfN6upOQRBMSIZcuNt7ZzAYzOqqsfNzY/t/vgRUPJP1Olb3fMsRqt7+A74lPufi0pXWrb6Rtw/+twMGQ/Hduo6OHfFr+528ffhIFwoKinY7dn/+stk5rlq1ihEjRnD8+HFOnDjB6NGj8fLyYtSoUQAUFBQQERFB48aNSU5OZsqUKQwfPlz+wC8UHh7O/PnzqV+/Pk5OTvz555/07t2bjz76CI1Gw+rVqwkODiY2NhYvr7/X3pk3bx4zZszgww8/ZOfOnUycOJFGjRrRo0cPACwsLFiyZAn16tXjypUrvPHGG7z99tssW7YMgLCwMPLz8zl48CC2tracP38erdb8+0Hl5ubi5+fHtGnTsLe3Z9u2bQwdOpQGDRrQoUOHEo8rK/+BAwdibW3Njh07cHBw4IsvvqB79+5cuHBBXob+0qVL/Pjjj2zcuBGlUkndunW5cOECLVq0kFsmXF1di5w7Li6OxMREAgMD5X0ODg507NiRo0ePMmjQoHJde3q6sRv9/mXx165dy7fffoubmxvBwcG89957ldo68lRXRgThUWIwGFBIerky8lfqWbxc2pT7+Jb9/4///ud7QMevm7bS4dXBlZOo8MTw9PRk4cKFKBQKGjduzLlz51i4cKFcGXn99dfl2Pr167NkyRLat29PZmamyYf+rFmz5A9gMH6wtWrVSt6OiIhg06ZNbN26lXHjxsn7n3nmGcLDwwFo1KgRhw8fZuHChXJZ9w8YnT17NqGhoXJlJCEhgQEDBuDr6yvn+CA8PDyYOnWqvD1+/Hh27tzJDz/8UGplpLT8Dx06xPHjx0lOTkajMXadzp8/n82bN7NhwwZGjx4NGLtmVq9ebVLhUKvVcstESRITEwGoVauWyf5atWrJz5XFYDAwadIknnnmGVq0aCHvHzJkCHXr1qV27dr8+uuvTJs2jdjYWDZu3Fiuch+EqIwIwiMiOfsGhzOVPG+v4898BcrU82ZVRqxsbVEp7NBJqfz5v3OiMlLNunY5V8qzSpOtzs8dLyXWtHXsmYADJcSZr1OnTigKB90D/v7+LFiwAL1ej1Kp5OTJk8ycOZOzZ8+SmpqKwWCcsZWQkECzZs3k49q1a2dSbmZmJjNnzmTbtm3cuHEDnU5HTk4OCQkJJnH+/v5Ftu8dtLlnzx4iIyP5448/yMjIQKfTkZubS3Z2NjY2NkyYMIGxY8eya9cuAgMDGTBgAC1btjT7ddDr9cyZM4cffviBa9eukZ+fT15eXpktAaXlf/bsWTIzM3G5byB7Tk4Oly//3YpVt27dYls+qkJYWBi//fYbhw4dMtlfWFEC8PX1xd3dne7du3P58mUaNKictZOe6jEjgvAouZQex9Z0NZP+tGFBkjUXs80fB9DMoS39vSZSq6BmJWQomEOptCnloTEj1qpcsRUtKyuLoKAg7O3tWbt2Lf/73//YtGkTYPw2fy/b+7oEp06dyqZNm5gzZw7//e9/OXPmDL6+vkWOK018fDwvvvgiLVu25Mcff+TkyZPymIzCckaOHMmVK1cYOnQo586do127dnz6qXkDv8HY3bJ48WKmTZvGvn37OHPmDEFBQWble7/MzEzc3d05c+aMySM2Npa33npLjrv/tSuvwlaTpKQkk/1JSUnlGrg7btw4fvrpJ/bt20edOnVKje3YsSNg7FKqLKJlRBAeERdTL5psX0i9YHYZtuoc1EorbCzM7zcXnj7R0dEm28eOHcPHxwelUskff/xBSkoKc+fOxdPTE4ATJ06Uq9zDhw8zfPhw+vfvDxg/mIsbhHns2LEi202bNgXg5MmTGAwGFixYII+d+uGHH4qU4enpSWhoKKGhoUyfPp2vvvqK8ePHlyvPe/Pt27cvr776KmDsvrhw4YJJ609xSsu/bdu2JCYmolKp8Pb2NisftVqNXq8vNaZevXq4ubmxd+9eWrduDUBGRgbR0dGMHTu2xOMkSWL8+PFs2rSJ/fv3U69evTLzOXN31qm7u3u5r8FcomVEEB4Rf90+gY2FRNuabQG4nBprdhmG+t4A2KpFy4hQtoSEBKZMmUJsbCzr1q3j008/ZeLEiQB4eXmhVqv59NNPuXLlClu3biUiIqJc5fr4+LBx40bOnDnD2bNnGTJkiNzFc6/Dhw/zySefcOHCBZYuXcr69evl8zds2JCCggL5/GvWrCmyzsWkSZPYuXMncXFxnDp1in379smVAXP4+Piwe/dujhw5QkxMDGPGjCnS4lCc0vIPDAzE39+ffv36sWvXLuLj4zly5AjvvPNOmZU6b29voqOjiY+P59atW8W+dgqFgkmTJjF79my2bt3KuXPnCAkJoXbt2vTr10+O6969O5999pm8HRYWxrfffst3332HnZ0diYmJJCYmkpNjHEB9+fJlIiIiOHnyJPHx8WzdupWQkBA6d+78QF1g5SUqI4LwiGiUt585Hjn0d/NkhlsOY+x+J6eglMXliuHdzdh3b6t2IunKtcpIU3iChISEkJOTQ4cOHQgLC2PixInyeAFXV1dWrlzJ+vXradasGXPnzmX+/PnlKjcqKgonJycCAgIIDg4mKCiItm3bFol78803OXHiBG3atGH27NlERUURFBQEQKtWrYiKiuLjjz+mRYsWrF27lsjISJPj9Xo9YWFhNG3alJ49e9KoUSN5cKs53n33Xdq2bUtQUBBdu3bFzc3N5AO9JKXlr1Ao2L59O507d+a1116jUaNGDBo0iKtXrxYZdHq/qVOnolQqadasGa6urkXG2hR6++23GT9+PKNHj5YHFv/8888ma4xcvnyZW7duyduff/456enpdO3aFXd3d/nx/fffA8ZWmT179vDCCy/QpEkT3nzzTQYMGMB//vOfMl+Ph6GQ7p1U/ojKyMjAwcGB9PT0Sp/rLAjVIa8gi/0HW6JSQP1W33Pu9CBsLSRq+CyilWewWWVdnLoDa5WWSy7X6PpW+ab3CQ8mNzeXuLg4eY0IQXgalfZ7UN7Pb9EyIgiPgIs3D6FSQK5BQV2nttzB+Ev7V0p0GUcWlZGfBoB0tXzT+wRBEKqbqIwIwiPgz1tHAUhHi4WFBQqNcXR7+p3fzS4rW58GgFoSi54JAkCvXr3QarXFPubMmVPd6QmI2TSC8EhIu/M7NQFJ7QGAnbYZpP6OlPeX2WXlqrK4kX2F2/m3yg4WhKfA119/LQ/QvN/9K48K1UNURgThEaDPTQAFaLVNAKjj0oHbqevRkmZ2WVZNnDi4fz2gRldQgMrSsmKTFYTHjIeHR3WnIJRBdNMIwiPA1pAKgLuTcTaMT60uGCTQWhi4kW7eFN/WA/th/NXO5/zPuys2UUEQhEogKiOCUM1Sc1L5Od2CQ5kqGtXqCoBW48IVnZbjWUqupJm3+JldDReUCjvUFtZc/W/5FqkSBEGoTqIyIgjV7FL6JY5kWXK0oB6ONn+vcBir6c53tzVcyix6h9aytHd+jv51J+CUKQaxCoLw6BOVEUGoZoXLvvs4+ZjsL9y+f5n4crFIA0CjsHuo3ARBEKqCqIwIQjVLSjmMp1pPY0fT2583cmqEBRI30kq7+2vxdHWMLSy26hoVkqMgCEJlEpURQahm7rmHeLNWHj5q07v01rNx5JM6OQy0/o0CXa5ZZXo82woArdqF1EQxxVeoXF27dmXSpEnVnUal2r9/PwqFgrS0tOpO5YkkKiOCUI10+gIcyQKgruszJs/VdW6FXgJLBVy+edSscr07tSBPn4OFwoLz6/dVWL6C8LQKCAjgxo0bODg4lBiTm5tLWFgYLi4uaLVaBgwYUK4b7gmiMiII1Sou5X+oLaBAggYunUyeU1qoSEcLwNVbR8wqV6VSkVGQBkDeRfMXThOE+0mShE6nq+40TFRlTmq1Gjc3NxQKRYkxkydP5j//+Q/r16/nwIEDXL9+nZdeeqlK8nvcicqIIFSjqzcPAZBmsMFSVfRGa3pL49iP1Azzx41k3a2MWOqsHzxB4YllMBiIjIykXr16WFtb06pVKzZs2CA/X9gtsWPHDvz8/NBoNBw6dIisrCxCQkLQarW4u7uzYMGCImWnpqYSEhKCk5MTNjY29OrVi4sX/x6IffXqVYKDg3FycsLW1pbmzZuzffv2MnMuKafyXsvevXtp164dNjY2BAQEEBtrXMMnPj4eCwsLTpwwnQq/aNEi6tati8FgKLObJj09nW+++YaoqCief/55/Pz8WLFiBUeOHOHYsWNlXtvTTqzAKgjVKCX9V2oAOku3Yp/XahtD+kV0uVfNLjuTVC5mnORmjhgzUpUkSSLbYKiWc9tYWJT6zf1ekZGRfPvttyxfvhwfHx8OHjzIq6++iqurK126dJHjwsPDmT9/PvXr18fJyYm33nqLAwcOsGXLFmrWrMmMGTM4deoUrVu3lo8ZPnw4Fy9eZOvWrdjb2zNt2jR69+7N+fPnsbS0JCwsjPz8fA4ePIitrS3nz59Hq9WW+zrvz6m81/LOO++wYMECXF1dCQ0N5fXXX+fw4cN4e3sTGBjIihUraNeunRy/YsUKhg8fjoVF2d/bT548SUFBAYGBgfK+Jk2a4OXlxdGjR+nUqVMpRwuiMiII1aggNw4AaxufYp93c/QjK/0nbAzmrzViWd+aU8d3oVCIlpGqlG0w0OCg+S1ZFeFyZ19slcoy4/Ly8pgzZw579uzB398fgPr163Po0CG++OILkw/wWbNm0aNHDwAyMzP55ptv+Pbbb+nevTsAq1atok6dOnJ8YSXk8OHDBAQEALB27Vo8PT3ZvHkzAwcOJCEhgQEDBuDr6yuf2xz35mTOtXz00Ufydnh4OH369CE3NxcrKytGjhxJaGgoUVFRaDQaTp06xblz59iyZUu5ckpMTEStVuPo6Giyv1atWiQmijtol0V00whCNbLSpwDg5ty22Od93LoB4KDUkZp93ayyffsHAyBJOVw4cOghshSeNJcuXSI7O5sePXqY3MF29erVXL582ST23paCy5cvk5+fT8eOHeV9zs7ONG7cWN6OiYlBpVKZxLi4uNC4cWNiYmIAmDBhArNnz+aZZ57hgw8+4NdffzUr/3tzMudaWrZsKf/f3d3YBZqcnAxAv379UCqVbNq0CYCVK1fSrVs3vL29zcpNeDCiZUQQqkl2QTbfpVhQ29KS99t3LzbGxdbz/9u78/go63P//6/ZJ9tkXyGEAAFk1yAYcYcCVi0up+VY60KpPah4tFR/ilap2iOurdZqPdWq7am7X9FTt4MiAVSEAiIiyhpIgOz7Ouv9+yMSjSQwA5lMIO/n4zEPk5nruu/rvr2TXNzL58NnbXGUutuIr93OxOisoJefNiQXmzmROJuTovc/YfiZp/VU6XII0WYzO88YG7F1B6OpqQmAt99++6BJ5BwOR6fvY2J6fhTfX/ziF8yYMYO3336bpUuXsnjxYh5++GGuv/76oPK/W1Mo22L7zqSRBy5nBb65pGa327niiit49tlnufjii3nhhRd49NFHg96mjIwMPB4PdXV1nc6OlJeXk5HR9WVY+ZaaEZEI2VG3g+1uC7XmdNLicruNK3JMYWXlSk5uLGVit1FdK0ieSmbsUHbXhvY0jhw5k8kU1KWSSBo1ahQOh4Pi4uJOlzEOZ+jQodhsNtasWcOgQYOA9ptVt23b1rGcE044AZ/Px5o1azou01RXV7N161ZGjRrVsazs7GzmzZvHvHnzWLhwIU899VTQzUhPbEtXfvGLXzBmzBieeOIJfD5fSE/C5OfnY7PZWLZsGZdccgkAW7dupbi4uOPykXRPzYhIhBwYBn544vBDxg1PHM7KvSuPaFh4j1EFDMVG92MjSP8TFxfHTTfdxK9+9SsCgQCnnXYa9fX1fPzxx7hcLq688sou82JjY5k7dy4333wzycnJpKWlcfvtt3e6wTMvL49Zs2Zx9dVX89///d/ExcVx6623MmDAAGbNmgXAjTfeyLnnnsvw4cOpra1l+fLlnHDCCb26LV054YQTOOWUU7jlllv4+c9/TlRU8PdbxcfHM3fuXBYsWEBSUhIul4vrr7+egoIC3bwaBDUjIhFSUfk+J0X7GOXKPGRcXvxQkiwB6uv+FfI6vGmJ0AoxtuQjLVOOU/fccw+pqaksXryYXbt2kZCQwEknncRtt912yLwHH3yQpqYmLrjgAuLi4vj1r39NfX19p5hnn32WG264gfPPPx+Px8MZZ5zBO++803GZxO/3c91117F3715cLhczZ87kD3/4Q69vS1fmzp3LJ598ws9//vOQc//whz9gNpu55JJLcLvdzJgxgyeeeCLk5fRHJsMwjFCTHn/8cR588EHKysoYP348jz32GJMmTTps3ksvvcSll17KrFmzeOONN4JeX0NDA/Hx8dTX1+NyuUItV6RPev6Dk8gw1+NO/ik/HH9Pt3Fb9n9A6df/QVvAxMxzvsZiDv7fEJvfXkXCKvAHfKTePonoeM3i25Pa2tooKioiNzcXp/PgcWLk2HPPPffw6quvhnxTbX92qJ+DYP9+h/w0zcsvv8yCBQtYtGgRGzZsYPz48cyYMaPjjuTu7N69m5tuuonTTz891FWKHHcCgQAuGgAYmHzoU7hD007FZ4DTbLCn5rOQ1jP87El4Ax4sZiubX116xPWKHO+amprYvHkzf/rTn47o3hU5OiE3I7///e+5+uqrmTNnDqNGjeLJJ58kOjqaZ555ptscv9/PZZddxl133RXy8+Qix6N9dZuJNhv4DRiefuib7hzWaOoC7deuiypWhbQee7SDBm8tAE1fhj5wmkhvmjdvXqfHc7/7mjdvXljXPX/+fPLz8znrrLOO6BKNHJ2Q7hnxeDysX7+ehQsXdrxnNpuZNm0aq1d3P5HX3XffTVpaGnPnzmXVqtB+mYocj3ZWrACgLuDAaTv8yJNeWzoEdlNd/3nI62r21pPsSMfidhw+WCSC7r77bm666aYuPwv3JfrnnnuO5557LqzrkO6F1IxUVVXh9/tJT0/v9H56ejpff/11lzkfffQRf/3rX9m4cWPQ63G73bjd7o7vGxoaQilTpM+rrN9IEuCxpgUVHxU9DJp242ndFfK6anylVFUXU9/WFHKuSG9KS0sjLS24nwk5voR1BNbGxkYuv/xynnrqKVJSUoLOW7x4MfHx8R2v7OzsMFYp0vvaWtpHhnREB3fZMi2hfYRWhz/0eWasA+ztc9R4NXtvuBzBcwAix42eOP5DakZSUlKwWCyUl5d3er+7EeZ27tzJ7t27ueCCC7BarVitVv7+97/zv//7v1it1oOG6j1g4cKF1NfXd7xKSkpCKVOkz3P4KgFIjT8xqPhh6WcBkGD20OQObZ6aUefPAMAwmtm7+cuQcuXQDjyq2tLSEuFKRCLnwPH/3RFuQxXSZRq73U5+fj7Lli3jwgsvBNqfCli2bBnz588/KH7kyJF88UXnCaN+85vf0NjYyKOPPtrtGQ+Hw3HQML4ixwuP38OTFVbSrHYeyp8RVE56XB5PNLsobmsjs343Y9KSgl7foBPH47IPJNHmYtsbHzJwzOgjLV2+x2KxkJCQ0PE0YXR0dNCz5ooc6wzDoKWlhYqKChISErAcxcjDIQ96tmDBAq688komTpzIpEmTeOSRR2hubmbOnDkAXHHFFQwYMIDFixfjdDoZM2ZMp/wDY/Z//32R/qKovohKX4A2cyIDXF3P1vt9ZrOZUkc+G2rWsL1+D2PSup5Yrzv5CaeSFpPL7nJNmNfTDpwVPtzwBiLHq4SEhKOefyfkZmT27NlUVlZy5513UlZWxoQJE3jvvfc6bmotLi7uNDSwiHT23WHgQ/lX9PDE4awpXdORH4q2QDWQiyWgYeF7mslkIjMzk7S0NLxeb6TLEelVNpvtqM6IHHBEw8HPnz+/y8syAIWFhYfM1aNT0t9Vlv+T6S4vA13BX2oByHMNYrjDT1vdxyGv050YDT6IsSaGnCvBsVgsPfJLWaQ/0ikMkV5mb93ID+O9DHWG9uOXGx3FtWluTjJ/1THtebDixw4GIM6RiqfVfehgEZFepmZEpJfFBuoAyEo+/HxO35WXdiYBA6LNAcoatoaUO/wHBfgNHzazg6/eWBZSrohIuKkZEelF5Y07ibP4ARiRfk5IuTGOBOoCduDbEVyDFZvkotFbB0DNhu0h5YqIhJuaEZFetKO8vYmo9duIcwY/EOABbmsqABW1G0LObfTUAWBu1n0NItK3HNENrCJyZMpr1xEPtFmSjyjf7syF1n20tuwIfd3uIoqaNtLq9XHoqflERHqXzoyI9KKW5vZLJDbn4CPKT0mY0J7vC31MC0u6ldLWnTT4a49o3SIi4aJmRKQXmb3tUykkxY87ovzctNMBSDC34vaFNgT5iKlnABAwGqkp1jw1ItJ3qBkR6SX+gJ9Hym0sLnUyNPP8I1pGTuJJ/L/6OB4td7CnoTik3CGnTSEzegSjE07ly1feO6L1i4iEg5oRkV5S3FhMq99DAzHkJIw8omWYzWaanOMo8VrYUbcrpFyrzcaouBMZk3ga5r3lh08QEeklakZEesmBYdyHxg/FYj7yJ1ryEvI6LS8ULb72GX8Nb8IRr19EpKepGRHpJZVlr3FZkpvJ8bFHtZyRrgymxHjx174fcq7b1T7Fd4xFc9SISN+hZkSkt7R8yckxfnKinEe1mJzoWH6c5GWIEfrgZVHDBgDgcqRqUjcR6TPUjIj0kih/NQAZiflHtZy89PZRQlwWP9VNod3EmjezgIARwGGJpmjZ6qOqQ0Skp6gZEekFdS1lJFh8AOSlnXVUy0qMzqLO3z5e4fbywpBykwem0uSrB2D/ys+Pqg4RkZ6iZkSkF2yvKASgwW8hJW7wUS+v1ZwEQGntupBzDwwLb9QZR12HiEhP0HDwIr1gf82/iAWazQk9sjyrMwfcFTQ3hzZ7L8Ce5i/5vPYD/H47Z/dINSIiR0dnRkR6QVPT1wBYnDk9srzE+LHty/OWhZxrS7LR6K3BbbT1SC0iIkdLzYhIL2hxVxMwICFudI8sLyd1CgDxNOEP+ELKzT11EgB+o4HmmpoeqUdE5GioGREJM8MweKbSxC37osgdcEmPLHNo8ik8WRXLb/dHsb+pNKTcMRfMZFjcyUxO/SGbX3q3R+oRETkaakZEwqy0uZQmbxMGNoYe4TDw32ezOjFFjaDVMIU8EqvVZic3ZjiDY0fj3xXao8EiIuGgZkQkzA40C7kJudgsth5b7vDE4Z2WH4rmb4aF97W5eqweEZEjpadpRMKsfP8L3JDWRkt0zzUiAKPiEiHBg1HzT+CakHLbotr/G2M6uqHpRUR6gpoRkTDztmwl1xGg1tmzZyFyYuJJj/NR6w9t9l4A26A02A9xjpQerUlE5EjoMo1ImDl8lQCkJZ7Yo8sdlt4+Ski82UtjW1VIuYPPPgmAaKuL4k8/69G6RERCpWZEJIxavQ0kmN0ADEk9o0eXnR43lEa/GbMJtpevCCl34NihNPsaANj97qc9WpeISKjUjIiE0bayQswmaA6YyIof1ePLbzIlALCvek3IuQ2eOgJGAHdlSw9XJSISGt0zIhJGe6vX4AQaicds7vne3+zIBm8NDU1fhZy7te5ffFTxCtHm1B6vS0QkFDozIhJG9Y1b2r9wDAzL8hNc7SO6mjz7Qs51JjgIGH7aAu6eLktEJCRqRkTCqMrdQI3PhCv2hLAsf2DyKQBYA00YRmiz8A48qX1+G5/RiLdV89SISOToMo1IGP2/ah81bVE8P+GnYVn+iIyzmV8YQ60/wJktFaTHpAedO/6iH9GypookRwZbXn+X8ZddFJYaRUQOR2dGRMKkqrWKmrYaTJgYljgsLOtwWKNJih0ChD4sfFS8i3RHFinOATRtCX2sEhGRnqJmRCRMttV8DRgMcg0i2hYdtvUczbDwjd5aAHwNjh6tSUQkFLpMIxImpfv+wT1ZrZRaA2Fdz7hYJ1kpbqh6FZgbUm6r3QtAtBG+ZklE5HB0ZkQkTFpbthNngSRncljXMzAmlbFRfuJ8JSHnmtITAYh16PFeEYkcNSMiYWL1lgOQEj8+rOsZkno6AAnmNtze5pByswpGAhBrjad8684er01EJBhqRkTCwOtrI8HcCsDgb5qFcBmYOI7WgAmLCbZVrAopd/iZ+bT6mzGZTOxYsjxMFYqIHJqaEZEw2Fm5GpsJ3AEYnJwf1nWZzWYaiAOgpGp1yPkNnlqavHU0lFT2dGkiIkHRDawiYbCn6hOsQD2xWMzh/zEz7APA10B945ch526sKqTOtw+XJTMMlYmIHJ7OjIiEQW3DFwD4bb3zBz4utv3eD7+7OOTcGFcsAK0BT4/WJCISLDUjImFQ0tbKtjYz0bFje2V9mUkn4w5Aoyf0GXgzRuUB4DWa8HrUkIhI71MzIhIG79e28kSlk0EDZvfK+k7IOpdb90XxRIWJ2rbakHLHXXIBZ2b8hAsH/ZKipSvDVKGISPfUjIj0sEZPI6XNpQDkJeb1yjpj7S4GxGYDsL12e0i5SVkDiDHH4rBEU7Xh63CUJyJySP36Btaq1ipa2sowDnGt3ObI6Pja563FOMR061Z7OiaTKcjYNEwm8zex9RiB1kPEpmAytf+v8vsaCPi7PxVvtaVgMh+IbSTg737cCastGZPZ9k1sEwF/U7exFlsiZnP7kOF+fzMBX2OQsS0EfA3dx1oTMFucAAT8LfgPGRuP2RL1TWwbfl9dt7FmqwuLpX1U0UDAjd/b/dkCszUOiyUmuFhLLBZr+z0WRsCLz1t9UMz26i9ItARwOLOId8R3u6yeNjxxOHub9rKtZiuTMieFlNvgqSHOkYrn4M0REQm7ft2M3Lj8Rk5lDSOcXQ/X7TPgpr3fDpM9N8XN2Ch/t8tbUBJFgPZm5PIkN/kx3cfeujeKNqM9dnaim4LY7mPv3OekIdDeuFyU4OHMOF+3sb8rdVLla489L97DD1zdxz5Q5mS/tz32B3Fezkvwdhv7SLmD3R4LAGfGerkosfvYJyocbHO3xxbE+Jid1H2z93Slnc1t7YdhfrSPy5O7j/17tZ0NLe2xY6N8zE3pPvalGjufNrfHjnD4uSat+8bw9VobK5vam7Jcu58b0ruPfavOxgeN7bEDbAFuzmg7KMYELMqCPcbBn4VTfiycnNGKUfl34PKQclut7bVG+6LCUJmIyKH162bEZrYRCJjxGl03I34DHJZvJxAz8OI1um8aHBZHRzOCyXfYWMM4EOs/ZKzd4sDxzVkUk8mP1+i+wbCb7Tgslm9iA4eMtZltOCzth4DJbOA1um8wbGZ7R6z5MLFWsw2Hpf0PtsUMXqP7pqE91t4eazIdMtZi+jbWaj5crLXj/53V7MVrdN9gmDvF+g4da/421mb24e2m4fAZJgZkzOx2OeEwJHEM7qa3aPHtxu1txmGLCTrXMjgVyiElJofq3SUkD84OY6UiIp2ZDMMwIl3E4TQ0NBAfH099fT0ulyvS5Yj0ST6/h7eWjybOHMCceT1nn3Bj0LmeFjdFd35AjNXFNvd6zvlD8LkiIt0J9u+3bmAVOU5YLXZaHKMB2Ff2eki59mgH5S3tY5TE+VN6vDYRkUNRMyJyHBk9+OcApAT2UddSFlKuc3Q8lW0llDR/xe61/wpHeSIiXVIzInIcGTvgfGr8dmwm+GjbH0PKnXTdT1lR9g5FTZ/z8VP/CFOFIiIHUzMichwxm80YcZMBqK9aGnJ+krP9UeTqxtAGThMRORpqRkSOMxOHXcfaZgtLqlqpaKkIKTf/3y/Ebo4iJzaHTS/+b5gqFBHpTM2IyHFmSMrJfGU9ha1uM+8WvRtS7uiZP+C01AvJT5lO86rQZwAWETkSakZEjkPnDzkfgLd3vR1ybrNtLwAJjpH4fN2PUyMi0lPUjIgch6bnTGeQ3USe/3O+Kv0wpNy8eZfiD3iJc6Tw2T9CO7MiInIk1IyIHIcSnAlcmh7DOS4fG3f9d0i56XmDKG/ZDUDLv8rDUJ2ISGdqRkSOU2lpFwDgaNmIPxDa5ZY6V/tUBVlRA2ht7H4CRRGRnnBEzcjjjz/O4MGDcTqdTJ48mbVr13Yb+9RTT3H66aeTmJhIYmIi06ZNO2S8iPSMKXnX0hYwEW/xsW73yyHlnnLDBbj9rURZY1mz+LnwFCgi8o2Qm5GXX36ZBQsWsGjRIjZs2MD48eOZMWMGFRVdP0JYWFjIpZdeyvLly1m9ejXZ2dlMnz6dffv2HXXxItK9GEcCtdZcAHaUhDaImSs9hbKWYgKGH3dV9xMHioj0hJCbkd///vdcffXVzJkzh1GjRvHkk08SHR3NM88802X8888/z7XXXsuECRMYOXIkTz/9NIFAgGXLlh118SJyaLkDZwPg8m6nzRva5Za2zGbeLH6czfUfUb27OBzliYgAITYjHo+H9evXM23atG8XYDYzbdo0Vq9eHdQyWlpa8Hq9JCUlhVapiIRscu4VNPotRJsNPt4e2o2sZ95yLT7DAnj58OE/hadAERFCbEaqqqrw+/2kp6d3ej89PZ2ysuAm5brlllvIysrq1NB8n9vtpqGhodNLREJntdhpjRpLox8+Lw/uHwwduTYb8db24eFrq/UzKCLh06tP09x333289NJLLFmyBKfT2W3c4sWLiY+P73hlZ2f3YpUix5fxI25n0f4ont9bRIMntKZi1Nmnc3bmT5mR/e+UfPJpmCoUkf4upGYkJSUFi8VCeXnnsQfKy8vJyMg4ZO5DDz3Efffdx9KlSxk3btwhYxcuXEh9fX3Hq6SkJJQyReQ7Tkg5kSEJeXgCHj7Y80FIuafM/RkOLFhMFna9FtqZFRGRYIXUjNjtdvLz8zvdfHrgZtSCgoJu8x544AHuuece3nvvPSZOnHjY9TgcDlwuV6eXiBwZk8nEeUPOw4TBJ7teCjm/wlQJQKI/s6dLExEBjuAyzYIFC3jqqaf429/+xldffcU111xDc3Mzc+bMAeCKK65g4cKFHfH3338/d9xxB8888wyDBw+mrKyMsrIympo0kJJIb5k56GzuzGxjhnU9JTWfh5Q7+CdnEDACJEUNYOPrq8JUoYj0ZyE3I7Nnz+ahhx7izjvvZMKECWzcuJH33nuv46bW4uJiSktLO+L//Oc/4/F4+Ld/+zcyMzM7Xg899FDPbYWIHNLA+KF4zHGYTbBme2hPxuQWjKOybT8Atcs0k6+I9DzrkSTNnz+f+fPnd/lZYWFhp+937959JKsQkR4WmzQV6pbgb/gk5Nw6KklnIBnOLLweDza7PQwVikh/pblpRPqJKSNuwGdAiqWNzfv/L6TcUb+Yji/gJc6WyNo//D1MFYpIf6VmRKSfSI7JptLUfjn1i11Ph5SbOXYk2+o38mnFP9n6xYZwlCci/ZiaEZF+JD19FgDO1s9Dnsm3Jb6OPc1bqPNW0FqvQdBEpOeoGRHpR04bfg2tARMui5+1RS+ElPuDW2/EhBODNt6//w9hqlBE+iM1IyL9SJTNxR7HqTxS7uD/ynaGlBuTlESSLZOR8ZOJrUkMU4Ui0h+pGRHpZyblXc9uj4Wle97H7XeHlJs3ejTjk85iiGs0NSX7w1ShiPQ3akZE+pn89HzSo9Np9Dayam9og5hNvmkuTZ4arGY7nz/5zzBVKCL9jZoRkX7GbDJzYc6p/CTRQ8nO34WUa7XZKPe2zxXlauh+sksRkVCoGRHph84aOIVTY31kGSVUN4c2EWXiOaMBSI0ezLaVesxXRI6emhGRfmhM1gyq/E6sJvh46x9Dyh130dnUuCswm8zsfVlz1YjI0VMzItJPWVynAtBU80HIuVWevQCk2Af2aE0i0j+pGRHppybnzSdgQLq5geLqz0LKHTjrJLwBN43eKtb+45UwVSgi/YWaEZF+KjtpPBVGPABrdoQ2k+/w6afzbsmLfFr5Tzb/34fhKE9E+hE1IyL9mCv5BwAYDasJBAIh5SYntQ98Vu+tw+f19nhtItJ/qBkR6cemjPhPyr1m1jf52VazJaTcs341D7ASa3Xy8cOhTbwnIvJdakZE+rGk6AGsc1zAOw123t79fyHlpg8bRn7SNM4dOBfnHk+YKhSR/kDNiEg/d17ueQC8s+sd/AF/SLnOtPbh5FNiRtJS39TjtYlI/6BmRKSfO33g6STYY0k19rNmz/8LKXfCzdfQ5mvGYY3mX4+HlisicoCaEZF+zm6xc3VWIlenethVFNoAaM7YaMpbdwEQU2bB69HlGhEJnZoREWHCkGvxG5BJKe9u+m1IuZaJQwkYfjKic1j16yfCUp+IHN/UjIgI47LPpza6fUTWQMU/2FW1NujcU+bMYGfTFwAMiRrH+r++GpYaReT4pWZERAC4+OSnKA+4cJoN1my8Gq+vLejcKQ/+gsrW/bT4GthUuIrGquowVioixxs1IyICgM3qZMqJf6U1YCLN3MTra+cGnWuPjsI+NZGl+1+kxrOLV25cGMZKReR4o2ZERDrkJJ+ELf1KAOJbP2Xd3mVB547+0XSys4YCUOfdzzt33huWGkXk+KNmREQ6mTH2DorMo3m03Mntnz5Ag6ch6NxLfn8vsZYMRsRPYkjzWPatWx/GSkXkeKFmREQOcumUF8ExiP3N+/nd6t9hGEbQuRf+diFDY8cRa0ug9LmN+Hy+MFYqIscDNSMicpAYWwz3n3E/FpOFTfve5p3NwV9ySR8+lNYRTfgNPxmxw1m18C9hrFREjgdqRkSkS+NSx/Gr0bP4VXobpvJn2VnxadC5J/3Hz9jl3gxArmkka/62NFxlishxQM2IiHTrsgm3U224cJgN1m76D9y+lqBzT7vvl5S37sNqthG9sYn6faVhrFREjmVqRkSkW1aLndNOfKbjcd8lITzua3PaiZ6egdvfSqIjlU33vhnGSkXkWKZmREQOaVDyidgy5gCQ3LqWT3f+PejcE847iz1swW/4qPOU8c87fheuMkXkGKZmREQOa8aY2yk152I2wf5dv6O6uSTo3HMevJEV+99gW8M6tm//nKLVwQ81LyL9g5oREQnKjya/QJ3fRrzFz8trrw3pcd/z7vk1ZpMLw2jlvT/+RbP7ikgnakZEJCiuqDSGjLiXt+ocPFlcxJs7g78HJHnwIE48/UwS7RmcmXk+a379cBgrFZFjjZoREQnaiYMuZnTeAgxM3LvmXoobioPOPeu6/2CYaxQuezIDoybz+WvBDzUvIsc3NSMiEpI5o+cwMX0ifn8LL3xyeUiP+xY8dC2VzUVYzTasH9XSVF0XvkJF5JihZkREQmIxW7j3tHuZn+bjZPtelqyZE3SuLcpJwk8n4Pa1EO9MZ/2i18JYqYgcK9SMiEjIMmMzGTDwKgCS29axeudzQefmFoxjd0z7AGhDY0dQeNtjYahQRI4lakZE5IhMH3MrZZahmE1QtuteqpuCv39k6l1XsbvxawAGePLYsfyTcJUpIscANSMicsR+NPkFav12XBY/Sz+9IKT5a064aQb1nhrqvRV88NSzrP3Hi2GsVET6MjUjInLE4pwp5I28n7Zvhovfuuky3vzi/qDGIEnOHUT9sFpWlL1Js7+UVf98mRevvlFjkIj0Q2pGROSojM/+EWNOfIXygIvWgIl7N/4PNyy/gZq2msPmnnrtVcy46pfYTcmAjxzHaDb/+nmKPl4X/sJFpM9QMyIiRy0n+SR+cvYamtOvxYON5SXLuejNCync8dxhc8ecO4N5z/43Oa6xDIgeRmrMMAJLqim8+6/hL1xE+gSTEcqYzhHS0NBAfHw89fX1uFyuSJcjIoewtWYrt666lSTP1/w02UOZZTg/mvw/xDlTDpu76Zn/wbIpinhnOgB7mnYyZN4pZI4ZGe6yRSQMgv37rWZERHqc2+/mldU/I8uzAYBav43c4b8jP+ffDpvbVF3HhkXPkxszFpPJRJO3nor4vZxx57xwly0iPSzYv9+6TCMiPc5hcXD5aa/iHHQbDX4LiRYv1Ttu4eVPfobH13rI3NjkBM7403Vsj9tDs6+BWFs8afUDeOZn19BYVd1LWyAivUlnRkQkrKqbS3h37eVkGiUAVARimDjuCfLSTjts7t7PNlPy13+xo/FfVLQVYzUlMGnGDArmXB7uskWkB+jMiIj0Cckx2fzs7EI8KVfSGjCRYmrmNyuu55Wtrxz2EeCBJ46h4E9ziEp0AQ58Rh37P9rCyvkP4NMjwCLHDZ0ZEZFeU1LzOX9ft5CXStvPkpw58EwWFfyG1OiMw+Zuef9DPn7uNaYNuASb2U5FcxHxl45j6KkTwly1iBwp3cAqIn1SwAjwP1v+h0c3PEq82c11aV4siTM5dcQNpMcNPWSu1+1h7U0PMTDqFCxmG25/K7vcReScP4rh00/vpS0QkWCpGRGRPm1b7TaWrr2ME2ztg6P5DaggmaSUmZw2fD6uqLRucz9/bRmWj2pIcLafUQkYASrb9lPi+4qJ18xm4JjRvbINInJoakZEpM9r8zbxzsb/D0/dKlItLR3vew2oNGWRNfhmTsuZgcPiOCi3ua6ejxe9QoY5iSRHGn7Dz/8W/wlPwEuUKZnsjBym3DiHpMGDenOTROQ71IyIyDFlW/kqPtv1F8xN60iyeKj1mbi71EmMLY5pOdOYkTWBydnnYbM6D8r97LnXKftkG183bCJgNAAwNfNnxNtTKG/ehWeQg0nX/RhnbHRvb5ZIv6ZmRESOSYFAgC/2vc3avUt5ae8WKloqMGNwV1YrJpOZJvtIhg/6GfmDfozZ3PmBQJ/XyydPPcfO1Rs5Ne1cYmzxHZ+1+VsoaykhkO7jlJuuxB4d1dubJtLvqBkRkWNewAiwoXwDhTtfZETrm0Sbv/11Vee34o2eQHb6DPIyziEtdnCnXG9rG+ufeg3/1kbSo3JxWmM6Pitq3MLW+vVk5A5i+NQzGX6Wbn4VCQc1IyJyXHH7mlm94xn2lr5Okr8Yx3dOiiyptfGFL528xDxGuTLJc3gZkHQyeelnEudMoam2gTUPvUh0vZ2M6Gz+VfV/lDR/BUCqcyCnpl1IU1slTYFGPNEmzBnJjDx3Ahmjhkdoa0WOD2pGROS41eSu4ePtf6ay4j2c/kpeqLaw3d3eneRH+7g8uX1AtIAB9QEbbZYkrM4cEuPGkBo4iV3PrKSiohy30cqQ2GHkp0zvej3eer6oWUOjt4K4RBdZY8cw/qLziU1N7rVtFTmWhbUZefzxx3nwwQcpKytj/PjxPPbYY0yaNKnb+FdffZU77riD3bt3k5eXx/33388Pf/jDoNenZkREDqXF28LOup1sr9tOReUHxLWsJZZ6Ys2Bg2KfqrSzzRNFbnwu451t5PlLiW41YffasBs2rCY7FrMNs8lC2tc/5eNtK6ly7yM+t4HscR7i7En4A14CRgAwgQkwIGrLTDbvKqHRW0dsdg0DTqwmyvK9+1JMJjDAuXUaX++ooM5TTUxWHQMnVhBlie46dvuZbN/eSLW7nKj0BrInlxHdTaxj12ns2uqmsm0/zuQmsk/dR8x3Lk91it09mT1fmyhrLcGR0MKg04uJscZ2GWsvyWfvFif7W3Zji2sj56wiYq2u9g3/fuy+8ZR+GU9J806s0W5ypu4kzhrfZaytbDSVX6Sxu2kbFoeXwT/YRpwtoevYihFUb8pmV+NXmCx+cs/9Glc3sdaqIdR/PpztDV8ABrnnf0m8LbHr2NpBNH42lq31GwEY/MPNJDi+F4sJAEt9Fq0bJrKlbj0Ag6ZvISkmvuvYpjQ866bwRe1aALKnfk2SK/abTzvHmluS8P/rHD6vWQ3AgLO2kpIYjalTdPvXJnccpjU/ZEP1RwBknb6DlBQH5q5ivVFYPr2IdVUrAMgo2Elqug2Lydw51gR7lsaRfu4lzLjkZ/SkYP9+W0Nd8Msvv8yCBQt48sknmTx5Mo888ggzZsxg69atpKUdPC7AJ598wqWXXsrixYs5//zzeeGFF7jwwgvZsGEDY8aMCXX1IiIHibZFMzZ1LGNTx0LexR3vlzfsYEfFSsprN9DSsh2Lt4waw4o34GFb7Tay47ykJXjhO08O+755AXzAWzRYHNgsqThi2rBm7KOVyi5riI+NwmxqxWdUY46qw5ZR3rGc73Pts2MxufEZ1Zic9dgyKrqNjS2bhsXsaY91NGI/RGxy5enYzD58RjXYm3FkVuLrpt7EmknYzQY+oxq7rRVHZhU+qrretvoJOCzgM6qxWttwZlbjo+tJC11NJ+C0mNv3g9lDVGYNPmq63rbWITit1vZ6TT6ismrxUdtlbLRnINFWe/tyTX6iDxEb5UslxupoXy4GMVl1+KjrMtaBi1hb1DexEJ1Rj8/adazd4iTOFtM51tn1tlltJuJscR2xUWl1+OO63r/2Ri/x9vhvY1Pr8Sd2/f/N1pJKgj2xI9aZUkcgtY2D226wuF2k2JM6xRpprV0eP0bUSdRXV3S5zt4Q8pmRyZMnc/LJJ/OnP/0JaL/zPTs7m+uvv55bb731oPjZs2fT3NzMW2+91fHeKaecwoQJE3jyySeDWmc4zowYhkFLIIDX4+02xmQyYbV9269FIhbAZrcdUazP6zvk3B99ItZmbf8XCuD3+QkEuvqRCj3WarViMved2IA/gN/v7zbWYrFgtpj7TKwRMPD5uvuTB2azGYvV0mdiMQy83uBiA4EAJXUl7K7fjbttDyZvaadYkwlM3zylYziH4Q+0n4Uw+SoxWvbgK6rAVOXH5DPAsGD2mzAbfvw1GVQ1N+HFgzW6BVeilyiLmYDVioH5m1gzZsNHoDaNquY2PEYb1qhW4pLcRFusBKyWg2PrUqlucuM22rA424hLbiXGYsOwWghgBsyYfZb22Ppkahp9tBmtWBxuYlOaibE4wGoigOWbWCtmw0ugIYnahgCtRgtmu4e41EZiLE6wmAiYvhfbmEBtvZlWowmzzUtsagOxVidYIGCydo5tiqeuzkqL0YjJ4iM2vZY4a/R3Yk2Yfbb22GYX9XV2mgMNmMx+YjJqcFljwGJ0xJp8NiyGl0BLHA21TpoC9WAKEJtZhcsa+51YMPnsWAwvRmssDTXRNAbqaG9GKoi3usAcIGD+5nevz47V8GK0RdNY7aIh0N5URGeVk2B1gdlPwPzN7zK/HWvAi+GOoqkqgfrAN81IZgUJ1jiwfCc2YMfi94LHSXNlEnWB9gYkKr2SBHssJouPgNn+nVgfeG20VqZS429vQKLSqoh3RGOx+PF/P9ZvwV2eQZW/vXGISq0m3hGF1erH9/3YgBl3WRZV/vL22JQaXE4HNmugI9YUsGP2+6ios3DaT65i9Lj8bn+OjkRYzox4PB7Wr1/PwoULO94zm81MmzaN1atXd5mzevVqFixY0Om9GTNm8MYbb3S7Hrfbjdvt7vi+oaEhlDKD0hIIMHTlFz2+XBE5ViR98zoxyPgsYDyk0f4SOc7sHD02YusOadbeqqoq/H4/6enpnd5PT0+nrKysy5yysrKQ4gEWL15MfHx8xys7OzuUMkVEROQYEvI9I71h4cKFnc6mNDQ09HhDEm02s/OMsbpME+lYXaYBdJnmaGNDuUxzuNi+8HOv3xHfidXvCKB3fu6jzSGdn+hRITUjKSkpWCwWysvLO71fXl5ORkbXU4BnZGSEFA/gcDhwOA6ei6InmUwmYiwWiLIEn3SsxVoU27dibYcN6zuxgC3IXw99IRbAGqbYvvCzrN8R/SQ2wj/3ERRSG2S328nPz2fZsmUd7wUCAZYtW0ZBQUGXOQUFBZ3iAd5///1u40VERKR/CfkyzYIFC7jyyiuZOHEikyZN4pFHHqG5uZk5c+YAcMUVVzBgwAAWL14MwA033MCZZ57Jww8/zHnnncdLL73EunXr+Mtf/tKzWyIiIiLHpJCbkdmzZ1NZWcmdd95JWVkZEyZM4L333uu4SbW4uLjT5FWnnnoqL7zwAr/5zW+47bbbyMvL44033tAYIyIiIgJoOHgREREJk2D/fkfu1lkRERER1IyIiIhIhKkZERERkYhSMyIiIiIRpWZEREREIkrNiIiIiESUmhERERGJKDUjIiIiElFqRkRERCSiQh4OPhIODBLb0NAQ4UpEREQkWAf+bh9usPdjohlpbGwEIDs7O8KViIiISKgaGxuJj4/v9vNjYm6aQCDA/v37iYuLw2Qy9dhyGxoayM7OpqSkRHPeHIb2VWi0v4KnfRU87avgaV8FL5z7yjAMGhsbycrK6jSJ7vcdE2dGzGYzAwcODNvyXS6XDtYgaV+FRvsreNpXwdO+Cp72VfDCta8OdUbkAN3AKiIiIhGlZkREREQiql83Iw6Hg0WLFuFwOCJdSp+nfRUa7a/gaV8FT/sqeNpXwesL++qYuIFVREREjl/9+syIiIiIRJ6aEREREYkoNSMiIiISUWpGREREJKL6dTPy+OOPM3jwYJxOJ5MnT2bt2rWRLqnP+e1vf4vJZOr0GjlyZKTL6hNWrlzJBRdcQFZWFiaTiTfeeKPT54ZhcOedd5KZmUlUVBTTpk1j+/btkSk2wg63r6666qqDjrOZM2dGptgIW7x4MSeffDJxcXGkpaVx4YUXsnXr1k4xbW1tXHfddSQnJxMbG8sll1xCeXl5hCqOnGD21VlnnXXQsTVv3rwIVRw5f/7znxk3blzHwGYFBQW8++67HZ9H+pjqt83Iyy+/zIIFC1i0aBEbNmxg/PjxzJgxg4qKikiX1ueMHj2a0tLSjtdHH30U6ZL6hObmZsaPH8/jjz/e5ecPPPAAf/zjH3nyySdZs2YNMTExzJgxg7a2tl6uNPIOt68AZs6c2ek4e/HFF3uxwr5jxYoVXHfddXz66ae8//77eL1epk+fTnNzc0fMr371K/75z3/y6quvsmLFCvbv38/FF18cwaojI5h9BXD11Vd3OrYeeOCBCFUcOQMHDuS+++5j/fr1rFu3jnPOOYdZs2bx5ZdfAn3gmDL6qUmTJhnXXXddx/d+v9/IysoyFi9eHMGq+p5FixYZ48ePj3QZfR5gLFmypOP7QCBgZGRkGA8++GDHe3V1dYbD4TBefPHFCFTYd3x/XxmGYVx55ZXGrFmzIlJPX1dRUWEAxooVKwzDaD+ObDab8eqrr3bEfPXVVwZgrF69OlJl9gnf31eGYRhnnnmmccMNN0SuqD4sMTHRePrpp/vEMdUvz4x4PB7Wr1/PtGnTOt4zm81MmzaN1atXR7Cyvmn79u1kZWUxZMgQLrvsMoqLiyNdUp9XVFREWVlZp2MsPj6eyZMn6xjrRmFhIWlpaYwYMYJrrrmG6urqSJfUJ9TX1wOQlJQEwPr16/F6vZ2OrZEjRzJo0KB+f2x9f18d8Pzzz5OSksKYMWNYuHAhLS0tkSivz/D7/bz00ks0NzdTUFDQJ46pY2KivJ5WVVWF3+8nPT290/vp6el8/fXXEaqqb5o8eTLPPfccI0aMoLS0lLvuuovTTz+dzZs3ExcXF+ny+qyysjKALo+xA5/Jt2bOnMnFF19Mbm4uO3fu5LbbbuPcc89l9erVWCyWSJcXMYFAgBtvvJEpU6YwZswYoP3YstvtJCQkdIrt78dWV/sK4Kc//Sk5OTlkZWWxadMmbrnlFrZu3crrr78ewWoj44svvqCgoIC2tjZiY2NZsmQJo0aNYuPGjRE/pvplMyLBO/fcczu+HjduHJMnTyYnJ4dXXnmFuXPnRrAyOZ78+7//e8fXY8eOZdy4cQwdOpTCwkKmTp0awcoi67rrrmPz5s26TysI3e2rX/7ylx1fjx07lszMTKZOncrOnTsZOnRob5cZUSNGjGDjxo3U19fz2muvceWVV7JixYpIlwX00xtYU1JSsFgsB90pXF5eTkZGRoSqOjYkJCQwfPhwduzYEelS+rQDx5GOsSMzZMgQUlJS+vVxNn/+fN566y2WL1/OwIEDO97PyMjA4/FQV1fXKb4/H1vd7auuTJ48GaBfHlt2u51hw4aRn5/P4sWLGT9+PI8++mifOKb6ZTNit9vJz89n2bJlHe8FAgGWLVtGQUFBBCvr+5qamti5cyeZmZmRLqVPy83NJSMjo9Mx1tDQwJo1a3SMBWHv3r1UV1f3y+PMMAzmz5/PkiVL+PDDD8nNze30eX5+PjabrdOxtXXrVoqLi/vdsXW4fdWVjRs3AvTLY+v7AoEAbre7bxxTvXKbbB/00ksvGQ6Hw3juueeMLVu2GL/85S+NhIQEo6ysLNKl9Sm//vWvjcLCQqOoqMj4+OOPjWnTphkpKSlGRUVFpEuLuMbGRuOzzz4zPvvsMwMwfv/73xufffaZsWfPHsMwDOO+++4zEhISjDfffNPYtGmTMWvWLCM3N9dobW2NcOW971D7qrGx0bjpppuM1atXG0VFRcYHH3xgnHTSSUZeXp7R1tYW6dJ73TXXXGPEx8cbhYWFRmlpacerpaWlI2bevHnGoEGDjA8//NBYt26dUVBQYBQUFESw6sg43L7asWOHcffddxvr1q0zioqKjDfffNMYMmSIccYZZ0S48t536623GitWrDCKioqMTZs2GbfeeqthMpmMpUuXGoYR+WOq3zYjhmEYjz32mDFo0CDDbrcbkyZNMj799NNIl9TnzJ4928jMzDTsdrsxYMAAY/bs2caOHTsiXVafsHz5cgM46HXllVcahtH+eO8dd9xhpKenGw6Hw5g6daqxdevWyBYdIYfaVy0tLcb06dON1NRUw2azGTk5OcbVV1/db/9h0NV+Aoxnn322I6a1tdW49tprjcTERCM6Otq46KKLjNLS0sgVHSGH21fFxcXGGWecYSQlJRkOh8MYNmyYcfPNNxv19fWRLTwCfv7znxs5OTmG3W43UlNTjalTp3Y0IoYR+WPKZBiG0TvnYEREREQO1i/vGREREZG+Q82IiIiIRJSaEREREYkoNSMiIiISUWpGREREJKLUjIiIiEhEqRkRERGRiFIzIiIiIhGlZkREwu6qq67iwgsvjHQZItJHqRkRERGRiFIzIiI95rXXXmPs2LFERUWRnJzMtGnTuPnmm/nb3/7Gm2++iclkwmQyUVhYCEBJSQk/+clPSEhIICkpiVmzZrF79+6O5R04o3LXXXeRmpqKy+Vi3rx5eDyeyGygiISFNdIFiMjxobS0lEsvvZQHHniAiy66iMbGRlatWsUVV1xBcXExDQ0NPPvsswAkJSXh9XqZMWMGBQUFrFq1CqvVyu9+9ztmzpzJpk2bsNvtACxbtgyn00lhYSG7d+9mzpw5JCcn81//9V+R3FwR6UFqRkSkR5SWluLz+bj44ovJyckBYOzYsQBERUXhdrvJyMjoiP/HP/5BIBDg6aefxmQyAfDss8+SkJBAYWEh06dPB8But/PMM88QHR3N6NGjufvuu7n55pu55557MJt1clfkeKCfZBHpEePHj2fq1KmMHTuWH//4xzz11FPU1tZ2G//555+zY8cO4uLiiI2NJTY2lqSkJNra2ti5c2en5UZHR3d8X1BQQFNTEyUlJWHdHhHpPTozIiI9wmKx8P777/PJJ5+wdOlSHnvsMW6//XbWrFnTZXxTUxP5+fk8//zzB32Wmpoa7nJFpA9RMyIiPcZkMjFlyhSmTJnCnXfeSU5ODkuWLMFut+P3+zvFnnTSSbz88sukpaXhcrm6Xebnn39Oa2srUVFRAHz66afExsaSnZ0d1m0Rkd6jyzQi0iPWrFnDvffey7p16yguLub111+nsrKSE044gcGDB7Np0ya2bt1KVVUVXq+Xyy67jJSUFGbNmsWqVasoKiqisLCQ//zP/2Tv3r0dy/V4PMydO5ctW7bwzjvvsGjRIubPn6/7RUSOIzozIiI9wuVysXLlSh555BEaGhrIycnh4Ycf5txzz2XixIkUFhYyceJEmpqaWL58OWeddRYrV67klltu4eKLL6axsZEBAwYwderUTmdKpk6dSl5eHmeccQZut5tLL72U3/72t5HbUBHpcSbDMIxIFyEi0pWrrrqKuro63njjjUiXIiJhpPOcIiIiElFqRkRERCSidJlGREREIkpnRkRERCSi1IyIiIhIRKkZERERkYhSMyIiIiIRpWZEREREIkrNiIiIiESUmhERERGJKDUjIiIiElFqRkRERCSi/n9SFRFjxgqckQAAAABJRU5ErkJggg==",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for (g, group) in res.env.dropna().groupby(\"params_id\"):\n",
" params = res.parameters.query(f'params_id == \"{g}\"').iloc[0]\n",
" title = f\"{params.generator.rstrip('_graph')} {params.prob_neighbor_spread}\"\n",
" prob = group.groupby(by=[\"step\"]).prob_neighbor_spread.mean()\n",
" line = \"-\"\n",
" if \"barabasi\" in params.generator:\n",
" line = \"--\"\n",
" prob.rename(title).fillna(0).plot(linestyle=line)\n",
"plt.title(\"Mean probability for each configuration\")\n",
"plt.legend();"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"hideCode": false,
"hidePrompt": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHHCAYAAABtF1i4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADEp0lEQVR4nOzdeXhM59vA8e/MZGayr7KJELvYK3ZtaUVjqaKqrbaUoo2iVCm6UVQogmr76mppdUFb1Z+dWmqvtdZYIy1ZiCyyTmbmvH+EkZEdMcL9ua65mjnnOee5z6Ry7jnPplIURUEIIYQQwkbUtg5ACCGEEA82SUaEEEIIYVOSjAghhBDCpiQZEUIIIYRNSTIihBBCCJuSZEQIIYQQNiXJiBBCCCFsSpIRIYQQQtiUJCNCCCGEsClJRoSwsQkTJqBSqWxS999//03r1q1xcnJCpVJx8ODBAstt3rwZlUrF5s2bb6me+Ph4nnnmGby8vFCpVMyePfuWY77bbvfahRDFk2REiJssWLAAlUplednZ2REQEEC/fv24cOHCLZ0zIyODCRMm3FM3tJycHHr16sWVK1eYNWsW3333HVWqVCmTut58803Wrl3LuHHj+O677+jYseMdr2PKlCksX778jp9XCFH27GwdgBD3qokTJ1K1alWysrLYtWsXCxYsYNu2bRw5cgR7e/tSnSsjI4MPP/wQgHbt2lnte++99xg7duydCrvEzpw5w/nz5/nqq68YOHBgkWUfffRRMjMz0el0t1TXn3/+Sbdu3Rg1atQtHV8SU6ZM4ZlnnqF79+5lVocQomxIMiJEITp16kTTpk0BGDhwIBUqVGDatGmsWLGCZ5999o7VY2dnh53d3f+nmJCQAIC7u3uxZdVqdakTsJvrKkk94vaZzWYMBsNt/b6EuNukmUaIEnrkkUeA3CcK1xkMBj744ANCQkJwc3PDycmJRx55hE2bNlnKREdH4+3tDcCHH35oaf6ZMGECUHCfEaPRyKRJk6hevTp6vZ6goCDeeecdsrOzSxTrn3/+ySOPPIKTkxPu7u5069aN48ePW/b369ePtm3bAtCrVy9UKlW+JzZ5FdRvol27dtSvX59jx47x2GOP4ejoSEBAAB9//LGlzPUmL0VR+OyzzyzXfl1ycjIjRowgMDAQvV5PjRo1mDZtGmaz2ap+s9nMnDlzaNCgAfb29nh7e9OxY0f27t0LgEqlIj09nYULF1rq6Nevn+X4Cxcu8Morr+Dr64ter6devXp8++23+a7zv//+o3v37jg5OeHj48Obb75Z4s+8X79+BAUF5dte0O93/fr1PPzww7i7u+Ps7Ezt2rV55513rMpkZ2czfvx4atSogV6vJzAwkLfffjtfPCqViqFDh7J48WLq1auHXq9nzZo1APz000+EhITg4uKCq6srDRo0YM6cOSW6HiHuJnkyIkQJRUdHA+Dh4WHZlpqaytdff03v3r0ZNGgQV69e5ZtvviEsLIw9e/bQuHFjvL29+b//+z8GDx5Mjx49ePrppwFo2LBhoXUNHDiQhQsX8swzz/DWW2+xe/duIiIiOH78OL/99luRcW7YsIFOnTpRrVo1JkyYQGZmJnPnzqVNmzbs37+foKAgXnvtNQICApgyZQpvvPEGzZo1w9fXt9SfSVJSEh07duTpp5/m2WefZdmyZYwZM4YGDRrQqVMnHn30Ub777jv69OlDhw4d6Nu3r+XYjIwM2rZty4ULF3jttdeoXLkyO3bsYNy4ccTGxlp1ch0wYAALFiygU6dODBw4EKPRyF9//cWuXbto2rQp3333HQMHDqR58+a8+uqrAFSvXh3I7TzbsmVLy03b29ub1atXM2DAAFJTUxkxYgQAmZmZtG/fnpiYGN544w0qVqzId999x59//lnqz6UoR48e5cknn6Rhw4ZMnDgRvV7P6dOn2b59u6WM2WzmqaeeYtu2bbz66qsEBwdz+PBhZs2axcmTJ/P1jfnzzz9ZsmQJQ4cOpUKFCgQFBbF+/Xp69+5N+/btmTZtGgDHjx9n+/btDB8+/I5ekxC3TRFCWJk/f74CKBs2bFAuXbqk/Pvvv8qyZcsUb29vRa/XK//++6+lrNFoVLKzs62OT0pKUnx9fZVXXnnFsu3SpUsKoIwfPz5ffePHj1fy/lM8ePCgAigDBw60Kjdq1CgFUP78888i42/cuLHi4+OjJCYmWrYdOnRIUavVSt++fS3bNm3apADK0qVLi/5A8pTdtGmTZVvbtm0VQFm0aJFlW3Z2tuLn56f07NnT6nhAGTJkiNW2SZMmKU5OTsrJkyetto8dO1bRaDRKTEyMoiiK8ueffyqA8sYbb+SLy2w2W352cnJSXn755XxlBgwYoPj7+yuXL1+22v78888rbm5uSkZGhqIoijJ79mwFUJYsWWIpk56ertSoUSPftRfk5ZdfVqpUqZJv+82/31mzZimAcunSpULP9d133ylqtVr566+/rLbPmzdPAZTt27dbtgGKWq1Wjh49alV2+PDhiqurq2I0GouMW4h7gTTTCFGI0NBQvL29CQwM5JlnnsHJyYkVK1ZQqVIlSxmNRmPp1Gk2m7ly5QpGo5GmTZuyf//+W6p31apVAIwcOdJq+1tvvQXAypUrCz02NjaWgwcP0q9fPzw9PS3bGzZsSIcOHSznvlOcnZ156aWXLO91Oh3Nmzfn7NmzxR67dOlSHnnkETw8PLh8+bLlFRoaislkYuvWrQD88ssvqFQqxo8fn+8cxQ2JVhSFX375ha5du6IoilU9YWFhpKSkWH5Pq1atwt/fn2eeecZyvKOjo+VJy51yve/M77//nq856rqlS5cSHBxMnTp1rGJ+/PHHAayaAQHatm1L3bp189WTnp7O+vXr72j8QpQFSUaEKMRnn33G+vXrWbZsGZ07d+by5cvo9fp85RYuXEjDhg2xt7fHy8sLb29vVq5cSUpKyi3Ve/78edRqNTVq1LDa7ufnh7u7O+fPny/yWIDatWvn2xccHMzly5dJT0+/pbgKUqlSpXwJgYeHB0lJScUee+rUKdasWYO3t7fVKzQ0FLjRwfbMmTNUrFjRKrkqqUuXLpGcnMyXX36Zr57+/ftb1XP+/Hlq1KiR73oK+ixvx3PPPUebNm0YOHAgvr6+PP/88yxZssQqMTl16hRHjx7NF3OtWrWsYr6uatWq+ep5/fXXqVWrFp06daJSpUq88sorlr4kQtxrpM+IEIVo3ry5ZTRN9+7defjhh3nhhReIiorC2dkZgO+//55+/frRvXt3Ro8ejY+PDxqNhoiICKuOrrfCVhOhlYZGoylwu6IoxR5rNpvp0KEDb7/9doH7r994b8f1G/xLL73Eyy+/XGCZovrulEZhvy+TyWT13sHBga1bt7Jp0yZWrlzJmjVr+Pnnn3n88cdZt24dGo0Gs9lMgwYNiIyMLPCcgYGB+c55Mx8fHw4ePMjatWtZvXo1q1evZv78+fTt25eFCxfe4lUKUTYkGRGiBK4nGI899hiffvqpZV6QZcuWUa1aNX799Verm9HNTQqlSSyqVKmC2Wzm1KlTBAcHW7bHx8eTnJxc5MRk1/dFRUXl23fixAkqVKiAk5NTiWMpS9WrVyctLc3yJKSocmvXruXKlStFPh0p6DP29vbGxcUFk8lUbD1VqlThyJEjKIpida6CPsuCeHh4kJycnG97QU+y1Go17du3p3379kRGRjJlyhTeffddNm3aRGhoKNWrV+fQoUO0b9/+tpJSnU5H165d6dq1K2azmddff50vvviC999/P9+TNyFsSZpphCihdu3a0bx5c2bPnk1WVhZw48lA3icBu3fvZufOnVbHOjo6AhR4s7pZ586dAfJNmX79W3KXLl0KPdbf35/GjRuzcOFCq7qOHDnCunXrLOe+Fzz77LPs3LmTtWvX5tuXnJyM0WgEoGfPniiKYpk0Lq+8n7uTk1O+z1ej0dCzZ09++eUXjhw5ku/4S5cuWX7u3LkzFy9eZNmyZZZtGRkZfPnllyW6nurVq5OSksI///xj2RYbG5tv9NOVK1fyHdu4cWMAy7DdZ599lgsXLvDVV1/lK5uZmVmiprbExESr92q12vIUqKTDlYW4W+TJiBClMHr0aHr16sWCBQsIDw/nySef5Ndff6VHjx506dKFc+fOMW/ePOrWrUtaWprlOAcHB+rWrcvPP/9MrVq18PT0pH79+tSvXz9fHY0aNeLll1/myy+/JDk5mbZt27Jnzx4WLlxI9+7deeyxx4qMcfr06XTq1IlWrVoxYMAAy9BeNzc3y9wm94LRo0ezYsUKnnzySfr160dISAjp6ekcPnyYZcuWER0dTYUKFXjsscfo06cPn3zyCadOnaJjx46YzWb++usvHnvsMYYOHQpASEgIGzZsIDIykooVK1K1alVatGjB1KlT2bRpEy1atGDQoEHUrVuXK1eusH//fjZs2GBJDgYNGsSnn35K37592bdvH/7+/nz33XeWRLI4zz//PGPGjKFHjx688cYbZGRk8H//93/UqlXLqjPzxIkT2bp1K126dKFKlSokJCTw+eefU6lSJR5++GEA+vTpw5IlSwgPD2fTpk20adMGk8nEiRMnWLJkCWvXrrU0IRZm4MCBXLlyhccff5xKlSpx/vx55s6dS+PGja2euAlxT7DhSB4h7knXh/b+/fff+faZTCalevXqSvXq1RWj0aiYzWZlypQpSpUqVRS9Xq889NBDyv/+978Ch3nu2LFDCQkJUXQ6ndUw35uHfiqKouTk5CgffvihUrVqVUWr1SqBgYHKuHHjlKysrBJdw4YNG5Q2bdooDg4Oiqurq9K1a1fl2LFjVmXuxNDeevXq5Stb0LVTwNBeRVGUq1evKuPGjVNq1Kih6HQ6pUKFCkrr1q2VGTNmKAaDwVLOaDQq06dPV+rUqaPodDrF29tb6dSpk7Jv3z5LmRMnTiiPPvqo4uDgoABWw3zj4+OVIUOGKIGBgYpWq1X8/PyU9u3bK19++aVVPOfPn1eeeuopxdHRUalQoYIyfPhwZc2aNSUa2qsoirJu3Tqlfv36ik6nU2rXrq18//33+X6/GzduVLp166ZUrFhR0el0SsWKFZXevXvnG+JsMBiUadOmKfXq1VP0er3i4eGhhISEKB9++KGSkpJS7Ge7bNky5YknnlB8fHwUnU6nVK5cWXnttdeU2NjYYq9DiLtNpSgl6GkmhBBCCFFGpM+IEEIIIWxKkhEhhBBC2JQkI0IIIYSwKUlGhBBCCGFTkowIIYQQwqYkGRFCCCGETZWLSc/MZjMXL17ExcWlXKzXIYQQQojcWZKvXr1KxYoVUasLf/5RLpKRixcv5lsYSgghhBDlw7///kulSpUK3V8ukhEXFxcg92JcXV1tHI0QQgghSiI1NZXAwEDLfbww5SIZud404+rqKsmIEEIIUc4U18VCOrAKIYQQwqYkGRFCCCGETUkyIoQQQgibkmRECCGEEDYlyYgQQgghbEqSESGEEELYlCQjQgghhLApSUaEEEIIYVOSjAghhBDCpiQZEUIIIYRNSTIihBBCCJuSZEQIIYQQNlUuFsoTQgghRMmYTCaS4i9x5b+LqDV21AhpaOuQiiXJiBBCCHGPyc7I5FLMBa5cjCMlPo70y4lkJF0hOzUFQ3oapox0TIYszMZszCYjimLCrDJjUqkwaVQo11bJdTZpqbHsNxtfTfEkGRFCCCHuMqMhh32r1nFq4wbS485jNhkwK2bMKgWTWoVJU8JeFOprL1SAxmqXyqzc4ajLjiQjQgghRBkzmUwc3bKTo6v+R+r5k2Sbs8ixu5ZwWBKK/AmIxmRGY1ZQKyrUKjUqlR1qOx1qnT12egfsHJ3Qubji4OaBYwVPXCv44BHgT4XAAFy83NFoNPnOeS+SZEQIIYQoA6f3/cP+X38l+fQxsnOuYtBeSwzUgFqN2mzGwWyHg09lnP0q4ujhiZOXF25+vngFVMSrkj8Ozk42vYa7RZIRIYQQ4g64cPIsfy9ZxqVjB8nOSiZbm+dJh1aDyqzgYFLh4BlAYOuHadWrO44uLrYL+B4iyYgQQghxCy5fjGPXj8uIP/Q3WVcvkaVVwbWOo2jVoCg45IC9qw/+IS1o9Xwv3H28bBv0PUqSESGEEKIEUpOS2f3zb/y3ZzuZSXFkaRXLqBV0uU9B7A1m9E6eeNdvQovnn8EvqLINIy4/JBkRQgghrok7G8PZvftJOHmS1Nj/yE66jCk7DaNixKBRoaivJx8AKvQ5JvQ6Nzxq1yekZw+qNqxny/DLLUlGhBBCPDBSk5I5vXs/F48eI+W/82QlJmDMSMVoyiZHQ8FDau3g+kgXrdGEvcYJt6p1aPBUV+q2aXFX479fSTIihBDlnMlkIvFCLCnxl2wdyj0hOyOL2OMnuBJ9loyEOHLSkjHmZGJUm8ixK2CoqwbIk4RojWbszCo0dg5ond1w9PbFo0pVAhs2oHbrZuVmuGx5IsmIEELcAzLT0kmI+Y+kC7GkxCWQfiWRzGszbuakp2PKuj7jpgGzKQdFMVtm3DRq8nScFPmpuNaskptEaExmtCbQaHTYObhi71EBt8Aq+AfXoXqzh/Dw9bFltA8kSUaEEA88k8lEwrkYzu47RMLJKK5e/JfslETMhqwyqU9RzLnTd9/pGTcVBcrPpJtlRoWC1qSgQYud3gmduxcu/gF416xJ1Yca41+zqjzduMdIMiKEeCAkJyRyZu9+Yo8fJ+XfmNy+AplXi+4rUOb3q+Jm3NSgVtuhstOh0eqxs3fEzskZnYsbDu5uOHtVwNXXBw9/P7yqVMLVw72sAxaiTEgyIoS4L2RnZHLmwD/8988RkqLPkXHpel+BrFL0FTBhZ9Zgp7XHztkdezdPVCV9YlEKKrUavYsbjh6eOHt7X5tx0w+vwIro9Po7Xp8Q9zpJRoQQ9xSjIYfLF2O58u9FkuPiSbt0iYwrV8hKTcGQfhVjRjrm7CxMOdko5hzMZiNmlRmDnfrGnA/XFdpXQI/WwQV7Lx/cAivjHxxM9aZNZEIqIWxEkhEhyoHUpGQSz/9HUmwcqfEJpCVeITM5CVN2pq1DKxVzjpGc9KsYszIxGzJzO2OajZgVE8q1vhNGdQk7YxbQd0JlVtCZFOxUdmj0TujdvHCpWAmfWnWoFtIIn6qVpa+AEPcgSUaEuAuMhhyuxMVz+d8LJF+MI+3yZTKu5I6UMKRdJSczHXN2JuacbMymHMxmEwpmTGoFk1qNWX2fjpTQXHsV0HdCbc7tO6Exq1CjRqXWoNboUOv0aHTXVit1dsHezR1nXx8qN6hP1Ub1sdNp7/ZVCCFukyQjQpRQxtWrJERfICk2lpT4eNITE8lMSsKQmkpORhrGzAzMhizMxmzMZuONoZel+bavIs+/yptu0IqCnVm51rlRjUqlRqUqX9/yVSrVteXPHbCzd0Dr5ILOxQV7Dw+cK1TA1dsHz4CKeFeuiJObq63DFULcJZKMCEHuHA9/REwn9fzp3KcTRgOK2YTZ8nRChVldwo6Mlm/7+Ydeqs0KGrMZjVmFCjVqtQa1Rotaq0ejd8DOIffbvt7NHUcPD1x8fHD398Orkj+efr7yrV8IcV+SZEQ80IyGHJZPnkrckR1ka/MkDoU9nUCGXgohxJ0myYh4IJlMJv6YNosLf/9Jlk4NWg1aoxknJ2+0Tq5onZ2xd3XH0dMT5woy9FIIIcqSJCPigWIymVj76ZdEb/4fmToV6NRoTGY8PKvQ9cMP8fSXaaCFEOJuk2REPDA2frOIkyuXkKEFdCo0JjOurhXp/N4H+FWrbOvwhBDigSXJiLjv/fXjMo4uXUS61gza3E6kLvZedBj3LlXq1rZ1eEII8cCTZETct/5esZZ9i+aRrskBbe4iYi52rjz29jhqhDS0dXhCCCGukWRE3HcObdzKrnmfkKbKBI0KFAUXlSOth4ykfttWtg5PCCHETSQZEfeNE7v28tfs6Vw1p6GoVYAKZ7OOZq+8TpNOobYOTwghRCEkGRHl3rl/jrLx4whSs5NykxCVCiejhobPv0LrXt1sHZ4QQohiSDIiyq0LJ8+y9qNJpGTE586OqlbhmKMi+KnetOv3gq3DE0IIUUKSjIhy59K/F1n54YckJ/+LSaMGtRoHg0L10O6EDRlk6/CEEEKUkiQjoly5fDGOn4cPJFurBo0ae4OZyq3D6DxyqCwNL4QQ5ZQkI6Jc+eO998nWqtEaTVRq9ChPjR0li8cJIUQ5J8mIKDfOHPiH5KsXQK2m8kOP0f29t20dkhBCiDughGuiC2F7f077CLNajYMBuo57y9bhCCGEuEMkGRHlwt8r1pJqTgOgbrcXpH+IEELcRyQZEeXCvoWfg0qFs0krw3aFEOI+I8mIuOet/ewr0u1MqBSFloPftHU4Qggh7jBJRsQ9zWjI4fSG3wBw1XnQqP2jNo5ICCHEnSbJiLin/frhR2Tp1GhMZjq+N8HW4QghhCgDkoyIe1ZqUjLxx3cD4FGhKpXq1LBxREIIIcqCJCPinrX8nfcwaDXockz0+GiyrcMRQghRRiQZEfekCyfPcuXSWQB8g1vg6uVh44iEEEKUFUlGxD1p9cTxmK6tPfP0+HdtHY4QQogyJMmIuOcc3ryd1OwrANRo30PWnhFCiPucJCPinrPj05koahVORjVhQwfZOhwhhBBlTJIRcU/Z/N1PpGkMoCg89PJgW4cjhBDiLpBkRNwzTCYTx3/9HgAXtTMtnupk44iEEELcDbeUjHz22WcEBQVhb29PixYt2LNnT4mO++mnn1CpVHTv3v1WqhX3uT+mzSJDB2qzmcdHS6dVIYR4UJQ6Gfn5558ZOXIk48ePZ//+/TRq1IiwsDASEhKKPC46OppRo0bxyCOP3HKw4v6VmZbOf3v/BMDdpSI1QhraOCIhhBB3S6mTkcjISAYNGkT//v2pW7cu8+bNw9HRkW+//bbQY0wmEy+++CIffvgh1apVu62Axf3p1/cnkK1VozWa6TpZJjgTQogHSamSEYPBwL59+wgNDb1xArWa0NBQdu7cWehxEydOxMfHhwEDBpSonuzsbFJTU61e4v516d+LJMYcBaBClfpUqOhn44iEEELcTaVKRi5fvozJZMLX19dqu6+vL3FxcQUes23bNr755hu++uqrEtcTERGBm5ub5RUYGFiaMEU588cH75Njp0afY6bHxPG2DkcIIcRdVqajaa5evUqfPn346quvqFChQomPGzduHCkpKZbXv//+W4ZRCls69fcBUtJiAQhsHoqDs5ONIxJCCHG32ZWmcIUKFdBoNMTHx1ttj4+Px88v/6P1M2fOEB0dTdeuXS3bzGZzbsV2dkRFRVG9evV8x+n1evR6fWlCE+XUphkRmNVqHHPgydHDbR2OEEIIGyjVkxGdTkdISAgbN260bDObzWzcuJFWrVrlK1+nTh0OHz7MwYMHLa+nnnqKxx57jIMHD0rzywNu12//46qSDkC9ni+j0WhsHJEQQghbKNWTEYCRI0fy8ssv07RpU5o3b87s2bNJT0+nf//+APTt25eAgAAiIiKwt7enfv36Vse7u7sD5NsuHjwHv/sStCqczXoefbGXrcMRQghhI6VORp577jkuXbrEBx98QFxcHI0bN2bNmjWWTq0xMTGo1TKxqyja6k/mka41ozIrtBk6ytbhCCGEsCGVoiiKrYMoTmpqKm5ubqSkpODq6mrrcMRtMmRn89XzPcjSqXHTeTLwu0W2DkkIIUQZKOn9Wx5hiLvutwkfkaVTY2cy02X8h7YORwghhI1JMiLuquSERBKi/gbAw7cG/jWq2jgiIYQQtlbqPiNC3I7f338fg1aDLsdE98kTbR2OEHeMyWQiJyfH1mEIcVdptdo7MhJSkhFx15w/FkVSYjRo1PjXb42rh7utQxLitimKQlxcHMnJybYORQibcHd3x8/PD5VKdcvnkGRE3DXrP5qISaPGwaDQ/b2xtg5HiDvieiLi4+ODo6Pjbf1BFqI8URSFjIwMEhISAPD397/lc0kyIu6Kg+s3k5qTDCoVNZ54Gjud1tYhCXHbTCaTJRHx8vKydThC3HUODg4AJCQk4OPjc8tNNtKBVdwVu7+Yg6JS4WTU8MTgkq3eLMS97nofEUdHRxtHIoTtXP///3b6TEkyIsrcxm+/I02TA4pCswFDbR2OEHecNM2IB9md+P9fkhFRpkwmE1F//ASAq8aFkM4dbByREEKIe40kI6JMrZgynUydCo3JTOiY92wdjhCiDLRr144RI0bYOowytXnzZlQqlYyaKiOSjIgyk3H1KhcObAXAza0SVRvL4ohCiPKpdevWxMbG4ubmVmiZL7/8knbt2uHq6lqqxOWzzz4jKCgIe3t7WrRowZ49e+5Q1OWHJCOizPz67gdka9VojSa6TZ5s63CEELdBURSMRqOtw7ByN2PS6XTFzqWRkZFBx44deeedd0p83p9//pmRI0cyfvx49u/fT6NGjQgLC7MMl31QSDIiysSV2AQSL0QB4F21MZ7+PjaOSAiRl9lsJiIigqpVq+Lg4ECjRo1YtmyZZf/1ZonVq1cTEhKCXq9n27ZtpKen07dvX5ydnfH392fmzJn5zp2UlETfvn3x8PDA0dGRTp06cerUKcv+8+fP07VrVzw8PHBycqJevXqsWrWq2JgLi6mk17Jx40aaNm2Ko6MjrVu3Jioq929UdHQ0arWavXv3WtU3e/ZsqlSpgtlsLlEzzYgRIxg7diwtW7Ys9lqui4yMZNCgQfTv35+6desyb948HB0d+fbbb0t8jvuBzDMiysTamZEY7dToc0w8PfEDW4cjxF2jKAqZOSab1O2g1ZR4ZENERATff/898+bNo2bNmmzdupWXXnoJb29v2rZtayk3duxYZsyYQbVq1fDw8GD06NFs2bKF33//HR8fH9555x32799P48aNLcf069ePU6dOsWLFClxdXRkzZgydO3fm2LFjaLVahgwZgsFgYOvWrTg5OXHs2DGcnZ1LfJ03x1TSa3n33XeZOXMm3t7ehIeH88orr7B9+3aCgoIIDQ1l/vz5NG3a1FJ+/vz59OvXD7W6bL63GwwG9u3bx7hx4yzb1Go1oaGh7Ny5s0zqvFdJMiLuOJPJxJUz/4BOjXtAHfSODrYOSYi7JjPHRN0P1tqk7mMTw3DUFf9nPTs7mylTprBhwwZatWoFQLVq1di2bRtffPGF1Q184sSJdOiQOwouLS2Nb775hu+//5727dsDsHDhQipVqmQpfz0J2b59O61btwZg8eLFBAYGsnz5cnr16kVMTAw9e/akQYMGlrpLI29MpbmWjz76yPJ+7NixdOnShaysLOzt7Rk4cCDh4eFERkai1+vZv38/hw8f5vfffy9VbKVx+fJlTCYTvr6+Vtt9fX05ceJEmdV7L5JmGnHHbV74A1k6NWqzmdC33rR1OEKIm5w+fZqMjAw6dOiAs7Oz5bVo0SLOnDljVTbvk4IzZ85gMBho0aKFZZunpye1a9e2vD9+/Dh2dnZWZby8vKhduzbHjx8H4I033mDy5Mm0adOG8ePH888//5Qq/rwxleZaGjZsaPn5+tTl1/tmdO/eHY1Gw2+//QbAggULeOyxxwgKCipVbOLWyJMRccedXr0c1OCsccUvqLKtwxHirnLQajg2McxmdZdEWloaACtXriQgIMBqn16vt3rv5OR0Z4LLY+DAgYSFhbFy5UrWrVtHREQEM2fOZNiwYSU6Pm9MpbkWrfbGMhTXm7PMZjOQ20G1b9++zJ8/n6effpoffviBOXPmlP7iSqFChQpoNBri4+OttsfHx+Pn51emdd9rJBkRd9S5f46SThagon6vF20djhB3nUqlKlFTiS3VrVsXvV5PTEyMVTNGcapXr45Wq2X37t1Urpz7RSMpKYmTJ09azhMcHIzRaGT37t2WZprExESioqKoW7eu5VyBgYGEh4cTHh7OuHHj+Oqrr0qcjNyJaynIwIEDqV+/Pp9//jlGo5Gnn376ts5XHJ1OR0hICBs3bqR79+5AbnK0ceNGhg59sGarvrf/xYhyZ+vcuShqFQ4GaNWzq63DEUIUwMXFhVGjRvHmm29iNpt5+OGHSUlJYfv27bi6uvLyyy8XeJyzszMDBgxg9OjReHl54ePjw7vvvmvVwbNmzZp069aNQYMG8cUXX+Di4sLYsWMJCAigW7duQO6ok06dOlGrVi2SkpLYtGkTwcHBd/VaChIcHEzLli0ZM2YMr7zyimURuJKKi4sjLi6O06dPA3D48GFcXFyoXLkynp6eALRv354ePXpYko2RI0fy8ssv07RpU5o3b87s2bNJT0+nf//+paq7vJNkRNwx2RmZpCaeB60G7/otij9ACGEzkyZNwtvbm4iICM6ePYu7uztNmjQpdo6M6dOnk5aWRteuXXFxceGtt94iJSXFqsz8+fMZPnw4Tz75JAaDgUcffZRVq1ZZmklMJhNDhgzhv//+w9XVlY4dOzJr1qy7fi0FGTBgADt27OCVV14p9bHz5s3jww8/tLx/9NFHgRujciC3383ly5ctZZ577jkuXbrEBx98QFxcHI0bN2bNmjX5OrXe71SKoii2DqI4qampuLm5kZKSgqurq63DEYVY/tF0zvyzBa3RzIBvf8LJTX5X4v6WlZXFuXPnqFq1Kvb29rYOR9wBkyZNYunSpaXuVPsgK+rfQUnv3zKaRtwxsftyp353dvWXREQIUa6kpaVx5MgRPv3001vquyJujyQj4o7Yv+ZPMrQKKAqtXxts63CEEOVQeHi41fDcvK/w8PAyrXvo0KGEhITQrl27W2qiEbdHmmnEHfH1Sy+RkpOMk8mO8GXLbR2OEHeFNNPcWQkJCaSmpha4z9XVFR8fWVbiXnQnmmmkA6u4bVdiE0jLugIaNUFtO9k6HCFEOeXj4yMJxwNKmmnEbVs7MxKTRo0+x0zoa/J4UwghROlIMiJui2UdGsA9oDZ2Om0xRwghhBDWJBkRt0XWoRFCCHG7JBkRt+X06uWArEMjhBDi1kkyIm7ZjXVokHVohBBC3DJJRsQtk3VohCi/2rVrx4gRI2xWf1BQELNnzy6z82/evBmVSkVycvIdOd/Nn1dZx/+gkWRE3BLLOjQg69AIIe45rVu3JjY2Fjc3N1uHUmolTRQVReGDDz7A398fBwcHQkNDOXXqVJHHTJgwAZVKZfWqU6fOHYr81kkyIm7J6lmfYtBq0BrNdB413NbhCCHuAYqiYDQabR0GADqdDj8/P1Qqla1DKTGDwVCq8h9//DGffPIJ8+bNY/fu3Tg5OREWFkZWVlaRx9WrV4/Y2FjLa9u2bbcT9h0hyYi4JbIOjRDln9FoZOjQobi5uVGhQgXef/998k7K/d1339G0aVNcXFzw8/PjhRdeICEhwbL/elPI6tWrCQkJQa/Xs23bNs6cOUO3bt3w9fXF2dmZZs2asWHDhnz1X716ld69e+Pk5ERAQACfffaZ1f7IyEgaNGiAk5MTgYGBvP7666SlpVn2nz9/nq5du+Lh4YGTkxP16tVj1apVVrGVpJkmMTGR3r17ExAQgKOjIw0aNODHH38s9rji4k9OTmbgwIF4e3vj6urK448/zqFDhyz7J0yYQOPGjfn6668ts5f269ePLVu2MGfOHMuTi+jo6Hx1K4rC7Nmzee+99+jWrRsNGzZk0aJFXLx4keXLlxcZt52dHX5+fpZXhQoVir3WsibJiCi1/as3yDo0QhTHkF74KyerFGUzS1b2FixcuBA7Ozv27NnDnDlziIyM5Ouvv7bsz8nJYdKkSRw6dIjly5cTHR1Nv3798p1n7NixTJ06lePHj9OwYUPS0tLo3LkzGzdu5MCBA3Ts2JGuXbsSExNjddz06dNp1KgRBw4cYOzYsQwfPpz169db9qvVaj755BOOHj3KwoUL+fPPP3n77bct+4cMGUJ2djZbt27l8OHDTJs2DWdn51J/DllZWYSEhLBy5UqOHDnCq6++Sp8+fdizZ0+RxxUXf69evUhISGD16tXs27ePJk2a0L59e65cuWIpc/r0aX755Rd+/fVXDh48yJw5c2jVqhWDBg2yPLkIDAzMV/e5c+eIi4sjNDTUss3NzY0WLVqwc+fOIuM+deoUFStWpFq1arz44ov5fi82oZQDKSkpCqCkpKTYOhShKMpXL76ozHi2i/J/PbvZOhQhbCozM1M5duyYkpmZmX/neNfCX98/Y112sl/hZb/tbF12WtWCy5VS27ZtleDgYMVsNlu2jRkzRgkODi70mL///lsBlKtXryqKoiibNm1SAGX58uXF1levXj1l7ty5lvdVqlRROnbsaFXmueeeUzp16lToOZYuXap4eXlZ3jdo0ECZMGFCgWWvx5aUlFRsbAXp0qWL8tZbb1net23bVhk+fHiJ4//rr78UV1dXJSsry6pM9erVlS+++EJRFEUZP368otVqlYSEBKsyN9dVkO3btyuAcvHiRavtvXr1Up599tlCj1u1apWyZMkS5dChQ8qaNWuUVq1aKZUrV1ZSU1OLrK8oRf07KOn9W56MiFKxrEMDsg6NEOVcy5YtrfpUtGrVilOnTmEymQDYt28fXbt2pXLlyri4uNC2bVuAfN+kmzZtavU+LS2NUaNGERwcjLu7O87Ozhw/fjzfca1atcr3/vjx45b3GzZsoH379gQEBODi4kKfPn1ITEwkIyMDgDfeeIPJkyfTpk0bxo8fzz///HNLn4PJZGLSpEk0aNAAT09PnJ2dWbt2bbFPDIqK/9ChQ6SlpeHl5WW1+vC5c+c4c+aM5ZgqVarg7e19S3Hfik6dOtGrVy8aNmxIWFgYq1atIjk5mSVLlty1GAoiC+WJUpF1aIQooXcuFr5PpbF+P/p0EWVv+s444vCtx1QK6enphIWFERYWxuLFi/H29iYmJoawsLB8HS2dnJys3o8aNYr169czY8YMatSogYODA88880ypOmhGR0fz5JNPMnjwYD766CM8PT3Ztm0bAwYMwGAw4OjoyMCBAwkLC2PlypWsW7eOiIgIZs6cybBhw0p1rdOnT2fOnDnMnj3b0kdlxIgRpe5QmldaWhr+/v5s3rw53z53d3fLzzd/diXl5+cHQHx8PP7+/pbt8fHxNG7cuMTncXd3p1atWpw+XcT/g3eBJCOixCzr0OjUsg6NEMXRleImU1Zli7F7926r97t27aJmzZpoNBpOnDhBYmIiU6dOtfRZ2Lt3b4nOu337dvr160ePHj2A3BtzQZ0wd+3ale99cHAwkPtUxmw2M3PmTNTq3ISsoG/vgYGBhIeHEx4ezrhx4/jqq69KnYxs376dbt268dJLLwFgNps5efIkdevWLfK4ouJv0qQJcXFx2NnZERQUVKp4dDqd5elUYapWrYqfnx8bN260JB+pqans3r2bwYNL3pcvLS2NM2fO0KdPn1LFeKdJM40osc0LFss6NELcR2JiYhg5ciRRUVH8+OOPzJ07l+HDc4fqV65cGZ1Ox9y5czl79iwrVqxg0qRJJTpvzZo1LR0yDx06xAsvvIDZbM5Xbvv27Xz88cecPHmSzz77jKVLl1rqr1GjBjk5OZb6v/vuO+bNm2d1/IgRI1i7di3nzp1j//79bNq0yZIMlEbNmjVZv349O3bs4Pjx47z22mvEx8cXe1xR8YeGhtKqVSu6d+/OunXriI6OZseOHbz77rvFJnVBQUHs3r2b6OhoLl++XOBnp1KpGDFiBJMnT2bFihUcPnyYvn37UrFiRbp3724p1759ez799FPL+1GjRrFlyxZLPD169ECj0dC7d+8SflplQ5IRUWKn1/wOyDo0Qtwv+vbtS2ZmJs2bN2fIkCEMHz6cV199FQBvb28WLFjA0qVLqVu3LlOnTmXGjBklOm9kZCQeHh60bt2arl27EhYWRpMmTfKVe+utt9i7dy8PPfQQkydPJjIykrCwMAAaNWpEZGQk06ZNo379+ixevJiIiAir400mE0OGDCE4OJiOHTtSq1YtPv/881J/Du+99x5NmjQhLCyMdu3a4efnZ3VDL0xR8atUKlatWsWjjz5K//79qVWrFs8//zznz5/H19e3yPOOGjUKjUZD3bp1Lc1jBXn77bcZNmwYr776Ks2aNSMtLY01a9Zgb29vKXPmzBkuX75sef/ff//Ru3dvateuzbPPPouXlxe7du26q/1WCqJSlDyDyu9RqampuLm5kZKSgqurzGlhC+f+Ocpvk95GUato/exrMv27EOQOCT137pxljgghHkRF/Tso6f1bnoyIEtki69AIIYQoI5KMiGJlZ2RyVdahEUKUU506dbIaXpv3NWXKFFuHJ5DRNKIEZB0aIUR59vXXX5OZmVngPk9Pz7scjSiIJCOiWLH7toJW1qERQpRPAQEBtg5BFEOaaUSRZB0aIYQQZU2SEVGk/YsXAOBk1lKnZdOiCwshhBC3QJIRUShZh0YIIcTdIMmIKNSa6TNlHRohhBBlTpIRUSCTyUTSudwFuWQdGiGEEGVJkhFRIFmHRghRUu3atWPEiBG2DqNMbd68GZVKRXJysq1DuS9JMiIKJOvQCCHEDa1btyY2NhY3N7dCy2RlZTFkyBC8vLxwdnamZ8+eRS64l5OTw5gxY2jQoAFOTk5UrFiRvn37cvHiRatyQUFBqFQqq9fUqVPv2LXdCyQZEfmc++co6aosAOr3etHG0Qgh7gWKomA0Gm0dhpW7GZNOp8PPzw+VSlVomTfffJM//viDpUuXsmXLFi5evMjTTz9daPmMjAz279/P+++/z/79+/n111+Jioriqaeeyld24sSJxMbGWl7Dhg27I9d1r5BkROSzZe5cFJWsQyPE/cxsNhMREUHVqlVxcHCgUaNGLFu2zLL/erPE6tWrCQkJQa/Xs23bNtLT0+nbty/Ozs74+/szc+bMfOdOSkqib9++eHh44OjoSKdOnTh16pRl//nz5+natSseHh44OTlRr149Vq1aVWzMhcVU0mvZuHEjTZs2xdHRkdatWxMVFQVAdHQ0arWavXv3WtU3e/ZsqlSpgtlsLraZJiUlhW+++YbIyEgef/xxQkJCmD9/Pjt27GDXrl0FHuPm5sb69et59tlnqV27Ni1btuTTTz9l3759+VbqdXFxwc/Pz/JycnIq9vMqTyQZEVZkHRohbo+iKGTkZNjkVZpF2CMiIli0aBHz5s3j6NGjvPnmm7z00kts2bLFqtzYsWOZOnUqx48fp2HDhowePZotW7bw+++/s27dOjZv3sz+/futjunXrx979+5lxYoV7Ny5E0VR6Ny5Mzk5OQAMGTKE7Oxstm7dyuHDh5k2bRrOzs4ljv3mmEp6Le+++y4zZ85k79692NnZ8coruaMEg4KCCA0NZf78+Vbl58+fT79+/VCri79V7tu3j5ycHEJDQy3b6tSpQ+XKldm5c2eJry0lJQWVSoW7u7vV9qlTp+Ll5cVDDz3E9OnT77mnVLdLpoMXVmQdGiFuT6YxkxY/2CaR3/3Cbhy1jsWWy87OZsqUKWzYsIFWrVoBUK1aNbZt28YXX3xB27ZtLWUnTpxIhw4dAEhLS+Obb77h+++/p3379gAsXLiQSpUqWcqfOnWKFStWsH37dlq3bg3A4sWLCQwMZPny5fTq1YuYmBh69uxJgwYNLHWXRt6YSnMtH330keX92LFj6dKlC1lZWdjb2zNw4EDCw8OJjIxEr9ezf/9+Dh8+zO+//16imOLi4tDpdPmSCF9fX+Li4kp0jqysLMaMGUPv3r1xdb2x9MYbb7xBkyZN8PT0ZMeOHYwbN47Y2FgiIyNLdN7yQJIRYUXWoRHi/nf69GkyMjIsN/TrDAYDDz30kNW2pk1vzLx85swZDAYDLVrcSLY8PT2pXbu25f3x48exs7OzKuPl5UXt2rU5fvw4kHtzHTx4MOvWrSM0NJSePXvSsGHDEsefN6bSXEveOvz9/QFISEigcuXKdO/enSFDhvDbb7/x/PPPs2DBAh577DGCgoJKHNftyMnJ4dlnn0VRFP7v//7Pat/IkSOtrkGn0/Haa68RERGBXq+/K/GVNUlGhIWsQyPE7XOwc2D3C7ttVndJpKWlAbBy5cp8i8jdfHMri74JAwcOJCwsjJUrV7Ju3ToiIiKYOXNmiTtl5o2pNNei1d6YL+l6R1Sz2QzkdlDt27cv8+fP5+mnn+aHH35gzpw5Jb4mPz8/DAYDycnJVk9H4uPj8fPzK/LY64nI+fPn+fPPP62eihSkRYsWGI1GoqOjrRLB8kySEWEh69AIcftUKlWJmkpsqW7duuj1emJiYqyaMYpTvXp1tFotu3fvpnLl3CH/SUlJnDx50nKe4OBgjEYju3fvtjTTJCYmEhUVRd26dS3nCgwMJDw8nPDwcMaNG8dXX311SyNEbvVaCjJw4EDq16/P559/jtFoLHIkzM1CQkLQarVs3LiRnj17AhAVFUVMTIyl+agg1xORU6dOsWnTJry8vIqt6+DBg6jVanx8fEoc373uljqwfvbZZwQFBWFvb0+LFi3Ys2dPoWV//fVXmjZtiru7O05OTjRu3JjvvvvulgMWZUPWoRHiweHi4sKoUaN48803WbhwIWfOnGH//v3MnTuXhQsXFnqcs7MzAwYMYPTo0fz5558cOXIkXwfPmjVr0q1bNwYNGsS2bds4dOgQL730EgEBAXTr1g2AESNGsHbtWs6dO8f+/fvZtGkTwcHBd/VaChIcHEzLli0t/TYcHEr2pAlyR8YMGDCAkSNHsmnTJvbt20f//v1p1aoVLVu2tJSrU6cOv/32G5CbiDzzzDPs3buXxYsXYzKZiIuLIy4uDoPBAMDOnTuZPXs2hw4d4uzZsyxevNjSQdfDw6NU13dPU0rpp59+UnQ6nfLtt98qR48eVQYNGqS4u7sr8fHxBZbftGmT8uuvvyrHjh1TTp8+rcyePVvRaDTKmjVrSlxnSkqKAigpKSmlDVeU0OI331ZmPNtFmdujk5KTbbB1OEKUC5mZmcqxY8eUzMxMW4dSamazWZk9e7ZSu3ZtRavVKt7e3kpYWJiyZcsWRVFy/3YDSlJSktVxV69eVV566SXF0dFR8fX1VT7++GOlbdu2yvDhwy1lrly5ovTp00dxc3NTHBwclLCwMOXkyZOW/UOHDlWqV6+u6PV6xdvbW+nTp49y+fLlYmMuLKZbuZYDBw4ogHLu3Dmrc33zzTcKoOzZs6dEdeeVmZmpvP7664qHh4fi6Oio9OjRQ4mNjbUqAyjz589XFEVRzp07pwAFvjZt2qQoiqLs27dPadGiheLm5qbY29srwcHBypQpU5SsrKxiP6+7pah/ByW9f6sUpRRjwchtq2rWrBmffvopkNveFhgYyLBhwxg7dmyJztGkSRO6dOnCpEmTSlQ+NTUVNzc3UlJSim1LE6VnMpmY90xXsnRqfH1q8tLcWbYOSYhyISsri3PnzlG1alXs7e1tHY64AyZNmsTSpUv5559/bB1KuVHUv4OS3r9L1UxjMBjYt2+f1ThqtVpNaGhoicZRK4rCxo0biYqK4tFHHy20XHZ2NqmpqVYvUXZkHRohxIMuLS2NI0eO8Omnn953s5uWB6VKRi5fvozJZMLX19dqe3HjqFNSUnB2dkan09GlSxfmzp2bbxhWXhEREbi5uVlegYGBpQlTlJKsQyOEuBeEh4fj7Oxc4Cs8PLxM6x46dCghISG0a9fOMhmauHvuymgaFxcXDh48SFpaGhs3bmTkyJFUq1aNdu3aFVh+3LhxVuOqU1NTJSEpIxdOnr22Do1K1qERQtjUxIkTGTVqVIH7yrqJfsGCBSxYsKBM6xCFK1UyUqFCBTQaTb5VCIsbR61Wq6lRowYAjRs35vjx40RERBSajOj1+vtmIpd73f7lf6CoVOhzzLIOjRDCpnx8fO6r4aqi5ErVTKPT6QgJCWHjxo2WbWazmY0bNxY5jvpmZrOZ7Ozs0lQtysjlE4cB0GlLvi6EEEIIcSeVuplm5MiRvPzyyzRt2pTmzZsze/Zs0tPT6d+/PwB9+/YlICCAiIgIILf/R9OmTalevTrZ2dmsWrWK7777Lt90t8I2spMTcqd/DwiydShCCCEeUKVORp577jkuXbrEBx98QFxcHI0bN2bNmjWWTq0xMTFWE+Ckp6fz+uuv899//+Hg4ECdOnX4/vvvee655+7cVYhbYjKZyFYbATVVWrS2dThCCCEeUKWeZ8QWZJ6RsnFo41Y2fPkxarPCa9/+hKOLi61DEqJckXlGhLDBPCPi/nJy8xYA9EYkERFCCGEzkow8wFLORQGgc7qP1jcQQghR7kgy8gAzpCcB4Fb1/liCWghhG+3atWPEiBG2DqNMbd68GZVKRXJysq1DuS9JMvKAyrh6lexr3Zdrtbu9ZbeFEOJ+17p1a2JjY3Fzcyu0TFZWFkOGDMHLywtnZ2d69uyZb16um/Xr1w+VSmX16tix450O/54nycgD6sCqjZjVKuxMZuq3a2PrcIQQ9zhFUTAajbYOw8rdjEmn0+Hn54dKpSq0zJtvvskff/zB0qVL2bJlCxcvXuTpp58u9twdO3YkNjbW8vrxxx/vZOjlgiQjD6jzu3cAoFfs0Gg0No5GiPuHoiiYMzJs8irN4Eiz2UxERARVq1bFwcGBRo0asWzZMsv+680Sq1evJiQkBL1ez7Zt20hPT6dv3744Ozvj7+/PzJkz8507KSmJvn374uHhgaOjI506deLUqVOW/efPn6dr1654eHjg5OREvXr1WLVqVbExFxZTSa9l48aNNG3aFEdHR1q3bk1UVG6/uejoaNRqNXv37rWqb/bs2VSpUgWz2VxsM01KSgrffPMNkZGRPP7444SEhDB//nx27NjBrl27irwuvV6Pn5+f5eXh8eD147sra9OIe0/ahWgA9G6+RRcUQpSKkplJVJMQm9Rde/8+VI6OJSobERHB999/z7x586hZsyZbt27lpZdewtvbm7ZtbzTdjh07lhkzZlCtWjU8PDwYPXo0W7Zs4ffff8fHx4d33nmH/fv307hxY8sx/fr149SpU6xYsQJXV1fGjBlD586dOXbsGFqtliFDhmAwGNi6dStOTk4cO3YMZ+eSzwJ9c0wlvZZ3332XmTNn4u3tTXh4OK+88grbt28nKCiI0NBQ5s+fT9OmTS3l58+fT79+/azmzirMvn37yMnJsVrVvk6dOlSuXJmdO3fSsmXLQo/dvHkzPj4+eHh48PjjjzN58mS8vLxK/HncDyQZeUDlGNJAp6ZCcH1bhyKEuMuys7OZMmUKGzZssCzlUa1aNbZt28YXX3xhdQOfOHGiZZX1tLQ0vvnmG77//nvat28PwMKFC6lUqZKl/PUkZPv27bRunTuZ4uLFiwkMDGT58uX06tWLmJgYevbsSYMGDSx1l0bemEpzLR999JHl/dixY+nSpQtZWVnY29szcOBAwsPDiYyMRK/Xs3//fg4fPszvv/9eopji4uLQ6XS4u7tbbS9uVfuOHTvy9NNPU7VqVc6cOcM777xDp06d2Llz5wP11FqSkQfQpX8vkqXNbfds0DHMxtEIcX9ROThQe/8+m9VdEqdPnyYjI8NyQ7/OYDDw0EMPWW3L+6TgzJkzGAwGWrRoYdnm6elJ7do3RuQdP34cOzs7qzJeXl7Url2b48ePA/DGG28wePBg1q1bR2hoKD179qRhw4Ylvs68MZXmWvLW4e/vD0BCQgKVK1eme/fuDBkyhN9++43nn3+eBQsW8NhjjxEUFFTiuG7F888/b/m5QYMGNGzYkOrVq7N582ZLwvcgkGTkAXTgf6tBpUKXYyKoQR1bh3NfurL7COnnL5FzNRtjuhElx7otv9qAtmjdc2cj/G/ZZtLPXy30XFX6tMbeJ/eR7YXf/yLtdHKhZQN7NcWxcu4f2diVO0g9kVho2YDujXGuHghA3LpdpBy+VGhZ/851cQ2uDkDCpr0k7Y8ttKxvh1q4N8y9OV3adoAru/8rtKx322p4Nq0H5H5ml7adK7RshdZV8GqVezNJ2n+MhE1nCi3r2awi3o/mNpWkHD1F3JoThZZ1b+SLb2hzAK6ePMfFP44UWta1bgX8O+V++06PvkjM6kPkNPEh+1IqaLOsyqrtNejccycTNBtyMFxJL/S8ar0Gnce1skYjhstphZfVqdF55v6/o5hMZF/K8/9OqsGqrEqrRu91raxZITshBYDE87m/v98W/UzFazdllZ0KnYeLZcV0w5XcGDRpRrLikgHIvpya+98rqVD5Rj2K0YQxPZusuGQMSbnHZcUlo9FoUGlU6L1vjEDJSkjmpSefoe1DLVmzYR0btmwiIiKCqeMn8/qrr2FvVTYFzDf+7VjFlJCMvY87aWm5235b/DMVffytrl+n0+XGdO04rVZ77TpSMCTmbsuMTyZLl/sZvdDzOb754iuefvppfvjhB+bMmUP25RQUo2I5R1Z8Cll5ftX2fu4A+Pn5YTAYiIs6j3ueETdxF2PxcnQjKy4ZvY8rqmtNPtlXUlEMZm5W0dGTCp5enIw6aUlGDFeuYjaY8pW1XKeXM2pt7u3ckHwVc1Zu2by//3udJCMPoNhD+wHQqUv2LepBYTaZMKamkR2fSNblFIwpmfh3ubFmz5kvVpMVawSjGkxqVGYNGkWDGg12KjWVJ7RE46ADIPb3GNzMLuiwQ1dAXTmp6ZZkJOVQGm457oXGlX3piiUZST6QhFtW4Z3bMi9csiQjSQcu45pWeNm0sxctyUjS/gRckgsve/XkRUsyknQgFqdLhcebcvQ/SzKSfPBC0WUP/2dJRpL/+bfIsskH/7MkIylHLxZZNml/LN6P5v6cerzoGJIOxON7rZk/7XTR15Z84BL+nXJ/zoiJxeGKC0aTGpVJg1pl/UjdlGGCa6cy5xhRGwt/5G4ymeDax68YTcWXvUYxK0WXNea92d0oW69aXfR6Pf/9e4G2zXM/KBNmHCrlGbZqyr1pqo1qy3E1KtVAq9WyZ9c+ajbObeJNSkri1JkzPNLiYdRGDcHVgjEajez9+wCtmrbAZFRITEwkKiqKunXrgkGDGqjiW4XXXhzEay8O4r2pE5j//SJefznc+gIMKtR5xlmo8sSEIffnunVzryUm+gJtQx7N/yEYb1zLdeYsUF/bpspzfa88148moS34/PPPMRqNPP3005gTDWjQWNVd0GceEhKCVqtly5a/6NG5GwBRZ07x74X/aPVQC9RGDYqicH0sjjnTjEbJf57/Yi+QmHQFf1+fG7+KTFOBZS3XYzRakhFThgmNObes9e//3ibJyAMo6/JF0ICDb6XiCz8ADEkpRC/cChedcFRrrfaZHjdYEoys8wpuZvcbO1XXXtdkX0q0JAIqRyPpqQZMKhOKygRq6ycjFexvpCg6HxUpsYU/GfF0qWH5We9nR0pM4WVd3Stafrb305FytvCyFb2CbpStaE9KauFl/Xxu/L9i7+9IyuXCy3r73fgj6uDvTMrFIq7t2rfK3PO6knQupdCy7hVvLFlg7+dC4vHCn/q4VnS6UdbHlQR14W32zv431tLQV3AlVh1TaFlHf73lZ52HC3Hqyyg4YsaMCes//Crtjf85VBp1vv3WZfP8rC6mbN6/2ipVMWXz/n93o6yjsxPDXx3G6A/HYTSbaN2sFSkZKez77R9cXV15+eWXUa6VNeW5NgcnR15+rg/vfPQ+/rUC8fHx4d1330WtVqOgYMJMtarVePKJzgweM4y5EbNwdnFiQuQUAgIC6NatG8aEdEaOH8cT7TpQs1p1klKS2bxjK7Vr1EJRW1+LojZjMt/4HM15YlJUuT+7uLgwatQoxnw4DvP1a7mawq69u3FxduGlXi9YrsVCo1iuKe/vrlbNmjRv0pQxY8bwyiuv4ODgQKYmG5PJbFV3QZ+5m5sbL/d+idETx+Hm7oaLsytvffA2LUKa07RJU0yY0ZLbqTUiIoJOrR8jJTmVKbOm0b3zU/h6+3D2fDTvTvmA6kHVCAu7MdeIyg5MOYX/njV5Otiq7FSYrj1xsf793+OUciAlJUUBlJSUFFuHcl/4pEdHZcazXZT1Xy6wdSg2F/XJH8qZ0ZuVf8dstbxi3t6inBm9WYka/aeSGXfJUvbUvFXK0Q9/V45F/K5EzfpDOfPVKuX8TxuVi6t2KIm7DyvGjGwbXomwhczMTOXYsWNKZmamrUMpNbPZrMyePVupXbu2otVqFW9vbyUsLEzZsmWLoiiKsmnTJgVQkpKSrI67evWq8tJLLymOjo6Kr6+v8vHHHytt27ZVhg8fbilz5coVpU+fPoqbm5vi4OCghIWFKSdPnrTsHzp0qFK9enVFr9cr3t7eSp8+fZTLly8XG3NhMd3KtRw4cEABlHPnzlmd65tvvlEAZc+ePSWqO6/MzEzl9ddfVzw8PBRHR0elR48eSmxsrFUZQJk/f76iKIqSkZGhPPHEE4q3t7ei1WqVKlWqKIMGDVLi4uKK/SzuJUX9Oyjp/VtW7X3AnN73D79//A4oCv3nzMfT36f4g+5jpz5bicO/rmSajZj90gh8pin2ft6odfLQUBRPVu29/0yaNImlS5fyzz//2DqUcuNOrNorf3EfMEfXrQfAPkd5oBIRs8lE3KqdJO24itbXSK0RXQGo2rcdMUv/olrvxy3NMUKIB09aWhrR0dF8+umnTJ482dbhPHBkBtYHTGLUUQB0epdiSt4fTIYczs1fS9S4PzFvV3BTnOGiM2ZD7hTSdi5OVHuloyQiQtwDwsPDcXZ2LvAVHh5e/Aluw9ChQwkJCaFdu3a88sorZVqXyE+ejDxgslMvgRacK5VukqHyxpCYRPSibRDrjKPaEa0aTIpCmi4Vv86VpRlGiHvQxIkTGTVqVIH7yrqJfsGCBSxYsKBM6xCFk7/IDxCjIYdstQlQE9SqdbHly7NTkTtwM7mDGgxmM1muKVR+vjFValQu9lghhG34+Pjg4/PgNB+LGyQZeYD88+dfmDRq1GYzjcMet3U4d1TirsPo3J1wqZP7xMejpRvpf+Wg+KcR1PdhdF4P3sJTQghRXkgy8gA5/ddWAOyNahycnYopfe8zm0zE/m8HyTvTcMOZOH009T7MTUb8OrdCCTOj0WmLOYsQQghbk2TkAZIanbuEt87Z08aR3B6TIYfz328k+4QdLmo9blxb7TPnRn9stUYDD9AiU0IIUZ5JMvIAMWQkg06Fe43yux7Nhd//In17Do5qJ3R5O6V2qUKllo/YOjwhhBC3QJKRB0R6SipZ137bwY+X3/4iyXtTcFO75XZKdUuh8vMPUeXa+ipCCCHKJ5ln5AGx739rUdQq7IxmarduZutwSsV49cZqp9UGNyPFPgn/EXWo++5TloXehBCl065dO0aMGGGz+oOCgpg9e3aZnX/z5s2oVCqSk5PvyPlu/rzKOv4HjSQjD4h//94NgB4tmnLSlyI9+iJH313JyY+2Yb62UqlDRV/qTXgKh4q+No5OCHEva926NbGxsbi5uRVf+B5T0kTx119/5YknnsDLywuVSsXBgwdLdP6lS5dSp04d7O3tadCgAatWrbq9gO8ASUYeEOmx5wGw9/CzcSTFM5tMnP16NfGfn8LN5IqL4kDCxr9tHZYQohiKomA0Gm0dBgA6nQ4/Pz9UKlXxhe8RBoOhVOXT09N5+OGHmTZtWomP2bFjB71792bAgAEcOHCA7t270717d44cOVLacO8oSUYeEIac3KaOCvUa2DiSoqUeP8Pxd9ehO+2MTq0m3ZyDXTs7/J5oaevQhCiVnGxToS9jjqnkZQ0lK3srjEYjQ4cOxc3NjQoVKvD++++Td+3U7777jqZNm+Li4oKfnx8vvPACCQkJlv3Xm0JWr15NSEgIer2ebdu2cebMGbp164avry/Ozs40a9aMDRs25Kv/6tWr9O7dGycnJwICAvjss8+s9kdGRtKgQQOcnJwIDAzk9ddfJy0tzbL//PnzdO3aFQ8PD5ycnKhXr57lW35pmmkSExPp3bs3AQEBODo60qBBA3788cdijysu/uTkZAYOHIi3tzeurq48/vjjHDp0yLJ/woQJNG7cmK+//tqyyFy/fv3YsmULc+bMQaVSoVKpiI6OLrD+Pn368MEHHxAaGlpsrNfNmTOHjh07Mnr0aIKDg5k0aRJNmjTh008/LfE5yoJ0YH0AxJ2NIVubm3c27tTRxtEUzGwycfrz1Wj/c8VN5YxZUUh3Tabm8FDsnB1tHZ4Qpfbl8C2F7qtS34snhzayvP929F8YDeYCy1as6U6Pt5pY3i96dwdZaTn5yg2ZV/qO6QsXLmTAgAHs2bOHvXv38uqrr1K5cmUGDRoEQE5ODpMmTaJ27dokJCQwcuRI+vXrl++x/tixY5kxYwbVqlXDw8ODf//9l86dO/PRRx+h1+tZtGgRXbt2JSoqisqVb8yCPH36dN555x0+/PBD1q5dy/Dhw6lVqxYdOnQAQK1W88knn1C1alXOnj3L66+/zttvv83nn3+ee81DhmAwGNi6dStOTk4cO3YMZ2fnUn8OWVlZhISEMGbMGFxdXVm5ciV9+vShevXqNG/evNDjiou/V69eODg4sHr1atzc3Pjiiy9o3749J0+exNMzd4qF06dP88svv/Drr7+i0WioUqUKJ0+epH79+kycOBEAb2/vUl9TYXbu3MnIkSOttoWFhbF8+fI7VsetkGTkAXBw5WoA9DkmKtWpYeNoCmZKz4R/HdGqVaSZs/F60oPKjz5q67CEuK8FBgYya9YsVCoVtWvX5vDhw8yaNcuSjORdMK5atWp88sknNGvWjLS0NKub/sSJEy03YABPT08aNbqRbE2aNInffvuNFStWMHToUMv2Nm3aMHbsWABq1arF9u3bmTVrluVcN3cYnTx5MuHh4ZZkJCYmhp49e9KgQQNLjLciICDAak2cYcOGsXbtWpYsWVJkMlJU/Nu2bWPPnj0kJCSg1+sBmDFjBsuXL2fZsmW8+uqrQG7TzKJFi6wSDp1Oh6OjI35+d75ZPS4uDl9f6z53vr6+xMXF3fG6SkOSkQdA/OGDAGg199YTBpMh99udRqdF6+qM8yM6Uk9coebwTjJzqij3Xp3TttB9qpsayF+ZXvgcOTd3eej70Z1bV6ply5ZWfSpatWrFzJkzMZlMaDQa9u3bx4QJEzh06BBJSUmYzblPb2JiYqhbt67luKZNm1qdNy0tjQkTJrBy5UpiY2MxGo1kZmYSExNjVa5Vq1b53ucdobJhwwYiIiI4ceIEqampGI1GsrKyyMjIwNHRkTfeeIPBgwezbt06QkND6dmzJw0bNiz152AymZgyZQpLlizhwoULGAwGsrOzcXQs+m9mUfEfOnSItLQ0vLy8rMpkZmZy5swZy/sqVarc9pMPs5L7ezEYDWTkZGBWzJgUEybFhFatxUV376/SLsnIAyAzMRbswNH33hkGe2nrfhL/dwUqZFDn7acAqNj1YSp2tXFgQtwhWn3JR62VVdnbkZ6eTlhYGGFhYSxevBhvb29iYmIICwvL19HSycl6eYlRo0axfv16ZsyYQY0aNXBwcOCZZ54pVQfN6OhonnzySQYPHsxHH32Ep6cn27ZtY8CAARgMBhwdHRk4cCBhYWGsXLmSdevWERERwcyZMxk2bFiprnX69OnMmTOH2bNnW/qojBgxotQdSvNKS0vD39+fzZs359vn7u5u+dnJyQlFUTArZqskwmAykJyVbHlvUkyYzWar9yazCbNi5t+kfwH49+q/OKVY/y5cdC5WyYifnx/x8fFWZeLj48vkKUxpSDJynzOZTBjIBjQEhNh+fhHj1XROfbIRp1R3nNV6si9ryUlORetetsuDCyHy2717t9X7Xbt2UbNmTTQaDSdOnCAxMZGpU6cSGJj7RWbv3r0lOu/27dvp168fPXr0AHJvzAV1wty1a1e+98HBwQD8vfdvzGYzUz6egkLuzfrsD2cBuJxxmSxtVu4TAXfo2LsjHZ7vgPeH3nw671Pa927PuZRzABxPPI6rsei/L2s2reHRsEd5qONDAGSaMzly/AjVa1fn6OWjAKTnpJOYmWh5n2POYcPWDfS83NNynrVb1hJYPZCjl4/iWd2TuLg4zqaeJaBygFV98cQTfzmehIwEsoxZHEs8ZrXfpDaRkpnChbQLRcZ9M5VKhVatRaPWoFFpUKvUONg5WJVp1aoVGzdutGoCW79+fb6nPHebJCP3uTP7DpFjp0GlKDTpYtvOq7Grd5C6KQsXtQeoIIU0AvvXkkREiBIo6Nvz9W/Glm/OSsGdYAtiMBk4H3Oe14a9Rp9X+nD44GE+mfsJ46eMJy49Dr2XHp1Ox9TIqfQd0JcTx04waeIkAC5nXiYuPY4rmVcAiE+PJ0ubZTl3YNVAlixbQqvQVqhUKj6e9DEms4n0nHTi0nP7JpgUE9u2b+PdSe/SoUsHtvy5haVLlzLvp3kcTzyOuoKanJwcPvz4Q9qFtePAngN8/eXXAFzKvES2Lpup707lkfaPUKV6FVKTU9n11y6q1qyKgkJpVKlWhXV/rOPAngO4uruy6P8WkXgpkeq1qxd53IE9B/h27rc83vlxdm7eyboV6/j8h9z+LK3atqJR00a80fcNRo4fSVD1IBLiEti6fivtu7SnfuP6+c6nQoVarSawciBHDhwhKTYJFxcXvDy90Gpykwy1So1GlZtspCSlcPG/i2THZgOQE59DRkwGfn5+licdffv2JSAggIiICACGDx9O27ZtmTlzJl26dOGnn35i7969fPnll6X6zO40SUbuc8fW5Q6n0+couPt4FVO6bBgSkzg1dxuumW44qbUYzGaolUlw/ydyF7QT4gGhKEqxj9zzJhYms/Uj+tLeZIuSY86ha6+uJKcl06ltJ9QaNS8OepHOvTuTmJmIylnF5LmTmfPRHL7+v68JbhjMm+PfZOhLQ0nJSiExM5EUQwoAV7KuYMy8Mb/IiAkjeH/4+3Rt3xV3T3cGDBvAleQrZBmzSMxMBHL7OfQd3Jd9e/cxa+osnJydGD1xNK3atcKsmKlTvw5vT3qbb+d+y5yP5tCsdTPeHv82b4W/hZvODQ8HD3RqHVPHTeXihYu4uLrQ4YkOTJ85HR8PH2KdYwGo4V7DqlmkIB9P/Jiki0kMfm4wjo6ODBg4AIfuDqSkpFDLoxYAjnaOeNh7WN5r1VpGjhzJ0aNHeXbGs7i6ujJ9xnT69+xvOe/6Nev54P0P+HDEh1y6dAk/Pz8efuRhmtVoRqBHIF72Xujt9NTyqIVapUatUqNSqZj07iRefvllnmjxBJmZmZw7d45KQZXyxb1s9TL6979R3/PPPw/A+PHjmTBhApDbv0etvtFJqXXr1vzwww+89957vPPOO9SsWZPly5dTv37+5OhuUil5B5Xfo1JTU3FzcyMlJQVXV/kWXRrfvNyP5KzLuKpdGFSCcfNl4fK2g2T8kYpapSJFk0rV15rgWNnfJrEIcTsURSHblE2qIZWrhqukpKeguqIioHIAGp2m4CQiz/vSPLkozPVvz9e/Hef9tqxWqVFRfib5AnJjv9ascP2V9/rK06RlD6qsrCzOnTtnmSslr5Lev+XJyH3OcDURtOBauejHjWWpwsONOfn3H+j9HKnXu4vN4hACcr+Rp+WkkZqdakkqLP+9tu36q6B9OeYbc3z46/wZU2MMdhl2qHNKPofk9W/BRd2Eb040ricb1789C3E/kWTkPmbIziZbbQLUVGtT+NDBsnD15Dk09vaWJyC13nxwhskoikKWKYvU7Bs3s2xTtq3Duq/lmHPyJQ5Xc65a/Q6uv9IMabfd3KFRaXDRueDn6IdWo8XRzhGdXmdJGK4nEnmTiLydCtU3j+0VZapTp0789ddfBe575513eOedd+5yROJmkozcx/5ZvxmTRo3GZKZRWLu7WnfM4iO4ZLmR4b2XOqPKXyJiVsxcNVy1vsEZUgu8ud38zfmq4arVt2dxb7LX2OOic8FV54qr3vXGz7obP7voXHDVu1q2X9/mpHVCpVJZHk8HuATkezwt7h1ff/01mZmZBe67PhOqsC1JRu5jZ7ZtA0BvVqO7NgPg3WDMzMQh0xW1WoVDgO0mWjOYDDcShuzUghOLMvz2rFapLTc1vUYvj9bLkJ3Kzjqx0LoUnGDkSSx0Gp2twxZ3SUBAQPGFhE1JMnIfS405DYDepcJdrffCr9vRqfVkm80Edb/zzUP74vdx9PLRItv1rxqukmXKKv5kxbDX2Oe7kVl9ay7Bt2chhBBFk2TkPpaTmQo6FR41gu9qvWlHDbihJ8shFY3Dnfv2eSXrCtP2TGPVuVXFF75GhQpnnXO+ROHmxOL6z/LtWQgh7j5JRu5TqYlJZF1b3iW4Q/u7Vm9WQiLOJmdQgVebO7PSpKIorD63mql7ppKUnYRapeaxwMeo4FDhRpKhz//EwlXvirPWWToLCiHEPU6SkfvU/j9Wo6hUaI0majZ76K7V+9+y3dirXMgw51Cj/e0v6BWXHsfkXZPZ8l/ucuw13GswsfVEGng3uO1zCyGEuDdIMnKf+m/f3wDo0KO5i7OcGmLU2AMm97Tbml3VrJj55dQvRO6NJC0nDTu1Ha82fJWB9Qei1ciKvkIIcT+R59f3qfS43FUcHTzv7kqMlQfVI90nGf8utW75HDGpMQxcN5CJOyeSlpNGwwoNWfrkUgY3GiyJiBD3oHbt2lktvHY/2rx5MyqViuTkZFuHcl+SZOQ+lWPKAMCnQeO7Wq9z9UBqj+yKe6M6pT7WaDay4MgCnl7xNH/H/Y2DnQNvN3ubRZ0WUcOjRhlEK4QQJdO6dWtiY2Nxc3MrtExWVhZDhgzBy8sLZ2dnevbsSXx8fJHnValUBb6mT59uKRMUFJRv/9SpU+/Ytd0LpJnmPnTh5Fmytbl5ZuPOYTaOpmSirkQxfsd4jibmLs/d0r8l41uNp5JL/sWhhBB3n6IomEwm7OzundvG3YxJp9NZVsItzJtvvsnKlStZunQpbm5uDB06lKeffprt27cXekxsbKzV+9WrVzNgwAB69uxptX3ixIkMGjTI8t7FxeUWruLeJU9G7kMHV60GQJ9jxr9G1btS56VtBzg2Zh2nPltZquMMJgOfHviU5//3PEcTj+KidWFi64l82eFLSUSEKENms5mIiAiqVq2Kg4MDjRo1YtmyZZb915slVq9eTUhICHq9nm3btpGenk7fvn1xdnbG39+fmTNn5jt3UlISffv2xcPDA0dHRzp16sSpU6cs+8+fP0/Xrl3x8PDAycmJevXqsWpV8UP2C4uppNeyceNGmjZtiqOjI61btyYqKgqA6Oho1Go1e/futapv9uzZVKlSBbPZXGwzTUpKCt988w2RkZE8/vjjhISEMH/+fHbs2MGuXbsKvSY/Pz+r1++//85jjz1GtWrVrMq5uLhYlXNycir28ypPJBm5D106+g8AOru7N/vppT//xVXlgOHfkv8vdTDhIL3+6MUX/3yBUTHyeODjLO++nB41e8hkYaLcUhSFnKwsm7xKswh7REQEixYtYt68eRw9epQ333yTl156iS1btliVGzt2LFOnTuX48eM0bNiQ0aNHs2XLFn7//XfWrVvH5s2b2b9/v9Ux/fr1Y+/evaxYsYKdO3eiKAqdO3cmJyd3mYQhQ4aQnZ3N1q1bOXz4MNOmTcPZ2bnEsd8cU0mv5d1332XmzJns3bsXOzs7XnnlFSC3GSQ0NJT58+dblZ8/fz79+vVDrS7+79q+ffvIyckhNDTUsq1OnTpUrlyZnTt3lui64uPjWblyJQMGDMi3b+rUqXh5efHQQw8xffp0jEZjic5ZXtw7z9vEHZN1JQ7swNGv8l2pz2wwok1zBTU41Cg+icjIyWDugbksPr4YBQVPe0/ebfEuHap0kCRElHvG7Gw+efkZm9T9xsJlaEuwRk52djZTpkxhw4YNtGrVCoBq1aqxbds2vvjiC9q2bWspO3HiRDp06ABAWloa33zzDd9//z3t2+fOX7Rw4UIqVbrxFPPUqVOsWLGC7du307p17vD+xYsXExgYyPLly+nVqxcxMTH07NmTBg0aWOoujbwxleZaPvroI8v7sWPH0qVLF7KysrC3t2fgwIGEh4cTGRmJXq9n//79HD58mN9//71EMcXFxaHT6XB3d7fa7uvrS1xcXInOsXDhQlxcXHj66aettr/xxhs0adIET09PduzYwbhx44iNjSUyMrJE5y0PJBm5z5hMJgzkAGoqNWt+V+qMXbUTB7WGHEUh8Jmi5xbZeXEnH+78kAtpFwB4qvpTvN3sbdz0hXcKE0LcWadPnyYjI8NyQ7/OYDDw0EPW8xI1bdrU8vOZM2cwGAy0aNHCss3T05PatWtb3h8/fhw7OzurMl5eXtSuXZvjx48DuTfXwYMHs27dOkJDQ+nZsycNGzYscfx5YyrNteStw98/d0XxhIQEKleuTPfu3RkyZAi//fYbzz//PAsWLOCxxx4jKCioxHHdrm+//ZYXX3wx36KLI0eOtPzcsGFDdDodr732GhEREejv4rpjZUmSkftM1K695NipUZkVmjzZ8a7UmbwvBTfcyNCmonV3LbBMSnYKM/fO5LfTvwHg7+TP+FbjaRPQ5q7EKMTdYqfX88bCZcUXLKO6SyItLQ2AlStX5ltE7uabW1n0TRg4cCBhYWGsXLmSdevWERERwcyZMxk2bFiJjs8bU2muRau9MTXA9aewZrMZyO2g2rdvX+bPn8/TTz/NDz/8wJw5c0p8TX5+fhgMBpKTk62ejsTHxxfb8RXgr7/+Iioqip9//rnYsi1atMBoNBIdHW2VCJZnkozcZ05s/BMAeyO4eriXeX3Gq+k4GlxABW6NC27z3Xh+I5N3T+Zy5mVUqOhdpzdvNHkDJ+391QFLCMi9yZWkqcSW6tati16vJyYmxqoZozjVq1dHq9Wye/duKlfObQZOSkri5MmTlvMEBwdjNBrZvXu3pZkmMTGRqKgo6tatazlXYGAg4eHhhIeHM27cOL766qsSJyN34loKMnDgQOrXr8/nn3+O0WjM11xSlJCQELRaLRs3brSMhImKiiImJsbSfFSUb775hpCQEBo1alRs2YMHD6JWq/Hx8SlxfPc6SUbuM0mnTwCgc3C/K/X9+8t2tCoHsswmqj5l/ZTjcuZlpuyewvrz6wGo6laVD1t/yEM+d296eiFEfi4uLowaNYo333wTs9nMww8/TEpKCtu3b8fV1ZWXX365wOOcnZ0ZMGAAo0ePxsvLCx8fH959912rDp41a9akW7duDBo0iC+++AIXFxfGjh1LQEAA3bp1A2DEiBF06tSJWrVqkZSUxKZNmwgOvrUFPW/1WgoSHBxMy5YtGTNmDK+88goODg4lPtbNzY0BAwYwcuRIPD09cXV1ZdiwYbRq1YqWLVtaytWpU4eIiAh69Ohh2ZaamsrSpUsLHJm0c+dOdu/ezWOPPYaLiws7d+60dND18PAocXz3OklG7jOGtETQgkvQ3ZkkTOtmTyrp4GxAo7vxCPTwpcMM2TiEpOwk7FR29K/fn9cavYZec3+0bwpR3k2aNAlvb28iIiI4e/Ys7u7uNGnShHfeeafI46ZPn05aWhpdu3bFxcWFt956i5SUFKsy8+fPZ/jw4Tz55JMYDAYeffRRVq1aZWkmMZlMDBkyhP/++w9XV1c6duzIrFmz7vq1FGTAgAHs2LHDMtKmNGbNmoVaraZnz55kZ2cTFhbG559/blUmKioq3+f1008/oSgKvXv3zndOvV7PTz/9xIQJE8jOzqZq1aq8+eabVv1I7gcqpTRjwWwkNTUVNzc3UlJScHUtuE+CgOyMTD5/uSdmtZrH+o2gSafQ4g+6Q8wmk2Utmu0XtvPm5jfJNGZS26M2kx+eTB3P0s/IKsS9Lisri3PnzlG1atV8nQ5F+TRp0iSWLl3KP//8Y+tQyo2i/h2U9P4tT0buIwfWbsSsVqMxmWnY/vbaTkvreiLyv7P/4/1t72NUjLSu2JpZ7WbhqL17850IIcStSEtLIzo6mk8//ZTJkyfbOpwHjkx6dh85tyN3ymG9WYOdruwXlDv9xWpSj562vP/u2HeM+2scRsVIp6qd+PTxTyUREUKUWHh4OM7OzgW+wsPDy7TuoUOHEhISQrt27W6piUbcHnkych9J+/ccAHpX7zKvK+XwSezPOZN89iLq1+z5Kmkp3x75FoCXgl9idLPRqFWS6wohSm7ixImMGjWqwH1l3US/YMECFixYUKZ1iMJJMnIfMWSngk6NZ626xRe+TRdXnsAFD9LI4suL8/j9TO4shcObDGdA/QEyk6oQotR8fHzuq+GqouQkGblPJMUnkKXNTQDqhz1RpnWZTSbUV5xBDfvcT/P7md/RqDSMbzWeHjV7FH8CIYQQIo9beo7+2WefERQUhL29PS1atGDPnj2Flv3qq6945JFH8PDwwMPDg9DQ0CLLi1uz/39rQKVCazRRI6Tk0yrfistbD+Ck1mJSFL7y+gm9Rs/sx2ZLIiKEEOKWlDoZ+fnnnxk5ciTjx49n//79NGrUiLCwMBISEgosv3nzZnr37s2mTZvYuXMngYGBPPHEE1y4cOG2gxc3XNy/DwCdquyHF17c+h8AZ1RJGF2MfPXEV7QLbFfm9QohhLg/lToZiYyMZNCgQfTv35+6desyb948HB0d+fbbbwssv3jxYl5//XUaN25MnTp1+PrrrzGbzWzcuPG2gxc3ZCT8C4CDV8UyrefMpSgc090B2OVxkEUdF8mMqkIIIW5LqZIRg8HAvn37CA29MZmWWq0mNDSUnTt3lugcGRkZ5OTk4OnpWWiZ7OxsUlNTrV6iaAZTJgB+DRuXWR2HLh1i6s8fo1epMShm+vbrSw2PuzPTqxBCiPtXqZKRy5cvYzKZ8PX1tdru6+tLXFxcic4xZswYKlasaJXQ3CwiIgI3NzfLKzAwsDRhPnDOH4vCoNWAovBQ105lUsfW/7YycO1AdrnsYXLT+ZhbGankW7VM6hJClL127doxYsQIm9UfFBTE7Nmzy+z8mzdvRqVSkZycfEfOd/PnVdbxP2ju6kQQU6dO5aeffuK3334rcurkcePGkZKSYnn9+++/dzHK8ufw6rUA2Oco+FSudMfPv+LMCt748w2yTFk8HPAwc7p/Ro3u7e94PUIIcae0bt2a2NhY3NzcbB1KqZU0UVQUhQ8++AB/f38cHBwIDQ3l1KlTRR4TFBSESqXK9xoyZIhV/TfvL+tJ50o1tLdChQpoNBri4+OttsfHx+Pn51fksTNmzGDq1Kls2LCBhg2LHu2h1+vR62VBtZK6dOwwAFqd8x0/94IjC5i5L3clyW7+XRn/+Ido1WU/u6sQovxRFAWTyYSdne1njdDpdMXel+41BoMBnU5X4vIff/wxn3zyCQsXLqRq1aq8//77hIWFcezYsUK/8P/999+YTCbL+yNHjtChQwd69eplVW7QoEFMnDjR8t7RsWxn0y7VkxGdTkdISIhV59PrnVFbtWpV6HEff/wxkyZNYs2aNTRt2vTWoxUFyk7OTQ6dKwbdsXOaFTMz/p5hSUT61u1L7z8f4czYLVz8Y9sdq0cIYTtGo5GhQ4fi5uZGhQoVeP/998m7dup3331H06ZNcXFxwc/PjxdeeMFq5OT1ppDVq1cTEhKCXq9n27ZtnDlzhm7duuHr64uzszPNmjVjw4YN+eq/evUqvXv3xsnJiYCAAD777DOr/ZGRkTRo0AAnJycCAwN5/fXXSUtLs+w/f/48Xbt2xcPDAycnJ+rVq8eqVausYitJM01iYiK9e/cmICAAR0dHGjRowI8//ljsccXFn5yczMCBA/H29sbV1ZXHH3+cQ4cOWfZPmDCBxo0b8/XXX1sWmevXrx9btmxhzpw5lqcS0dHR+epWFIXZs2fz3nvv0a1bNxo2bMiiRYu4ePEiy5cvLzRmb29v/Pz8LK///e9/VK9enbZtrdczc3R0tCpX1jPglrqZZuTIkXz11VcsXLiQ48ePM3jwYNLT0+nfvz8Affv2Zdy4cZby06ZN4/333+fbb78lKCiIuLg44uLirP6HErfOZDKRjRGAyi1a3JFz5phzeG/beyw8thCAkSEjed37RVwUJ5zVenQed/4JjBD3G7PBVOhLyTGXoqypRGVvxcKFC7Gzs2PPnj3MmTOHyMhIvv76a8v+nJwcJk2axKFDh1i+fDnR0dH069cv33nGjh3L1KlTOX78OA0bNiQtLY3OnTuzceNGDhw4QMeOHenatSsxMTFWx02fPp1GjRpx4MABxo4dy/Dhw1m/fr1lv1qt5pNPPuHo0aMsXLiQP//8k7ffftuyf8iQIWRnZ7N161YOHz7MtGnTcHYu/d+nrKwsQkJCWLlyJUeOHOHVV1+lT58+xc6JVVz8vXr1IiEhgdWrV7Nv3z6aNGlC+/btuXLliqXM6dOn+eWXX/j11185ePAgc+bMoVWrVgwaNIjY2FhiY2ML7Dd57tw54uLirPpfurm50aJFixIPKDEYDHz//fe88sor+WbNXrx4MRUqVKB+/fqMGzeOjIyMEp3zVpX6Wdpzzz3HpUuX+OCDD4iLi6Nx48asWbPG0qk1JiYGtfpGjvN///d/GAwGnnnmGavzjB8/ngkTJtxe9IJjf+3CaKdGZVZo0uX2Z17NyMngrS1vse3CNjQqDR+2/pBuNbpxcvYfOKrcSTNnU+nhR+5A5ELc3y5+sKPQffa1PajQv77lfeykXfkSlOt0Vd3wee1G03bctD2Y0435ylWaWvp/l4GBgcyaNQuVSkXt2rU5fPgws2bNYtCgQQBWC8ZVq1aNTz75hGbNmpGWlmZ10584cSIdOnSwvPf09KRRo0aW95MmTeK3335jxYoVDB061LK9TZs2jB07FoBatWqxfft2Zs2aZTnXzR1GJ0+eTHh4OJ9//jmQe7/p2bMnDRo0sMR4KwICAqzWxBk2bBhr165lyZIlNG/evNDjiop/27Zt7Nmzh4SEBEu3gxkzZrB8+XKWLVvGq6++CuQmBIsWLcLb+8aaYjqdzvJkojDXB43czoCS5cuXk5ycnC/BfOGFF6hSpQoVK1bkn3/+YcyYMURFRfHrr7+W6Ly34pYa9oYOHWr1P1Remzdvtnpf0OMlcedE/fknAPZGcHRxua1zJWclM2TjEP65/A/2GntmtpvJo5UeBcAUaw8qwLtss2MhxN3TsmVLq2/ErVq1YubMmZhMJjQaDfv27WPChAkcOnSIpKQkzObchCkmJoa6dW+sgXVz83taWhoTJkxg5cqVxMbGYjQayczMzPdk5Obm/VatWlmNUNmwYQMRERGcOHGC1NRUjEYjWVlZZGRk4OjoyBtvvMHgwYNZt24doaGh9OzZs9g+iQUxmUxMmTKFJUuWcOHCBQwGA9nZ2cX2kygq/kOHDpGWloaXl5dVmczMTM6cOWN5X6VKFatE5G765ptv6NSpExUrWs9PdT1RAmjQoAH+/v60b9+eM2fOUL169TKJxfa9jMRtST57EgCdk8dtnSc2LZbXNrzGuZRzuOpc+az9ZzT2aQxA0v5juKjsURSFgK71iz6REAKAihNbF7rv5kfi/u+3LKKs9Xu/MYV/U7+T0tPTCQsLIywsjMWLF+Pt7U1MTAxhYWEYDAarsk5OTlbvR40axfr165kxYwY1atTAwcGBZ555Jt9xRYmOjubJJ59k8ODBfPTRR3h6erJt2zYGDBiAwWDA0dGRgQMHEhYWxsqVK1m3bh0RERHMnDmTYcOGlepap0+fzpw5c5g9e7alj8qIESNKFe/N0tLS8Pf3z/cFHcDd3d3y882fXUldf2oSHx+Pv7+/ZXt8fDyNGzcu9vjz58+zYcOGEj3taHGtC8Dp06clGREFM6QngQ7cgmre8jlOJ53mtQ2vkZCRgK+jL190+ILq7jf+h4tbcxoXPLhKJoF1bu0xqBAPGrVOY/Oyxdm9e7fV+127dlGzZk00Gg0nTpwgMTGRqVOnWvos7N27t0Tn3b59O/369aNHj9z1qtLS0gp8Sr5r165874ODgwHYt28fZrOZmTNnWpr+lyxZku8cgYGBhIeHEx4ezrhx4/jqq69KnYxs376dbt268dJLLwG5AzNOnjxp9fSnIEXF36RJE+Li4rCzsyMoKKhU8eh0OqsRLwWpWrUqfn5+bNy40ZJ8pKamsnv3bgYPHlxsHfPnz8fHx4cuXboUW/bgwYMAVknPnXZX5xkRd1ZmWjrZdrk932ve1BO6pJKykui/tj8JGQlUc6vG952/t0pEzCYTmuTctmFdlVvrJCeEuDfFxMQwcuRIoqKi+PHHH5k7dy7Dhw8HoHLlyuh0OubOncvZs2dZsWIFkyZNKtF5a9asaemQeejQIV544QVLE09e27dv5+OPP+bkyZN89tlnLF261FJ/jRo1yMnJsdT/3XffMW/ePKvjR4wYwdq1azl37hz79+9n06ZNlmSgNGrWrMn69evZsWMHx48f57XXXss3hUVBioo/NDSUVq1a0b17d9atW0d0dDQ7duzg3XffLTapCwoKYvfu3URHR3P58uUCPzuVSsWIESOYPHkyK1as4PDhw/Tt25eKFSvSvXt3S7n27dvz6aefWh1rNpuZP38+L7/8cr5h2GfOnGHSpEns27eP6OhoVqxYQd++fXn00UdvqQmspCQZKccOrFqPWa3CzmSmfts2t3SOX079QnJ2MlXdqrKw40L8nG7qMGVS0NY3kqK+SqVn7sxoHSHEvaFv375kZmbSvHlzhgwZwvDhwy39Bby9vVmwYAFLly6lbt26TJ06lRkzZpTovJGRkXh4eNC6dWu6du1KWFgYTZo0yVfurbfeYu/evTz00ENMnjyZyMhIwsLCAGjUqBGRkZFMmzaN+vXrs3jxYiIiIqyON5lMDBkyhODgYDp27EitWrUsnVtL47333qNJkyaEhYXRrl07/Pz8rG7ohSkqfpVKxapVq3j00Ufp378/tWrV4vnnn+f8+fP5Op3ebNSoUWg0GurWrWtpHivI22+/zbBhw3j11VctHYvXrFljNcfImTNnuHz5stVxGzZsICYmxqqD8nU6nY4NGzbwxBNPUKdOHd566y169uzJH3/8UezncTtUSt5B5feo1NRU3NzcSElJKfOxzuXJDyPHEHvhKI45agb/uqLUxxvNRjr+0pH4jHgmt5lMtxrdyiBKIe5fWVlZnDt3zjJHhBAPoqL+HZT0/i1PRsqxtIvRAOjdfW7p+D9j/iQ+Ix5Pe086Vu14ByMTQgghSk6SkXIsJ/sqABVq39oIlx9O/ADAM7WeQa/JP/3+hd//4thHK7iy58itBymEEDbWqVMnnJ2dC3xNmTLF1uEJZDRNuXX5YhxZ2twxfw3CCl8BuTAnrpxgX/w+7FR2PFvr2QLLJO9Jxc3kQezKc3g2lyG9Qojy6euvvyYzM7PAfZ6ennc5GlEQSUbKqQMrVoNKhS7HRNXGpU8Ufjie+1QktEoovk75O1NlXb6Ck9EFVODZwivffiGEKC8CAgJsHYIohjTTlFOxh/YBoFOXvtNcUlYSq87lLib1YvCLBZb575fd2KlUZJiN+IbJKBohhBBlR5KRcirz0gUAHLwrlfrYX079QrYpm2DPYBp5NyqwjOFcbhOQye0qas2dm2RJCCGEuJkkI+WUwZwFgP9DIaU6zmg28nPUz0DuU5Gbp6UGSDsdg4uSuyaDbweZcVUIIUTZkmSkHDp38AgGrQYUhZCunUt17KZ/NxGXHoeH3qPQ4bwXfj+ESqXiqjlbOq4KIYQoc5KMlEOH124AwD5HwdO/dHOMLD6+GCh8OC+AYlTIURTUfgX3PhdCCCHuJElGyqHLUbnzfmj1LqU6LupKFPvi96FRaXiu9nOFlqsz5ikqvduEqv0fva04hRD3rnbt2jFixAib1R8UFMTs2bPL7PybN29GpVKRnJx8R8538+d1u/ErihmzOQeTKQujMQOjMd3qpSg31qMxm7Pz7S+8rMGy3WTKvuX47jYZ2lsOZScngBZcKlUt1XHXJzkrbDhvXlpX51uOTwghbK1169bExsbi5uZWZnXkTQIAjMZ0zOZsFMWMggkUE0qel6NjNUs/vcys/zDmpBR43i5dXqFJk1bMmfMJANmGy+QYrhRQv8KUKZ+zaNHvJCcn06ZNG2bP/pDKlXOnXbfTuuHoUPlOXnKZkWSknDEacshWGwE1VVq0KvFxyVnJrDy7Eih8OK/ZZCLhz734PN5URtCI+5LJlI3RmILRmEqOMQVjTioODlVwcsrtqJ2ZeYFz0Z/k7s9JwWTKsDre3687gYH9AMjOjuefw++g0/YlI0ONyWT9b8bOzg293hsAs9lIZmZ0oXHZ2bmg1+d+QVAUMxkZZwstq9E4Y29/Y0HL9PTTRZR1xN6+Yp6yZwDl2meRSU5OsuV4tdoBB4cb83FkZJxDUQpeqVut1uPgEJinbDSKYkRRFEwmk9VKsCq1zuqGmJEZg2I2oChGDIZLVvGrVHY4OgZZ3mdm/ovZXPC3e5VKg6Nj1TxlL2A2Wzctu7hARkYaoMLJ6cZq5FlZF/P9bvNycqqRp2wcJlOa5fNKS4u6llzkkJ0dh6IolgTDkJNYaIIBoCgmVKrcz0aF5tp1qFGpNIAKg8GATqcDrAcWqFQa1GpdvvNFRn7FF1/8wPz586levSbvv/8+Xbu+wN9//4G9vR61qvzc4qWZppw5vHkbJo0atdnMQ51KPvNq3uG8jb0bF1gmfs1ujBsNnBy3CbOp4D9CQtwLTKZMrl49xpWknSRcWsvFi0s5H/M1Z87MJCpqAomJWyxlr149yl/bWrJpczCbt9Rl2/ZW7Nodxr59z3Lon4HEx99YjdRsziQ2dhmXLq0jOXk3V68etnplZcflKZtDevpJFCUHszkbkynT6mVWDHkiVvLttyprLkVZq/NSivOCyXxjH5jJycnmzTffp2LFh6hUqQHvv/8+19dONZkyWbx4CQ8/3A0/v0ZUq9aSfv3eIC7uP0uCcL0pZM2adbRp8xSennXZtm0Hp06d5NlnB1G1agt8vINp1qwZGzbk9nUzm7Ku1a+QmprCyy8Pw8enATVrtmHevG+s4p0z5/9o3rwTPj4NqF37YYYPf5eUlETLNZw/f56uXbvi4eFBhQo1adq0I6tXr8NkymTz5q04O9ckMTEe07XRhzd+dwarz+nSpVhefnkYNWu2wdu7AQ0aNODHH3+0KgtmFMWI2WywJGlpaRn07t0bJycnAgIC+OrLH7Czc0ardUOr8yQjQ8fw4dOoXv0xKlVqQ2joExw6dAgAe3t/Zs5cxiOPvMhPP22jQYOOVKjQiKFDI9i27W8++WQuKpUKlUpFXGwWzs61rV5OTrX4v/9bzHvvfUCPHj1p2LAhixYtIjY2ng0bjuHsXNsqEb3XlZ+0SQBwakvuH1m9UY2Ds1OJjjGajfwU9RMALwS/UOBwXoAruxNxwx2TNluejIgyk9umnUpOTiparTs6Xe503JmZF4iP/93yxCLHmIrRmIrRmEJOTipVqrxKpYAXALiadox9+wpexgBAq/XAy6stkPvN3GC4lGevGjs7F7R2bthpXdDqbkwHrtf7Ur3aW9jZuWFn54KdnTN5v6XmfRqg03lRp/ZkEhNd0esrYm9v/c3VaASDITcZUBQzGs2NG4NarbJ6emA0KnnKKlZlVSrQarUFlgUsZXW6G2Usx6qt/8Q7OFSBa8mGWm3Pjz/+j/79+7B9+2b27z/E4MHDqFy5MoMGDcLBIRCVyo2JEydSq1YNLl26zOjR7zB06BT++OM3q/NOmDCXadOmULVqEB4e7vz77wW6dOnG5MkR2Nvb88MPv9C1a1eioqKoWLEiimJGpbLjk08WMWbMSD788CPWr9/IqFHjaNDgUTp06ACAVuvO7NmzCAqqwrlz0Qwb9hYTJ37F3LmRqFQqhgzpjcFgYOvWrej1Ko4dO4arqwsODlXQ62MsvzNHBw+reHV6H7TavNPAa2nWrA1jxryLq6sL69ZtpU+fPlSvXp2QkPpote6o1fbY2blea2rRoFJp+eSTRYwbN46JEyeydu1a3nzzTerWDbHE/1SfDjg4OLB69Rrc3Nz44osvaN++PSdPnsTT0xOVSsXp06f55Zdf+PXXX9FoNFSpUoWTJ09Sv359Jk6cCIC3t3e+3+25c+eIi4sjNPTGl1I3NzdatGjBzp07ef755/Mdcy+TZKScSY0+BYDOueTrKeQdztupaqcCyxjTMnDIcgU1uDR0uCOxFkdRzBiNaTcem+ekYDRezX1vSqdyYH9L2bNnZ5N4ZZul7M3f+Nq0/uvajQOioiYQF/97ofW2arkena4CAKdOT+XixZ8LLdu82R84OFS6FsMc/v1vQaFlQ5r8jLNzLQDOn/+C6PPzCi37UOOFuLo2BODf/xZx9uysQss2bPAFHh7NAbh4cQmnTkcUWrZ+vdmWm3Bc/B9ERX1QaNngOlPx8QkD4NKlDRw7PrrQsrVqjcffrzsAiVe2ceTIsELL1qj+NgEBvQFITtnHoUMDLfvM5hyrR+k1a75n+T1nG+I4c3Zmoec1ZN9IKLR2Huh0PtjZuaLVuub+184NOztX7LSuuF/7vAAcHSrTvNkf2Nm5odW6otE4oVIV/FDYzs6FoKDXC40hL43GAQ+PFiQnn0OrdUartZ4N+aOPJhR6bM2aNXnxxRvNpR9//BE5OTkFlq1SpQr9+9/4tzBr1sdkZORvYpgwofD6rtPa3ej0rlJpCAwMZM6cz1CpVNSvH8KxYyeZNWsWgwYNws7OhUGDhljK164Nc+d+RrNmzcjKUnDO061s0qTJdOrUzfLe1zeIpk3b5NnfmN9++40VK1YwdOjQ6xHQpk0b3n03N+569Zqwa9c+Zs2aZbmZv/XW25Zz1KzZgI8+yiY8PJx5874GICYmhp49e9KgQQMAatW6MRWBnV3ul7Xc/z+sO/vbaRwhz/etoCBXxox5L8+1NmLt2rUsWbKE5s2bo9HcaCq5fl6ANm3aMG7cuGt112L79u2W+Ldt28aePXtISEhAr88duThjxgyWL1/OsmXLePXVV4HchHXRokVWCYdOp8PR0RE/vxvNcTeLi4u79llb9//z9fW17CtPJBkpZwwZyaBT4V6tVomPub4OTVHDef/7bQc6tZ5ss5mgpx6+7TgVRSEhYRWpV/+xfMs1m7No3OjGY9hD/wwiMXFzoeeoFPASanXut72MzPOkph4oUd0mcyZGY2rhseX52WzOKrIsmEtR9saZTde+/RdaMl/v96LKGvOUzSmyrDlPWaWYsoqSk+dnY9FlzSUvmzdRVMymQstqNM6Wb+kA9np//P17obVztSQVeRMMB/sbTyWcnKrxyMM7C40hL7Vaj4tL3RKVfdC0bNnS6klpq1atmDlzJiaTCY1Gw759+5gwYQKHDh0iKSkJszn3/9uYmBjq1r3xmTZt2tTqvGlpaUyYMIGVK1cSGxuL0WgkMzOTmJgYq3KtWrXK9z7vCJUNGzYQERHBiRMnSE1NxWg0kpWVRUZGBo6OjrzxxhsMHjyYdevWERoaSs+euc0VpWUymZgyZQpLlizhwoULGAwGsrOzcXR0LPK4ouI/dOgQaWlpeHlZr+2VmZnJmTNnLO+rVKlS4JOPB40kI+VIekoqWdd+Y7Ufe6xEx0RdiWJv/F40Kg3P1i78sXb6cQNu6MlyTEXjkL+jVGkYjekcPzGOhISV+faZzTmWBMPOLrfHt1qtv/ZY/Pq3XDe0dq7Xbpa5ZQMr9cHHp6Pl5qS+aU0ejebGH43q1d6iSuXXCo1Pa+du+TkoaCiVAvoWWlavv/HNpHLlgfj79yq0bN7Of5UCXsTXp0uhZfO25Vb0f4YKXo8XUfZGDL6+XfHwKLzj8vVOkADe3h1o6bq+iLI3/gB6ej5MyxYlK+vu1qzIsjrdjT++rq4NrMqqVBq02twmkNxOezfY21ekbvDUQs9b3rzzzjuF7ru5qXT06MKfSt1c9m4Nx01PTycsLIywsDAWL16Mt7c3MTExhIWFWTUTATg5WTcZjxo1ivXr1zNjxgxq1KiBg4MDzzzzTL7jihIdHc2TTz7J4MGD+eijj/D09GTbtm0MGDAAg8GAo6MjAwcOJCwsjJUrV7Ju3ToiIiKYOXMmw4YV/uSuINOnT2fOnDnMnj2bBg0a4OTkxIgRI0oV783S0tLw9/dn8+bN+fa5u7tbfr75syup609N4uPj8ff3t2yPj4+ncePGt3ROW5JkpBzZv2odilqFndFM3UdaluiYH0/kdsIKrRKKn1PBj/yy4i/jbHIGFXi1Kd0kajdLTz/LP4cHk5FxGpXKjooVn0Ov97U8Rs+rTu1JBNeZiqaQpzV5ubk1KXEMer0Pen3JrkOvq4D+WpNNcXQ6L6sbbdFlPS19IYqj1bqj1bqXsGxuwlYSuX0eSjYXjZ2ds6WZq/iyTtjZlWyZAI3GwTJS5UGTOyrCtmWLs3v3bqv3u3btombNmmg0Gk6cOEFiYiJTp04lMDD3qdTevXtLdN7t27fTr18/evToAeTemKOjo/OV27VrV773wcHBAOzbtw+z2czMmTNRq3Ob1ZYsWZLvHIGBgYSHhxMeHs64ceP46quvSp2MbN++nW7duvHSSy8BYDabOXnypNXTn4IUFX+TJk2Ii4vDzs6OoKCgUsWj0+kwFTOIoGrVqvj5+bFx40ZL8pGamsru3bsZPHhwqeq7F0gyUo7E7Mn9w6HHDk0JOpgmZyXzv7P/Awofzgvw3297sFe5kGHOocbjrW8rRrM5m6ys/9DrfKnfYC7uboWvnVPSm58QomzExMQwcuRIXnvtNfbv38/cuXOZOTO3307lypXR6XTMnTuX8PBwjhw5wqRJk0p03po1a/Lrr7/StWtXVCoV77//vqWJJ6/t27fz8ccf0717d9avX8/SpUtZuTL3iWqNGjXIyclh7ty5dO3ale3btzNvnnU/rBEjRtCpUydq1apFUlISmzZtsiQDpVGzZk2WLVvGjh078PDwIDIykvj4+GKTkaLiDw0NpVWrVnTv3p2PP/6YWrVqcfHiRVauXEmPHj3yNW3lFRQUxO7du4mOjsbZ2RlPT09LQnadSqVixIgRTJ48mZo1a1K1alXef/99KlasSPfu3Uv9GdiaDO0tR9IvRgOgdy96wrLrSjKcF6DqKx1QmprQNzTd9igaF5dgGjb4nGbNVxSZiAghbK9v375kZmbSvHlzhgwZwvDhwy0dK729vVmwYAFLly6lbt26TJ06lRkzZpTovJGRkXh4eNC6dWu6du1KWFgYTZrkf7r51ltvsXfvXh566CEmT55MZGQkYWG5naobNWpEZGQk06ZNo379+ixevJiICOvO2yaTiSFDhhAcHEzHjh2pVasWn3/+eak/h/fee48mTZoQFhZGu3bt8PPzK9ENvaj4VSoVq1at4tFHH6V///7UqlWL559/nvPnz+frdHqzUaNGodFoqFu3rqV5rCBvv/02w4YN49VXX6VZs2akpaWxZs0a7O3tCyx/L1MpiqIUX8y2UlNTcXNzIyUlBVfXkj2ivh99+nRnsrVqajd/giffeqPIskazkc6/diY2PZZJbSbRvUb3MokpO/sSx46Nolq1Ebi5PfT/7d15XFRV/8Dxzwww7IssAiqbijuiohJaZkqilWH5+JjWo5bWY6lptmmblT3Zpmll+fyy1FIrLTVLLZfEfckFtxQRQVQ2V3aYYeb+/uBhdIQZwIAB/b5fL14vZu73njmHO3fmy7n3nFMrryFEfVVUVERycjIhISEN8gtAiJpg6Tyo6ve39Iw0EFmp5yi2Kz1c4fdVvNru9eLOxpGen25xOC+AQVtidltlrl7dx94/H+Tyle0cPzG13NTIQgghRFVIMtJA7P7uRwDsdQYC2lY+rLcqq/PqruZw6rVtHHtrNUUXy697YI6iKKSeXcCBg4+i1Wbh7BxKWIfPzc7dIIQQ1jRgwABcXFwq/Hn33XetXT2B3MDaYGTGl9617XDDTIIVqepw3pTF23BSu1GY74adc9VuJr1x2K5v4wdo0+Zdk4mAhBCiPpk/fz6FhYUVbvP0rPoEkqL2SDLSAOj1egq12WBrQ5PulU9IVpXhvAa9Hn2qA6hB71W1uUW02kscOPgo+fmJqFS2hLacSrNmI81OLy+EEPVB06ZNKw8SViXJSAOw56df0NnaYKM3cOeIYRZjr1+dd3ib4Wbj0n/diYtag15RCBzWrUr1sLPzxMkxGJ0um7AOn+LhYX5omhBCCFFVkow0ACc3rAPAAXvcGnlYjF1xagVF+iLaeralc2Pzo1uu7s7FHVfyNDkEBfqbjTMYSlCUEmxsHFCpVLRr9yF6fZHJjJxCCCHE3yF3HDYABRfPAeDR3PIEPCWGEr4/Ubo677A2w8xePsk+loirofQeEZ++5hOR4uILHIwfwfETU4zLitvaukoiIoQQokZJz0g9l3z4GIWa0qQicrjlSzRbzm4xDue9r/l9ZuPO/3QcN1UjcpRC2vW+q8KYq1f3ceToBLTaLGxsnCksPIOTU/BNt0MIIYQwR3pG6rm9S0t7Ohy1CiGdOliMXXKi8uG8AH73tSDb4SrOHcsf/huH7To5taRb15WSiAghhKg1kozUc1dPHQXAyauZxbiEywn8mfFnpcN5ATy7tqf9mwMJejTa5PmSknyOHZtEYuI7KEoJjRvfT7euK3B2bvH3GiGEqHd69+5dZysAVyQ4OJjZs2fXWvlxcXGoVCquXr1aI+Xd+Peq7frfbiQZqcfys3MopBiAltH9LMaWDeftG9jX7HDeyhw+8m8ys34tHbYb+hod2s+R+UOEEA1Sjx49SE9Px93dvfLgeqaqiaKiKLzxxhv4+/vj6OhIdHQ0iYmJFveZMWMG3bp1w9XVlcaNGzNo0CASEhLKvb5KpTL5GTt27N9pUqUkGanHtn3zHXobNXYleu54+EGzcdnF2cbhvJZW5037ZTvHpq7j/M/bKtweEjwee3t/unReQmDA4zJ/iBCiWhRFoaTk5peYqEkajQY/P78G9Tmm1WqrFf/BBx/wySefMG/ePPbs2YOzszMxMTEUFRWZ3WfLli2MGzeO3bt3s2HDBnQ6Hf369SM/P98k7sknnyQ9Pd3488EHH9xUm6pKkpF67Nye0qTB0c4NW42d2bgViaXDedt4trE4nPfKrhzcFReu7suucHujRnfQI2qTzB8ixG2ipKSE8ePH4+7ujre3N6+//jrXr5367bff0rVrV1xdXfHz82P48OFkZWUZt5ddClm3bh0RERHY29uzfft2kpKSiI2NxdfXFxcXF7p168bGjRvLvX5ubi7Dhg3D2dmZpk2bMnfuXJPts2bNIiwsDGdnZwICAnjmmWfIy8szbj9z5gwDBw6kUaNGODs70759e9auXWtSt6pcprl06RLDhg2jadOmODk5ERYWxnfffVfpfpXV/+rVq4wZMwYfHx/c3Nzo06cPhw4dMm5/88036dSpE/PnzzcuMjdq1Ci2bNnCnDlzjL0SKSkp5V5bURRmz57Na6+9RmxsLB07duSbb74hLS2NVatWma3zb7/9xqhRo2jfvj3h4eEsXLiQ1NRU9u/fbxLn5OSEn5+f8ae2F6mVZKSe0uv1FBVcAqBxeHezcSWGEuMlmuFthlsezqsvP5w3OfkzrlzZbXysVpu/8VUIUXV6fYGFn+JqxBZVKfZmLFq0CFtbW/bu3cucOXOYNWsW8+fPN27X6XRMnz6dQ4cOsWrVKlJSUhg1alS5cqZMmcJ7773H8ePH6dixI3l5edx3331s2rSJgwcP0r9/fwYOHEhqaqrJfh9++CHh4eEcPHiQKVOmMHHiRDZs2GDcrlar+eSTTzh27BiLFi3ijz/+4KWXXjJuHzduHMXFxWzdupUjR47w/vvv4+JStaUtrldUVERERARr1qzh6NGjPPXUU/zrX/9i7969FverrP5DhgwhKyuLdevWsX//frp06ULfvn25fPnaWmCnTp3ip59+YsWKFcTHxzNnzhyioqJMeiYCAgLKvXZycjIZGRlER1+798/d3Z3IyEh27dpV5bZnZ5f+c3rjtPhLlizB29ubDh06MHXqVAoKbu49VlUytLeeOrR+M8V2NqgMCneN+pfZuCoP511RfjhvXl4Cp5M/BiDqjk0yYkaIGhS3JczsNi+v3nQK/8r4eOu27hgMFa+d4uERSUSXpcbHO3bejU5XfmHLvn2Sql3HgIAAPv74Y1QqFa1bt+bIkSN8/PHHPPnkkwA88cQTxtjmzZvzySef0K1bN/Ly8ky+9N9++23uvfde42NPT0/Cw8ONj6dPn87KlStZvXo148ePNz7fs2dPpkyZAkCrVq3YsWMHH3/8sbGsG28Yfeeddxg7diyff/45AKmpqQwePJiwsDBjHW9G06ZNeeGFF4yPJ0yYwO+//86yZcvo3t38P4OW6r99+3b27t1LVlYW9val/+R99NFHrFq1ih9//JGnnnoKKL0088033+Djc23+Jo1GY+yZMCcjIwMAX19fk+d9fX2N2ypjMBiYNGkSPXv2pEOHa6M1hw8fTlBQEE2aNOHw4cO8/PLLJCQksGLFiiqVezMkGamnjq7+GQAngw2e/o3Nxi09UfohNbjVYPOr8+bk4ZDrDmpwbHOtCzY55TMAGvsMkEREiNvQHXfcYdKbGhUVxcyZM9Hr9djY2LB//37efPNNDh06xJUrVzAYDEBpEtCu3bVJGLt2Nb20m5eXx5tvvsmaNWtIT0+npKSEwsLCcj0jUVFR5R5fP0Jl48aNzJgxgxMnTpCTk0NJSQlFRUUUFBTg5OTEs88+y9NPP8369euJjo5m8ODBdOzYsdp/B71ez7vvvsuyZcs4f/48Wq2W4uJinJycLO5nqf6HDh0iLy8PLy8vk5jCwkKSkq4ljkFBQSaJSF0aN24cR48eZfv27SbPlyVKAGFhYfj7+9O3b1+SkpJo0aJ2RldKMlJP5Wcmgx24BrQyG3Pyykn2ZuzFRmXD0NZDzcalfLsFR7UbhQY9zR+5B4C8vJNkZZVOMx8SMqFmKy+EoPfdRyxstTF51OsuS5cDTK+m9+yx5eYrVQ35+fnExMQQExPDkiVL8PHxITU1lZiYmHI3Wjo7m466e+GFF9iwYQMfffQRLVu2xNHRkX/84x/VukEzJSWFBx54gKeffpr//Oc/eHp6sn37dkaPHo1Wq8XJyYkxY8YQExPDmjVrWL9+PTNmzGDmzJlMmFC9z7QPP/yQOXPmMHv2bOM9KpMmTar2DaXXy8vLw9/fn7i4uHLbPDw8jL/f+LerqrJek8zMTPz9r116z8zMpFOnTpXuP378eH799Ve2bt1Ks2aWp46IjIwESi8pSTJyG8k4nUqhrQKo6Dz4H2bjlh4v7RWxNJzXoNejP2NfbnXe0l4RBR+fGFxcWtd0E4S47dnYWP6vui5iK7Nnzx6Tx7t37yY0NBQbGxtOnDjBpUuXeO+994z3LOzbt69K5e7YsYNRo0bx0EMPAaVfzBXdhLl79+5yj9u2bQvA/v37MRgMzJw5E7W6NCFbtmxZuTICAgIYO3YsY8eOZerUqXz55ZfVTkZ27NhBbGwsjz32GFB6+eLkyZMmvT8VsVT/Ll26kJGRga2tLcHBwdWqj0ajQa/XW4wJCQnBz8+PTZs2GZOPnJwc9uzZw9NPP212P0VRmDBhAitXriQuLo6QkJBK6xMfHw9gkvTUNLmBtR7a8c23KCoVDloD7e66o8KY64fzDm9rfnVeRW9A5VdIvkFrXJ03Lz+RrKzSO85DgqVXRIjbVWpqKpMnTyYhIYHvvvuOTz/9lIkTJwIQGBiIRqPh008/5fTp06xevZrp06dXqdzQ0FDjDZmHDh1i+PDhxks819uxYwcffPABJ0+eZO7cuSxfvtz4+i1btkSn0xlf/9tvv2XevHkm+0+aNInff/+d5ORkDhw4wObNm43JQHWEhoayYcMGdu7cyfHjx/n3v/9NZmZmpftZqn90dDRRUVEMGjSI9evXk5KSws6dO3n11VcrTeqCg4PZs2cPKSkpXLx4scK/nUqlYtKkSbzzzjusXr2aI0eOMGLECJo0acKgQYOMcX379uWzzz4zPh43bhyLFy9m6dKluLq6kpGRQUZGBoWFpfcsJSUlMX36dPbv309KSgqrV69mxIgR9OrV66YugVWVJCP10KW/DgLg6OZrNub64bxdGncxG2ejsaP15IG0/qAvTv9bnTclZS6lvSL9cHWt/okrhLg1jBgxgsLCQrp37864ceOYOHGi8X4BHx8fFi5cyPLly2nXrh3vvfceH330UZXKnTVrFo0aNaJHjx4MHDiQmJgYunQp/zn1/PPPs2/fPjp37sw777zDrFmziImJASA8PJxZs2bx/vvv06FDB5YsWcKMGTNM9tfr9YwbN462bdvSv39/WrVqZby5tTpee+01unTpQkxMDL1798bPz8/kC90cS/VXqVSsXbuWXr168fjjj9OqVSseeeQRzpw5U+6m0xu98MIL2NjY0K5dO+PlsYq89NJLTJgwgaeeesp4Y/Fvv/2Gg4ODMSYpKYmLFy8aH3/xxRdkZ2fTu3dv/P39jT8//PADUNors3HjRvr160ebNm14/vnnGTx4ML/88kulf4+/Q6VcP6i8nsrJycHd3Z3s7OxaH+tsbcUFhcz712BKbNV0ihlK3yfKj6TRG/Tct+I+0vLTeLvH2zwU+lC1XiM9fSXJKZ8R1uFTXF0td0MKIcwrKioiOTnZOEeEELcjS+dBVb+/5Z6Remb79z9SYqvGtsTAnY9UfL9I3Lk40vLT8LD3YEDIALNlnfzkV9S2KoIeuxs7t2vD8Pz9H8LPLxaVSjrGhBBCWJ98G9UzZ7b8AYCjjRP2To4VxpTduPqPVv/Awbbi/8Z0OXnYnnPFIdWNcz/tKLddEhEhxO1iwIABuLi4VPjz7rvvWrt6AukZqXcKczJBo8azbacKtydeSazScN4zi7fgoHajyKAn5H/DeU+deh8HxwCa+A+WmVaFELeN+fPnG2/QvNGNM48K65BkpB75a9tuijRqVIpCz39VvOBd2SRnfQL7WBzOW5JSOpy35H/DeQsKkjmTOh8w4ObWETfXDhXuK4QQt5qmTZtauwqiEtJXX48c/OlHABxLVPi3LD/2O7s4m1+TfgUsr86bsXYXLmp79IpiHM5bOq+IAW/vvpKICCGEqFckGalHcs+eBMDZt+JJaFYmrqRIX0TrRq0tDue9sisHgDy7HJwC/SkoSCYjYzUg84oIIYSofyQZqScup2dRoC6dca/Dg7HltusNer5P+B4o7RUxtzpvzrFT163OW3oZJzllLmDAy+se3NzML94lhBBCWIMkI/XEtkWLUdQq7HV6wvvdU277ptRNnM87X+lwXu2VPPIoJEcppPE9XSkoSCEzs7RXpHnIs7VWfyGEEOJmyQ2s9URWfOlCWQ5OXtjYmC6ipSgKXx0tXW58WJthZofzAnjf2QnvO0uH9kLpbKuKosfLqzdubrU3la8QQghxs6RnpB4o0eoo1GUD0CzyrnLbd6fv5q9Lf+Fg48CwNsOqVGbZJGdNmw7Hy7MXIdIrIoSoJb1792bSpEnWrkatiouLQ6VScfXqVWtX5ZYkyUg9sGflGnS2NtjoDdw1onyy8fXRrwEY3GowjRwaVViGQa/n5Me/kHsy2eR5d/fOdOq0AHe38JqvuBBC3CZ69OhBeno67u7uZmOKiooYN24cXl5euLi4MHjw4CotuCckGakXEjesA8ARe5zdTefuP3bxGLvTd2OrsmVEuxFmy8hYtxunTA8ufnUW7ZXsWq2vEOL2oygKJSUl1q6Gibqsk0ajwc/Pz+zgAYDnnnuOX375heXLl7NlyxbS0tJ4+OGH66R+DZ0kI/VAwaVzAHi0LD//R9m9IgNCBtDEpYnZMq7sLE1ACuxy0DRyJ+Hkm5w8OZ3i4gu1UGMhRENnMBiYMWMGISEhODo6Eh4ezo8//mjcXnZZYt26dURERGBvb8/27dvJz89nxIgRuLi44O/vz8yZM8uVfeXKFUaMGEGjRo1wcnJiwIABJCYmGrefOXOGgQMH0qhRI5ydnWnfvj1r166ttM7m6lTVtmzatImuXbvi5OREjx49SEhIACAlJQW1Ws2+fftMXm/27NkEBQVhMBgqvUyTnZ3NV199xaxZs+jTpw8REREsWLCAnTt3snv37krbdru7qWRk7ty5BAcH4+DgQGRkJHv37jUbe+zYMQYPHkxwcDAqlYrZs2ffbF1vScnxRynUlGba3Yc/YrLtTM4ZNp7ZCMDjHR43W0bO8SST4byFhamcP/8dZ88tpKjobC3VXAhREUVRyNfrrfJTnUXYZ8yYwTfffMO8efM4duwYzz33HI899hhbtmwxiZsyZQrvvfcex48fp2PHjrz44ots2bKFn3/+mfXr1xMXF8eBAwdM9hk1ahT79u1j9erV7Nq1C0VRuO+++9DpdACMGzeO4uJitm7dypEjR3j//fdxcXGhqm6sU1Xb8uqrrzJz5kz27duHra0tTzzxBADBwcFER0ezYMECk/gFCxYwatQo1OrKvyr379+PTqcjOjra+FybNm0IDAxk165dVW7b7arao2l++OEHJk+ezLx584iMjGT27NnExMSQkJBA48aNy8UXFBTQvHlzhgwZwnPPPVcjlb6V7Fn6HQCOWoWQju1Nti04ugAFhd7NehPaKNRsGed+OoabqhE5SiHt7rmL48enoigleHrehbu7+cnRhBA1r8BgoMXWI1Z57aReYTjfMBqvIsXFxbz77rts3LiRqKgoAJo3b8727dv573//y913322Mffvtt7n33nsByMvL46uvvmLx4sX07dsXgEWLFtGsWTNjfGJiIqtXr2bHjh306NEDgCVLlhAQEMCqVasYMmQIqampDB48mLCwMONrV8f1dapOW/7zn/8YH0+ZMoX777+foqIiHBwcGDNmDGPHjmXWrFnY29tz4MABjhw5ws8//1ylOmVkZKDRaPDw8DB53tfXl4yMjGq173ZU7Z6RWbNm8eSTT/L444/Trl075s2bh5OTE19//XWF8d26dePDDz/kkUcewd5eFme70dXTfwHg5N3M5PkLBRdYnVQ6P8gTYU+Y3V+Xk4dDTukNVY5tFAoLz5KesQKAkBCZbVUIUd6pU6coKCjg3nvvNVnB9ptvviEpKckktmvXrsbfk5KS0Gq1REZGGp/z9PSkdevWxsfHjx/H1tbWJMbLy4vWrVtz/PhxAJ599lneeecdevbsybRp0zh8+HC16n99narTlo4dr01v4O/vD0BWVhYAgwYNwsbGhpUrVwKwcOFC7rnnHoKDg6tVN3FzqtUzotVq2b9/P1OnTjU+p1ariY6OrtFuqOLiYoqLi42Pc3Jyaqzs+iQ/O4ciigE1re41ncjs2+PfojPo6NK4C50bdzZbxo2r855MmVbaK9LoTjzcI2q5BUKIGzmp1ST1ss5Mx05VuJwApT0cAGvWrCm3iNyN/zQ6OzvXTOWuM2bMGGJiYlizZg3r169nxowZzJw5kwkTqvYP1PV1qk5b7OzsjL+X3YhqMBiA0htUR4wYwYIFC3j44YdZunQpc+bMqXKb/Pz80Gq1XL161aR3JDMzEz+/ihc1FddUq2fk4sWL6PV6fH19TZ6v6W6oGTNm4O7ubvwJCAiosbLrk62LlqK3UWNXoidy8EDj8znaHJYlLAPgiQ7me0UASnL16BUFnWcOWrKkV0QIK1OpVDjb2Fjlx9JIj+u1a9cOe3t7UlNTadmypcmPpc/bFi1aYGdnx549e4zPXblyhZMnTxoft23blpKSEpOYS5cukZCQQLt27YzPBQQEMHbsWFasWMHzzz/Pl19+WZ0/899uS0XGjBnDxo0b+fzzzykpKanWSJiIiAjs7OzYtGmT8bmEhARSU1ONl4+EefVyBtapU6cyefJk4+OcnJxbMiE5v3c7AI4ad5NZV5clLCNfl09Lj5bc1az8JGjXa/PygxSkpqO2tyMldc7/ekV64uHR1eJ+Qojbl6urKy+88ALPPfccBoOBO++8k+zsbHbs2IGbmxsjR46scD8XFxdGjx7Niy++iJeXF40bN+bVV181ucEzNDSU2NhYnnzySf773//i6urKlClTaNq0KbGxpetuTZo0iQEDBtCqVSuuXLnC5s2badu2bZ22pSJt27bljjvu4OWXX+aJJ57A0dGxyvu6u7szevRoJk+ejKenJ25ubkyYMIGoqCjuuOOOm2nabaVayYi3tzc2NjblJnGp6W4oe3v7W/7+Er1eT1HBJbCzwbfTtTdqsb6YxX8tBkp7RdSqyjuvnAJLr32GeExArbansU//2qm0EOKWMX36dHx8fJgxYwanT5/Gw8ODLl268Morr1jc78MPPyQvL4+BAwfi6urK888/T3a26dxGCxYsYOLEiTzwwANotVp69erF2rVrjZdJ9Ho948aN49y5c7i5udG/f38+/vjjOm9LRUaPHs3OnTuNI22q4+OPP0atVjN48GCKi4uJiYnh888/r3Y5tyOVUp2xYEBkZCTdu3fn008/BUqvtwUGBjJ+/HimTJlicd/g4GAmTZpU7WmDc3JycHd3Jzs7Gzc3t8p3aAD2r91A3KI5qA0Koz5bQCPf0pFIyxKWMX33dPyd/Vnz8Brs1HYV7p93KpW802n49ZOMWwhrKSoqIjk5mZCQEBwczK8ZJRqO6dOns3z58mrfVHs7s3QeVPX7u9qjaSZPnsyXX37JokWLOH78OE8//TT5+fk8/njpPBgjRowwucFVq9USHx9PfHw8Wq2W8+fPEx8fz6lTp6r70reUY7+UDhdzNNgaE5ESQwkLjpaOcx/ZfqTZRAQg9ft4Sv7QceyNXzAY6tesiEII0dDk5eVx9OhRPvvssyrfSCtqTrWTkaFDh/LRRx/xxhtv0KlTJ+Lj4/ntt9+MN7WmpqaSnp5ujE9LS6Nz58507tyZ9PR0PvroIzp37syYMWNqrhUNUH5mCgBugdeGxG08s5FzeefwsPfgoZYPmd23JDf/2nDeYDtOJr5NfPzj5OadqNU6CyFEbRo7dqzJ8Nzrf8aOHVurrz1+/HgiIiLo3bv3TV2iEX9PtS/TWMOtdpkm/VQyS18ZDyoV902cRtse3VAUhaG/DuX45eM80+kZng5/2uz+pz5fi0OqK0UGPf6vhLDnYAyKoqNL56U0ahRpdj8hRM2SyzQ1Kysry+xUDm5ubhVOrCmsryYu09TL0TS3uh3fLAaVCgetgbY9ugGwK20Xxy8fx9HWkWGty6/cW8ag11OSogE16DxzOJv5NYqiw8MjUhIRIUSD1rhxY0k4blOyUJ4VXDp+CABH92sjkMoWxBscOhgPBw+z+2b+tgcXtT16RcH3H4GkpZXOR9I85Nnaq7AQQghRiyQZqWPFBYUUKQUABN9durbDkQtH2JuxF1uVLSPbWx4Tf3nHVQDy7HK4oF+Fomjx8OhOo0YyqkYIaymbxVOI21FNvP/lMk0d2/7dckps1NiWGLhz+D8A+Ppo6bo+9zW/Dz9n8/O1lOTmoylxBDW497HjZNoPAIRIr4gQVqHRaFCr1aSlpeHj44NGo6nyLKhCNHSKoqDVarlw4QJqtRqNRnPTZUkyUsdStv4BgKONMxp7e5Kzk9mUWjp9cGVTv9u6OtP8rZ6krdmJNugIyhktHu7daOQhvSJCWINarSYkJIT09HTS0tKsXR0hrMLJyYnAwECTmXirS5KROlaUkwUaNV7tSxe/W3hsIQoK9wTcQwuPFpXub+OoIeAfvTEYorB3aIKLcyv5T0wIK9JoNAQGBlJSUoJer7d2dYSoUzY2Ntja2v7t7yFJRurQ0S27KNKoUSkKPUc+RmZ+JquTVgOV94pc2n0E9w4tsHVxAkCttqdZ0+G1XmchROVUKhV2dnYmq8IKIapObmCtQ4dW/AiAY4kav+BAFh9fTImhhAjfCDo17mR2P32hlssrLpLy9l7S/tgmM64KIYS4pUgyUodyzyYC4OLfnOzibJYllA7LraxXJGXhRhzVtqhRke39O7v33MvFS3G1XV0hhBCiTshlmjpyMS2DAhs9oKJD7CCWJSyjoKSA0Eah3NX0LrP7GbQl6JMdQA0FvqlcuLwCg6EYlUoOnRBCiFuD9IzUke0LF6OoVdjr9LS6uzuLjy8GYHSH0RZv/ElZvBEntR06xYBNdAIGQzHubp3xbNSzrqouhBBC1CpJRupI1uE/AXBw9uGX5F+4XHSZpi5NiQmOMbuPQa9He6K0ByTPM5WMKyuB0nlFZASNEEKIW4X09deBEq2OIl0O2NrQpHtPPjm2EICR7UdiqzZ/CM5+H4eL2p4SRUHbJ57VuTFc1bTn94shcPFsHdVeCCFEQ9XOxZFRTb2tXY1KSTJSB3avWI3O1gYbvQFdbx/OHziPp4Mng1oOsrhf3ql83NGQ0CSJt3KjOK1qCTog7VKd1FsIIUTD1s/LTZIRUSpxw+8AOGLPt8lLARjeZjiOto4W92s/7UFWrN/DFE17chQNrqoixgQGYSuXaIQQQlRBCyd7a1ehSiQZqQOFl8+DRoU62I+EK9txsnXikTaPWNzHoCjMOZPJB3b2KAq0d9TzRWsfWjXyr6NaCyGEEHVDkpFalnTwMIUaFSgKBztcAeAfrf6Bu7272X1S9h1lqg42F5VObvaYvxfvhDbFwUbuNxZCCHHrkWSklv353fcAOOoUtqmOYau25V/t/mU2/mhuAf/KLCLdyRY7xcB/Qr0YERBQV9UVQggh6pz8q13Lrp7+C4AidwMAA5sPxM/Zr8LYH9Ivc/+fCaQ72eJfqGe6agaBpwdy9eq+OquvEEIIUdekZ6QW5Vy5SqFKC6jZG5yFChWjOowqF1dsMPB64nm+SbsEKhU9LpQwLvtHaHEAW1s/XF3b13ndhRBCiLoiyUgt2rZoCQa1GruSEo4FaekbGE1z9+YmMeeKtIw5mkJ8bgEq4MnEIh4/e4WUe9ZgAJo3fw4bG8ujboQQQoiGTJKRWpT+504A9LYFoFaVWxBvy+Vcnv4rhcs6PR62Nrz8Zyb3ZtlzttVPGCjAxaUN/n4PWaPqQgghRJ2RZKSW6PV6Cgsvg50NSf4FdPPrRkefjkDpsN1PzmTyfnIGCtDRxZFZKj1umRq0TlkUBG0FoGWLKahUNlZshRBCCFH75AbWWnJw3Ua0djaoDQb2ti1mdIfRAGTrShh1JJn3/peIDPf3ZHWXUJziU1GA9JY/gEqPp+ddeHmZX81XCCGEuFVIz0gtObbmFwDsDEUENWlDjyY9OJZXyBNHkjlTpMVerWJGaDOGN/ECoPmY/uQmppCd3gSt4QgtW06xZvWFEEKIOiPJSC3Jz0wBO8j0LOCJDi+yPPMKLyWcpcigEOCgYX6HYMJdnUz2cQ0NpmPobLTay2g0ntapuBBCCFHHJBmpBedPnqbQVgFUJIW7U6xtzzcpqQDc4+nK5+2CaGRX+qfPT0kj5/gZ/AdEGfeXREQIIcTtRO4ZqQU7vvkWVCqK7B1I6vQm36RdRgU8H+zLko7NjYkIwJlv91GytYidSx4lN/eY9SothBBCWIkkI7XgUsKfpDRtwfxHJnFG54iHrQ2LOzbnxRB/1NetuFuYloljngdXm26l0H838YeewGAotmLNhRBCiLonl2lqWH5OLls638mWyH4oajUdXRz5skMwQY7ll3FOWbQHZ1sHLrZYCUBw8HjU6oax3LMQQghRU6RnpIa98NV/iYvqj6JW87C3E6u7hFaYiGgvXcH+ijuXg9disM/FySmEpk0esUKNhRBCCOuSZKQGbT+4j3VtegBw5+GtfB7WCgebiv/Ep7/ehsoxm8vBvwPQosWLqNV2dVZXIYQQor6QZKQGTdt7hCIHJ3wvpPHfUf8yG6fLycPughuXWqxAsdHi7h6Bj3e/OqypEEIIUX9IMlJDXpo7h2OtOqMyGBily8LLvZHZ2KuHEyl2OU920+0AhLacguq6G1uFEEKI24ncwFoDTiQnsSogHIDuR3fy3MTxFuN97uyMe8fmqOPPgm8+7u5d6qKaQgghRL0kyUgNeOHX9eR0iMIj+xIfD36wSvto3Nxp06vqU77n5eURFxeHl5cXUVGlE6RptVqWLVtmdp/g4GDuvPNOAAwGA0uXLjUb26xZM3r37m18vHTpUgwGQ4Wxfn5+REdHGx8vW7YMrVZbYay3tzf9+/c3Pl6xYgUFBQUVxnp4ePDAAw8YH//888/k5uZWGOvi4sKgQYOMj9esWcOVK1cqjHV0dGTw4MHGx7///jsXLlyoMNbOzo6hQ4caH2/atIn09PQKY1UqFY8++qjxcVxcHOfOnaswFmDYsGHY2JQufLh9+3ZSUlLMxg4ZMgR7+9Ibn3fv3s2pU6fMxj700EM4OzsDsG/fPk6cOGE2duDAgbi7uwMQHx/P0aNHzcYOGDAAL6/S5QqOHDnCoUOHzMb269ePxo0bA3D8+HH2799vNrZPnz40adIEgMTERPbs2WM2tlevXgQGBgKQnJzMjh07zMb26NGD5s2bA3D27Fm2bNliNjYyMpLQ0FAA0tPT2bRpk9nYiIgI2rZtC0BWVhbr1683GxseHk5YWBgAly9fZu3atWZj27dvT+fOnQHIyclh9erVZmNbt25Nt27dACgoKGDFihVmY1u0aCGfEchnBEBQUBB33dUw1jiTZORvem/hl+xrHwnAkIzjNG/W12ysXqsj5dsNBD7SCztnlyq/RmJiIqtWrSI/P9/44QWlHx6WvqQcHByMvyuKYjG27AQoc+rUKbMfNHq93uTx6dOnKSoqqjD2xueTk5PNfnj4+vqaPD5z5gyXL1+uMLZRI9PLYGfPniUjI6PCWBcX07/1uXPnOHv2bIWxZSd3mfPnz3P69OkKY2+8tJaRkWHxb6woivH3zMxMi7HX/+2zsrIsxpaUlBh/v3jxosVYnU5n/P3SpUsWY6//8rhy5YrF2Os/8LKzsy3G3nHHHcbfc3JyLMZGREQYf8/NzbUYW5YEAOTn51uMbdOmjfH3goICi7EtWrQw/l5UVGQxNiAgwPi7Vqu1GOvn52f8XafTWYwtSwqh9HhbinV1dTX+Lp8R19yOnxE31rU+k2Tkb8i8eIHFroGgUtPxxD6mP2358syZbzZRlH+YHX+8Tdvub+HrG2MxXqfTsXHjRuN/jj4+PnTo0MG43dbW1iTzv9H1J6NKpbIYW/bfcpnY2FiTE+N6N564999/f7kPnzJl/7GX6d+/v8kX4vUcHR1NHt97770UF1c8CdyNJ9k999xDYWFhhbF2dqajlHr16kV+fn6FsTd+4Pbs2ZOOHTtWGHvjB01kZKTJl9yN1Oprt2h17drV5EvOUp07d+5s7B2oyPV/t7CwMJMvuRtdf+zatWtn8iV3o+vfE61bt8bNzc1s7PXltGjRwuJ7rawHBUr/M7cU6+/vb/y9WbNmFmOvTwT8/PwsxjZr1sykPpZiy3pxADw9PS3GXv+3d3Nzq/LfwdnZ2WKst7e38XcHBweLsZ6e15aTkM+Ia27HzwgPDw+z+9c3KsXcu6keycnJwd3dnezsbIsfiHVtyMez2dapN04FuSwPdiOifbjZWINez8lX15N51xuUOF6mRYuXCA76t9n4zMxMfvrpJ7KysgDo3r079957b7mTRgghhKivqvr9LT0jN2n+ih/YEVZ6rfWBU3uJuP95i/GpSzdTHBxHieNlNLaNCWg20mxsRkYG8+fPp6SkBGdnZ2JjY2nVqlWN1l8IIYSoLyQZuQl5Bfl8UeyAwcaWVqePMfOZZy3GG/R68k7kcrnXGgBahr6EjY2D2XhfX1+Cg4MBGDRoULkuTyGEEOJWIsnITXhm3hec7xyNRlvElFZNKr10cn7lNopb/obBrhAnu1D8/GLLxSQlJdGsWTPs7e1RqVQMGTIEjUYj848IIYS45cmkZ9W0avN6NncoHTkQfXQb9911T6X7XDl2jqsBmwFo3f51VKprf3adTsfatWv59ttvWbdunfH5sqRECCGEuNVJz0g16HQ6PjxzGV1QYwLPn+bzcRMq3afo4mWKfA+AWo+bphuenj2N2268SdXe3h6DwWByR7UQQghxq5NkpBomzp1DUng0NvoSxrkpJmP0zXHw9qT72Fmc2d0F77DS+RUURWHPnj1s2LABvV5vHNZXNgmTEEIIcTuRZKSKdhzcx7pWpbMa3nl4KyMnT67W/kF3PAaUzqS6atUq4wQ1oaGhxMbGyk2qQgghbltyPaCKpu09TKGjM40vpvPZqMertM9fC/+Pq0nHyj2fnp6Ora0t9913H8OHD5dERAghxG1NekaqYMrnczja9m5UBgMjitPx8TS/Im+ZrG1/ctFrIRlJc2hV/D7N2pWup+Di4sKQIUNwcnIymYFRCCGEuF1Jz0glTiQnsaJp6VS/3Y7t4oXHnqjSfilHf0TnnImit+WXLYkmC5IFBwdLIiKEEEL8jyQjlXjx19/JcWuEe/ZlZj88sEr7XNz/J/khvwGQlNqBzMxs4uLizC4qJYQQQtzOJBmx4P1v5vNn+9IRMEPSj9G8mfnFyq534vD/YdDkUVDgRlp6C1q1asWoUaNkyK4QQghRAblnxIwLl6/wrVMz44q87zxd+Zwi2sICNn83FXXAFtTAmeQI7rvvAbp16yYTmAkhhBBmSDJixjOLFnGxU2+cCvKY3rNrlfY5/sdybIN/BSDnUgBD/vkffH19a7OaQgghRIMn1w0q8PXK5cYVee9P3E1kx05mY3Myzhl/D79/JPnnulCc0pf+MSslERFCCCGqQHpGblBUVMTnhXYYPGwJTf6LWeMmVhhXcOkCf6x+Cdsmewg5MYPWvUsXv3twxPK6rK4QQgjR4EnPyA3+PfczzvkHo9EW8VJLv3Ir8pbodMR9M4243f1wDNqKnV0xJ1O+t1JthRBCiIZPekaus3rzRuOKvH2PbWfg5BdMth9b/wNJOV/g3Ows9oC22AnbzP4MePRdK9RWCCGEuDVIMvI/Op2OD1IuoA32JiAtmS+eGW+y/ZeFj+HQbDfOngoGg5qic13p2ecdPAe0sFKNhRBCiFuDJCP/M2nuHE79b0XeZ1xKyq3Iq1JsUasV8i+G0LrxBFqPirVSTYUQQohbi9wzAuw6tJ+1rUonN+t5eBuPxw5h709z2bfyC2PMPQPfxyHjSR7850bjzapCCCGE+PskGQHe2BVPoaMLPhfTea1rW1YvfYDcRrPIsFmANi8PAGdvX3oOn2LlmgohhBC3nptKRubOnUtwcDAODg5ERkayd+9ei/HLly+nTZs2ODg4EBYWxtq1a2+qsrXhlc8/4UjrCFAMPF6wiYziiTj7HUdRQJ/rR97lTGtXUQghhLilVTsZ+eGHH5g8eTLTpk3jwIEDhIeHExMTQ1ZWVoXxO3fuZNiwYYwePZqDBw8yaNAgBg0aZLKKrbUknknmp6YdALi3ZAPhASuxsSmhINsXj9yXiH10NZ6BcoOqEEIIUZtUiqIo1dkhMjKSbt268dlnnwFgMBgICAhgwoQJTJlS/jLG0KFDyc/P59dffzU+d8cdd9CpUyfmzZtXpdfMycnB3d2dr776FEd7TcUNsVHj4HttIbuirHMoJSUVx6rVOPgF8uWxJPa3j8JbyeJ9nkNdrMY2ox/3DHsXWwf7KtVNCCGEEBUr+/7Ozs7Gzc3NbFy1RtNotVr279/P1KlTjc+p1Wqio6PZtWtXhfvs2rWLyZMnmzwXExPDqlWrzL5OcXExxcXFxsc5OTkATGncCbWzS9Uq27hx5THtS2Mezf0Jw5WORMlQXSGEEKLOVSsZuXjxInq9vtyaK76+vpw4caLCfTIyMiqMz8jIMPs6M2bM4K233ir3vJ2iRa1oze6n6K+tjKuysdzho+hVoCh0OfEnLz71ifSECCGEEFZSL+cZmTp1qklvSk5ODgEBARy/u6vFbp6b0q97zZYnhBBCiGqpVjLi7e2NjY0NmZmmI0wyMzPx8/OrcB8/P79qxQPY29tjby89FUIIIcTtoFqjaTQaDREREWzatMn4nMFgYNOmTURFRVW4T1RUlEk8wIYNG8zGCyGEEOL2Uu3LNJMnT2bkyJF07dqV7t27M3v2bPLz83n88ccBGDFiBE2bNmXGjBkATJw4kbvvvpuZM2dy//338/3337Nv3z7+7//+r2ZbIoQQQogGqdrJyNChQ7lw4QJvvPEGGRkZdOrUid9++814k2pqaipq9bUOlx49erB06VJee+01XnnlFUJDQ1m1ahUdOnSouVYIIYQQosGq9jwj1lDVccpCCCGEqD+q+v0ta9MIIYQQwqokGRFCCCGEVUkyIoQQQgirkmRECCGEEFYlyYgQQgghrEqSESGEEEJYlSQjQgghhLAqSUaEEEIIYVWSjAghhBDCqqo9Hbw1lE0Sm5OTY+WaCCGEEKKqyr63K5vsvUEkI7m5uQAEBARYuSZCCCGEqK7c3Fzc3d3Nbm8Qa9MYDAbS0tJwdXVFpVLVWLk5OTkEBARw9uzZW27NG2lbwyRta5ikbQ3Xrdy++tA2RVHIzc2lSZMmJovo3qhB9Iyo1WqaNWtWa+W7ubndcm/CMtK2hkna1jBJ2xquW7l91m6bpR6RMnIDqxBCCCGsSpIRIYQQQljVbZ2M2NvbM23aNOzt7a1dlRonbWuYpG0Nk7St4bqV29eQ2tYgbmAVQgghxK3rtu4ZEUIIIYT1STIihBBCCKuSZEQIIYQQViXJiBBCCCGs6pZJRrZu3crAgQNp0qQJKpWKVatWmWxXFIU33ngDf39/HB0diY6OJjExsdJy586dS3BwMA4ODkRGRrJ3795aaoF5ltqm0+l4+eWXCQsLw9nZmSZNmjBixAjS0tIslvnmm2+iUqlMftq0aVPLLSmvsuM2atSocvXs379/peXW9+MGlGtX2c+HH35otsz6ctxmzJhBt27dcHV1pXHjxgwaNIiEhASTmKKiIsaNG4eXlxcuLi4MHjyYzMxMi+Xe7Hlakypr2+XLl5kwYQKtW7fG0dGRwMBAnn32WbKzsy2We7Pv5ZpUlePWu3fvcvUcO3asxXIbwnFLSUkxe84tX77cbLn14bh98cUXdOzY0Th5WVRUFOvWrTNub6jn2vVumWQkPz+f8PBw5s6dW+H2Dz74gE8++YR58+axZ88enJ2diYmJoaioyGyZP/zwA5MnT2batGkcOHCA8PBwYmJiyMrKqq1mVMhS2woKCjhw4ACvv/46Bw4cYMWKFSQkJPDggw9WWm779u1JT083/mzfvr02qm9RZccNoH///ib1/O677yyW2RCOG2DSpvT0dL7++mtUKhWDBw+2WG59OG5btmxh3Lhx7N69mw0bNqDT6ejXrx/5+fnGmOeee45ffvmF5cuXs2XLFtLS0nj44Yctlnsz52lNq6xtaWlppKWl8dFHH3H06FEWLlzIb7/9xujRoystu7rv5ZpWleMG8OSTT5rU84MPPrBYbkM4bgEBAeXOubfeegsXFxcGDBhgsWxrH7dmzZrx3nvvsX//fvbt20efPn2IjY3l2LFjQMM910wotyBAWblypfGxwWBQ/Pz8lA8//ND43NWrVxV7e3vlu+++M1tO9+7dlXHjxhkf6/V6pUmTJsqMGTNqpd5VcWPbKrJ3714FUM6cOWM2Ztq0aUp4eHjNVu5vqqhtI0eOVGJjY6tVTkM9brGxsUqfPn0sxtTH46YoipKVlaUAypYtWxRFKT2/7OzslOXLlxtjjh8/rgDKrl27KizjZs/T2nZj2yqybNkyRaPRKDqdzmzMzbyXa1tFbbv77ruViRMnVrmMhnzcOnXqpDzxxBMWy6mPx01RFKVRo0bK/Pnzb5lz7ZbpGbEkOTmZjIwMoqOjjc+5u7sTGRnJrl27KtxHq9Wyf/9+k33UajXR0dFm96kvsrOzUalUeHh4WIxLTEykSZMmNG/enEcffZTU1NS6qWA1xcXF0bhxY1q3bs3TTz/NpUuXzMY21OOWmZnJmjVrqvTfdX08bmWXKDw9PQHYv38/Op3O5Di0adOGwMBAs8fhZs7TunBj28zFuLm5YWtrebmv6ryX64K5ti1ZsgRvb286dOjA1KlTKSgoMFtGQz1u+/fvJz4+vkrnXH06bnq9nu+//578/HyioqJumXOtQSyU93dlZGQA4Ovra/K8r6+vcduNLl68iF6vr3CfEydO1E5Fa0BRUREvv/wyw4YNs7gwUmRkJAsXLqR169bG7sq77rqLo0eP4urqWoc1tqx///48/PDDhISEkJSUxCuvvMKAAQPYtWsXNjY25eIb6nFbtGgRrq6ulXat1sfjZjAYmDRpEj179qRDhw5A6Tmn0WjKJcSWzrmbOU9rW0Vtu9HFixeZPn06Tz31lMWyqvterm3m2jZ8+HCCgoJo0qQJhw8f5uWXXyYhIYEVK1ZUWE5DPW5fffUVbdu2pUePHhbLqi/H7ciRI0RFRVFUVISLiwsrV66kXbt2xMfH3xLn2m2RjNwudDod//znP1EUhS+++MJi7PXXSDt27EhkZCRBQUEsW7asSv8p1JVHHnnE+HtYWBgdO3akRYsWxMXF0bdvXyvWrGZ9/fXXPProozg4OFiMq4/Hbdy4cRw9etQq967UtsralpOTw/3330+7du148803LZZV397L5tp2fVIVFhaGv78/ffv2JSkpiRYtWtR1NW9KZcetsLCQpUuX8vrrr1daVn05bq1btyY+Pp7s7Gx+/PFHRo4cyZYtW+rs9WvbbXGZxs/PD6Dc3cWZmZnGbTfy9vbGxsamWvtYU1kicubMGTZs2FDt5aI9PDxo1aoVp06dqqUa1ozmzZvj7e1ttp4N7bgBbNu2jYSEBMaMGVPtfa193MaPH8+vv/7K5s2badasmfF5Pz8/tFotV69eNYm3dBxu5jytTebaViY3N5f+/fvj6urKypUrsbOzq1b5lb2Xa1NlbbteZGQkgNl6NrTjBvDjjz9SUFDAiBEjql2+tY6bRqOhZcuWREREMGPGDMLDw5kzZ84tca7BbZKMhISE4Ofnx6ZNm4zP5eTksGfPHqKioircR6PREBERYbKPwWBg06ZNZvexlrJEJDExkY0bN+Ll5VXtMvLy8khKSsLf378Walhzzp07x6VLl8zWsyEdtzJfffUVERERhIeHV3tfax03RVEYP348K1eu5I8//iAkJMRke0REBHZ2dibHISEhgdTUVLPH4WbO09pQWdvK6tWvXz80Gg2rV6+utEerIpW9l2tDVdp2o/j4eACz9WxIx63MV199xYMPPoiPj0+1X8cax60iBoOB4uLiBn2umbDKbbO1IDc3Vzl48KBy8OBBBVBmzZqlHDx40Dii5L333lM8PDyUn3/+WTl8+LASGxurhISEKIWFhcYy+vTpo3z66afGx99//71ib2+vLFy4UPnrr7+Up556SvHw8FAyMjLqTdu0Wq3y4IMPKs2aNVPi4+OV9PR0409xcbHZtj3//PNKXFyckpycrOzYsUOJjo5WvL29laysrHrTttzcXOWFF15Qdu3apSQnJysbN25UunTpooSGhipFRUVm29YQjluZ7OxsxcnJSfniiy8qLKO+Hrenn35acXd3V+Li4kzecwUFBcaYsWPHKoGBgcoff/yh7Nu3T4mKilKioqJMymndurWyYsUK4+OqnKfWblt2drYSGRmphIWFKadOnTKJKSkpqbBtVX0vW7ttp06dUt5++21l3759SnJysvLzzz8rzZs3V3r16mVSTkM8bmUSExMVlUqlrFu3rsJy6uNxmzJlirJlyxYlOTlZOXz4sDJlyhRFpVIp69evVxSl4Z5r17tlkpHNmzcrQLmfkSNHKopSOpTp9ddfV3x9fRV7e3ulb9++SkJCgkkZQUFByrRp00ye+/TTT5XAwEBFo9Eo3bt3V3bv3l1HLbrGUtuSk5Mr3AYomzdvNpZxY9uGDh2q+Pv7KxqNRmnatKkydOhQ5dSpU/WqbQUFBUq/fv0UHx8fxc7OTgkKClKefPLJcklFQzxuZf773/8qjo6OytWrVysso74eN3PvuQULFhhjCgsLlWeeeUZp1KiR4uTkpDz00ENKenp6uXKu36cq52ltq6xt5o4roCQnJ1fYtqq+l63dttTUVKVXr16Kp6enYm9vr7Rs2VJ58cUXlezs7HLlNLTjVmbq1KlKQECAotfrzZZT347bE088oQQFBSkajUbx8fFR+vbta0xEFKXhnmvXUymKovzt7hUhhBBCiJt0W9wzIoQQQoj6S5IRIYQQQliVJCNCCCGEsCpJRoQQQghhVZKMCCGEEMKqJBkRQgghhFVJMiKEEEIIq5JkRAghhBBWJcmIEKLWjRo1ikGDBlm7GkKIekqSESGEEEJYlSQjQoga8+OPPxIWFoajoyNeXl5ER0fz4osvsmjRIn7++WdUKhUqlYq4uDgAzp49yz//+U88PDzw9PQkNjaWlJQUY3llPSpvvfUWPj4+uLm5MXbsWLRarXUaKISoFbbWroAQ4taQnp7OsGHD+OCDD3jooYfIzc1l27ZtjBgxgtTUVHJycliwYAEAnp6e6HQ6YmJiiIqKYtu2bdja2vLOO+/Qv39/Dh8+jEajAWDTpk04ODgQFxdHSkoKjz/+OF5eXvznP/+xZnOFEDVIkhEhRI1IT0+npKSEhx9+mKCgIADCwsIAcHR0pLi4GD8/P2P84sWLMRgMzJ8/H5VKBcCCBQvw8PAgLi6Ofv36AaDRaPj6669xcnKiffv2vP3227z44otMnz4dtVo6d4W4FciZLISoEeHh4fTt25ewsDCGDBnCl19+yZUrV8zGHzp0iFOnTuHq6oqLiwsuLi54enpSVFREUlKSSblOTk7Gx1FRUeTl5XH27NlabY8Qou5Iz4gQokbY2NiwYcMGdu7cyfr16/n000959dVX2bNnT4XxeXl5REREsGTJknLbfHx8aru6Qoh6RJIRIUSNUalU9OzZk549e/LGG28QFBTEypUr0Wg06PV6k9guXbrwww8/0LhxY9zc3MyWeejQIQoLC3F0dARg9+7duLi4EBAQUKttEULUHblMI4SoEXv27OHdd99l3759pKamsmLFCi5cuEDbtm0JDg7m8OHDJCQkcPHiRXQ6HY8++ije3t7Exsaybds2kpOTiYuL49lnn+XcuXPGcrVaLaNHj+avv/5i7dq1TJs2jfHjx8v9IkLcQqRnRAhRI9zc3Ni6dSuzZ88mJyeHoKAgZs6cyYABA+jatStxcXF07dqVvLw8Nm/eTO/evdm6dSsvv/wyDz/8MLm5uTRt2pS+ffua9JT07duX0NBQevXqRXFxMcOGDePNN9+0XkOFEDVOpSiKYu1KCCFERUaNGsXVq1dZtWqVtasihKhF0s8phBBCCKuSZEQIIYQQViWXaYQQQghhVdIzIoQQQgirkmRECCGEEFYlyYgQQgghrEqSESGEEEJYlSQjQgghhLAqSUaEEEIIYVWSjAghhBDCqiQZEUIIIYRVSTIihBBCCKv6f+tVuyfIZ9QsAAAAAElFTkSuQmCC",
"text/plain": [
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"for (g, group) in res.agents.dropna().groupby(\"params_id\"):\n",
" params = res.parameters.query(f'params_id == \"{g}\"').iloc[0]\n",
" title = f\"{params.generator.rstrip('_graph')} {params.prob_neighbor_spread}\"\n",
" counts = group.groupby(by=[\"step\", \"state_id\"]).value_counts().unstack()\n",
" line = \"-\"\n",
" if \"barabasi\" in params.generator:\n",
" line = \"--\"\n",
" (counts.infected/counts.sum(axis=1)).rename(title).fillna(0).plot(linestyle=line)\n",
"plt.legend()\n",
"plt.xlim([9, None]);\n",
"plt.title(\"Ratio of infected users\");"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data format"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Parameters\n",
"\n",
"The `parameters` dataframe has three keys:\n",
"\n",
"* The identifier of the simulation. This will be shared by all iterations launched in the same run\n",
"* The identifier of the parameters used in the simulation. This will be shared by all iterations that have the exact same set of parameters.\n",
"* The identifier of the iteration. Each row should have a different iteration identifier\n",
"\n",
"There will be a column per each parameter passed to the environment. In this case, that's three: **generator**, **n** and **prob_neighbor_spread**."
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
key
\n",
"
generator
\n",
"
n
\n",
"
prob_neighbor_spread
\n",
"
\n",
"
\n",
"
iteration_id
\n",
"
params_id
\n",
"
simulation_id
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
39063f8
\n",
"
newspread_1712849444.2514122
\n",
"
erdos_renyi_graph
\n",
"
100
\n",
"
1.0
\n",
"
\n",
"
\n",
"
8f26adb
\n",
"
newspread_1712849444.2514122
\n",
"
barabasi_albert_graph
\n",
"
100
\n",
"
0.5
\n",
"
\n",
"
\n",
"
92fdcb9
\n",
"
newspread_1712849444.2514122
\n",
"
erdos_renyi_graph
\n",
"
100
\n",
"
0.25
\n",
"
\n",
"
\n",
"
cb3dbca
\n",
"
newspread_1712849444.2514122
\n",
"
erdos_renyi_graph
\n",
"
100
\n",
"
0.5
\n",
"
\n",
"
\n",
"
d1fe9c1
\n",
"
newspread_1712849444.2514122
\n",
"
barabasi_albert_graph
\n",
"
100
\n",
"
1.0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
"key generator \\\n",
"iteration_id params_id simulation_id \n",
"0 39063f8 newspread_1712849444.2514122 erdos_renyi_graph \n",
" 8f26adb newspread_1712849444.2514122 barabasi_albert_graph \n",
" 92fdcb9 newspread_1712849444.2514122 erdos_renyi_graph \n",
" cb3dbca newspread_1712849444.2514122 erdos_renyi_graph \n",
" d1fe9c1 newspread_1712849444.2514122 barabasi_albert_graph \n",
"\n",
"key n prob_neighbor_spread \n",
"iteration_id params_id simulation_id \n",
"0 39063f8 newspread_1712849444.2514122 100 1.0 \n",
" 8f26adb newspread_1712849444.2514122 100 0.5 \n",
" 92fdcb9 newspread_1712849444.2514122 100 0.25 \n",
" cb3dbca newspread_1712849444.2514122 100 0.5 \n",
" d1fe9c1 newspread_1712849444.2514122 100 1.0 "
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res.parameters.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configuration\n",
"\n",
"This dataset is indexed by the identifier of the simulation, and there will be a column per each attribute of the simulation.\n",
"For instance, there is one for the number of processes used, another one for the path where the results were stored, etc."
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
index
\n",
"
version
\n",
"
source_file
\n",
"
name
\n",
"
description
\n",
"
group
\n",
"
backup
\n",
"
overwrite
\n",
"
dry_run
\n",
"
dump
\n",
"
...
\n",
"
num_processes
\n",
"
exporters
\n",
"
model_reporters
\n",
"
agent_reporters
\n",
"
tables
\n",
"
outdir
\n",
"
exporter_params
\n",
"
level
\n",
"
skip_test
\n",
"
debug
\n",
"
\n",
"
\n",
"
simulation_id
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
newspread_1712849444.2514122
\n",
"
0
\n",
"
2
\n",
"
None
\n",
"
newspread
\n",
"
\n",
"
None
\n",
"
False
\n",
"
True
\n",
"
False
\n",
"
True
\n",
"
...
\n",
"
1
\n",
"
[\"<class 'soil.exporters.default'>\"]
\n",
"
{}
\n",
"
{}
\n",
"
{}
\n",
"
/media/j/JsTickData/git/gsi-upm/soil/docs/tuto...
\n",
"
{}
\n",
"
30
\n",
"
False
\n",
"
False
\n",
"
\n",
" \n",
"
\n",
"
1 rows × 28 columns
\n",
"
"
],
"text/plain": [
" index version source_file name \\\n",
"simulation_id \n",
"newspread_1712849444.2514122 0 2 None newspread \n",
"\n",
" description group backup overwrite dry_run dump \\\n",
"simulation_id \n",
"newspread_1712849444.2514122 None False True False True \n",
"\n",
" ... num_processes \\\n",
"simulation_id ... \n",
"newspread_1712849444.2514122 ... 1 \n",
"\n",
" exporters \\\n",
"simulation_id \n",
"newspread_1712849444.2514122 [\"\"] \n",
"\n",
" model_reporters agent_reporters tables \\\n",
"simulation_id \n",
"newspread_1712849444.2514122 {} {} {} \n",
"\n",
" outdir \\\n",
"simulation_id \n",
"newspread_1712849444.2514122 /media/j/JsTickData/git/gsi-upm/soil/docs/tuto... \n",
"\n",
" exporter_params level skip_test debug \n",
"simulation_id \n",
"newspread_1712849444.2514122 {} 30 False False \n",
"\n",
"[1 rows x 28 columns]"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res.config.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model reporters\n",
"\n",
"The `env` dataframe includes the data collected from the model.\n",
"The keys in this case are the same as `parameters`, and an additional one: **step**."
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
agent_count
\n",
"
time
\n",
"
prob_tv_spread
\n",
"
prob_neighbor_spread
\n",
"
\n",
"
\n",
"
simulation_id
\n",
"
params_id
\n",
"
iteration_id
\n",
"
step
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
\n",
" \n",
" \n",
"
\n",
"
newspread_1712849444.2514122
\n",
"
ff1d24a
\n",
"
0
\n",
"
0
\n",
"
101
\n",
"
0.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
"
\n",
"
1
\n",
"
101
\n",
"
1.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
"
\n",
"
2
\n",
"
101
\n",
"
2.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
"
\n",
"
3
\n",
"
101
\n",
"
3.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
"
\n",
"
4
\n",
"
101
\n",
"
4.0
\n",
"
0.0
\n",
"
0.0
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" agent_count time \\\n",
"simulation_id params_id iteration_id step \n",
"newspread_1712849444.2514122 ff1d24a 0 0 101 0.0 \n",
" 1 101 1.0 \n",
" 2 101 2.0 \n",
" 3 101 3.0 \n",
" 4 101 4.0 \n",
"\n",
" prob_tv_spread \\\n",
"simulation_id params_id iteration_id step \n",
"newspread_1712849444.2514122 ff1d24a 0 0 0.0 \n",
" 1 0.0 \n",
" 2 0.0 \n",
" 3 0.0 \n",
" 4 0.0 \n",
"\n",
" prob_neighbor_spread \n",
"simulation_id params_id iteration_id step \n",
"newspread_1712849444.2514122 ff1d24a 0 0 0.0 \n",
" 1 0.0 \n",
" 2 0.0 \n",
" 3 0.0 \n",
" 4 0.0 "
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res.env.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Agent reporters\n",
"\n",
"This dataframe reflects the data collected for all the agents in the simulation, in every step where data collection was invoked.\n",
"\n",
"The key in this dataframe is similar to the one in the `parameters` dataframe, but there will be two more keys: the `step` and the `agent_id`.\n",
"There will be a column per each agent reporter added to the model. In our case, there is only one: `state_id`."
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"