mirror of
https://github.com/gsi-upm/soil
synced 2025-01-06 23:01:27 +00:00
Compare commits
2 Commits
5d759d0072
...
880a9f2a1c
Author | SHA1 | Date | |
---|---|---|---|
|
880a9f2a1c | ||
|
227fdf050e |
@ -2,16 +2,17 @@ from networkx import Graph
|
||||
import random
|
||||
import networkx as nx
|
||||
|
||||
|
||||
def mygenerator(n=5, n_edges=5):
|
||||
'''
|
||||
"""
|
||||
Just a simple generator that creates a network with n nodes and
|
||||
n_edges edges. Edges are assigned randomly, only avoiding self loops.
|
||||
'''
|
||||
"""
|
||||
G = nx.Graph()
|
||||
|
||||
for i in range(n):
|
||||
G.add_node(i)
|
||||
|
||||
|
||||
for i in range(n_edges):
|
||||
nodes = list(G.nodes)
|
||||
n_in = random.choice(nodes)
|
||||
@ -19,9 +20,3 @@ def mygenerator(n=5, n_edges=5):
|
||||
n_out = random.choice(nodes)
|
||||
G.add_edge(n_in, n_out)
|
||||
return G
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -2,34 +2,37 @@ from soil.agents import FSM, state, default_state
|
||||
|
||||
|
||||
class Fibonacci(FSM):
|
||||
'''Agent that only executes in t_steps that are Fibonacci numbers'''
|
||||
"""Agent that only executes in t_steps that are Fibonacci numbers"""
|
||||
|
||||
defaults = {
|
||||
'prev': 1
|
||||
}
|
||||
defaults = {"prev": 1}
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def counting(self):
|
||||
self.log('Stopping at {}'.format(self.now))
|
||||
prev, self['prev'] = self['prev'], max([self.now, self['prev']])
|
||||
self.log("Stopping at {}".format(self.now))
|
||||
prev, self["prev"] = self["prev"], max([self.now, self["prev"]])
|
||||
return None, self.env.timeout(prev)
|
||||
|
||||
|
||||
class Odds(FSM):
|
||||
'''Agent that only executes in odd t_steps'''
|
||||
"""Agent that only executes in odd t_steps"""
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def odds(self):
|
||||
self.log('Stopping at {}'.format(self.now))
|
||||
return None, self.env.timeout(1+self.now%2)
|
||||
self.log("Stopping at {}".format(self.now))
|
||||
return None, self.env.timeout(1 + self.now % 2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
from soil import Simulation
|
||||
s = Simulation(network_agents=[{'ids': [0], 'agent_class': Fibonacci},
|
||||
{'ids': [1], 'agent_class': Odds}],
|
||||
network_params={"generator": "complete_graph", "n": 2},
|
||||
max_time=100,
|
||||
)
|
||||
|
||||
s = Simulation(
|
||||
network_agents=[
|
||||
{"ids": [0], "agent_class": Fibonacci},
|
||||
{"ids": [1], "agent_class": Odds},
|
||||
],
|
||||
network_params={"generator": "complete_graph", "n": 2},
|
||||
max_time=100,
|
||||
)
|
||||
s.run(dry_run=True)
|
||||
|
@ -14,16 +14,18 @@ def network_portrayal(env):
|
||||
# The model ensures there is 0 or 1 agent per node
|
||||
|
||||
portrayal = dict()
|
||||
wealths = {node_id: data['agent'].wealth for (node_id, data) in env.G.nodes(data=True)}
|
||||
wealths = {
|
||||
node_id: data["agent"].wealth for (node_id, data) in env.G.nodes(data=True)
|
||||
}
|
||||
portrayal["nodes"] = [
|
||||
{
|
||||
"id": node_id,
|
||||
"size": 2*(wealth+1),
|
||||
"size": 2 * (wealth + 1),
|
||||
"color": "#CC0000" if wealth == 0 else "#007959",
|
||||
# "color": "#CC0000",
|
||||
"label": f"{node_id}: {wealth}",
|
||||
} for (node_id, wealth) in wealths.items()
|
||||
|
||||
}
|
||||
for (node_id, wealth) in wealths.items()
|
||||
]
|
||||
|
||||
portrayal["edges"] = [
|
||||
@ -41,7 +43,7 @@ def gridPortrayal(agent):
|
||||
:param agent: the agent in the simulation
|
||||
:return: the portrayal dictionary
|
||||
"""
|
||||
color = max(10, min(agent.wealth*10, 100))
|
||||
color = max(10, min(agent.wealth * 10, 100))
|
||||
return {
|
||||
"Shape": "rect",
|
||||
"w": 1,
|
||||
@ -52,7 +54,7 @@ def gridPortrayal(agent):
|
||||
"Text": agent.unique_id,
|
||||
"x": agent.pos[0],
|
||||
"y": agent.pos[1],
|
||||
"Color": f"rgba(31, 10, 255, 0.{color})"
|
||||
"Color": f"rgba(31, 10, 255, 0.{color})",
|
||||
}
|
||||
|
||||
|
||||
@ -79,7 +81,7 @@ model_params = {
|
||||
10,
|
||||
1,
|
||||
description="Grid height",
|
||||
),
|
||||
),
|
||||
"width": UserSettableParameter(
|
||||
"slider",
|
||||
"width",
|
||||
@ -88,16 +90,20 @@ model_params = {
|
||||
10,
|
||||
1,
|
||||
description="Grid width",
|
||||
),
|
||||
"agent_class": UserSettableParameter('choice', 'Agent class', value='MoneyAgent',
|
||||
choices=['MoneyAgent', 'SocialMoneyAgent']),
|
||||
),
|
||||
"agent_class": UserSettableParameter(
|
||||
"choice",
|
||||
"Agent class",
|
||||
value="MoneyAgent",
|
||||
choices=["MoneyAgent", "SocialMoneyAgent"],
|
||||
),
|
||||
"generator": graph_generator,
|
||||
}
|
||||
|
||||
|
||||
canvas_element = CanvasGrid(gridPortrayal,
|
||||
model_params["width"].value,
|
||||
model_params["height"].value, 500, 500)
|
||||
canvas_element = CanvasGrid(
|
||||
gridPortrayal, model_params["width"].value, model_params["height"].value, 500, 500
|
||||
)
|
||||
|
||||
|
||||
server = ModularServer(
|
||||
|
@ -1,9 +1,10 @@
|
||||
'''
|
||||
"""
|
||||
This is an example that adds soil agents and environment in a normal
|
||||
mesa workflow.
|
||||
'''
|
||||
"""
|
||||
from mesa import Agent as MesaAgent
|
||||
from mesa.space import MultiGrid
|
||||
|
||||
# from mesa.time import RandomActivation
|
||||
from mesa.datacollection import DataCollector
|
||||
from mesa.batchrunner import BatchRunner
|
||||
@ -12,12 +13,13 @@ import networkx as nx
|
||||
|
||||
from soil import NetworkAgent, Environment, serialization
|
||||
|
||||
|
||||
def compute_gini(model):
|
||||
agent_wealths = [agent.wealth for agent in model.agents]
|
||||
x = sorted(agent_wealths)
|
||||
N = len(list(model.agents))
|
||||
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
|
||||
return (1 + (1/N) - 2*B)
|
||||
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
|
||||
return 1 + (1 / N) - 2 * B
|
||||
|
||||
|
||||
class MoneyAgent(MesaAgent):
|
||||
@ -32,9 +34,8 @@ class MoneyAgent(MesaAgent):
|
||||
|
||||
def move(self):
|
||||
possible_steps = self.model.grid.get_neighborhood(
|
||||
self.pos,
|
||||
moore=True,
|
||||
include_center=False)
|
||||
self.pos, moore=True, include_center=False
|
||||
)
|
||||
new_position = self.random.choice(possible_steps)
|
||||
self.model.grid.move_agent(self, new_position)
|
||||
|
||||
@ -69,6 +70,7 @@ class SocialMoneyAgent(NetworkAgent, MoneyAgent):
|
||||
other.wealth += 1
|
||||
self.wealth -= 1
|
||||
|
||||
|
||||
def graph_generator(n=5):
|
||||
G = nx.Graph()
|
||||
for ix in range(n):
|
||||
@ -78,16 +80,22 @@ def graph_generator(n=5):
|
||||
|
||||
class MoneyEnv(Environment):
|
||||
"""A model with some number of agents."""
|
||||
def __init__(self, width, height, N, generator=graph_generator,
|
||||
agent_class=SocialMoneyAgent,
|
||||
topology=None, **kwargs):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
width,
|
||||
height,
|
||||
N,
|
||||
generator=graph_generator,
|
||||
agent_class=SocialMoneyAgent,
|
||||
topology=None,
|
||||
**kwargs
|
||||
):
|
||||
|
||||
generator = serialization.deserialize(generator)
|
||||
agent_class = serialization.deserialize(agent_class, globs=globals())
|
||||
topology = generator(n=N)
|
||||
super().__init__(topology=topology,
|
||||
N=N,
|
||||
**kwargs)
|
||||
super().__init__(topology=topology, N=N, **kwargs)
|
||||
self.grid = MultiGrid(width, height, False)
|
||||
|
||||
self.populate_network(agent_class=agent_class)
|
||||
@ -99,26 +107,29 @@ class MoneyEnv(Environment):
|
||||
self.grid.place_agent(agent, (x, y))
|
||||
|
||||
self.datacollector = DataCollector(
|
||||
model_reporters={"Gini": compute_gini},
|
||||
agent_reporters={"Wealth": "wealth"})
|
||||
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
|
||||
fixed_params = {"generator": nx.complete_graph,
|
||||
"width": 10,
|
||||
"network_agents": [{"agent_class": SocialMoneyAgent,
|
||||
'weight': 1}],
|
||||
"height": 10}
|
||||
fixed_params = {
|
||||
"generator": nx.complete_graph,
|
||||
"width": 10,
|
||||
"network_agents": [{"agent_class": SocialMoneyAgent, "weight": 1}],
|
||||
"height": 10,
|
||||
}
|
||||
|
||||
variable_params = {"N": range(10, 100, 10)}
|
||||
|
||||
batch_run = BatchRunner(MoneyEnv,
|
||||
variable_parameters=variable_params,
|
||||
fixed_parameters=fixed_params,
|
||||
iterations=5,
|
||||
max_steps=100,
|
||||
model_reporters={"Gini": compute_gini})
|
||||
batch_run = BatchRunner(
|
||||
MoneyEnv,
|
||||
variable_parameters=variable_params,
|
||||
fixed_parameters=fixed_params,
|
||||
iterations=5,
|
||||
max_steps=100,
|
||||
model_reporters={"Gini": compute_gini},
|
||||
)
|
||||
batch_run.run_all()
|
||||
|
||||
run_data = batch_run.get_model_vars_dataframe()
|
||||
|
@ -4,24 +4,26 @@ from mesa.time import RandomActivation
|
||||
from mesa.datacollection import DataCollector
|
||||
from mesa.batchrunner import BatchRunner
|
||||
|
||||
|
||||
def compute_gini(model):
|
||||
agent_wealths = [agent.wealth for agent in model.schedule.agents]
|
||||
x = sorted(agent_wealths)
|
||||
N = model.num_agents
|
||||
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
|
||||
return (1 + (1/N) - 2*B)
|
||||
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
|
||||
return 1 + (1 / N) - 2 * B
|
||||
|
||||
|
||||
class MoneyAgent(Agent):
|
||||
""" An agent with fixed initial wealth."""
|
||||
"""An agent with fixed initial wealth."""
|
||||
|
||||
def __init__(self, unique_id, model):
|
||||
super().__init__(unique_id, model)
|
||||
self.wealth = 1
|
||||
|
||||
def move(self):
|
||||
possible_steps = self.model.grid.get_neighborhood(
|
||||
self.pos,
|
||||
moore=True,
|
||||
include_center=False)
|
||||
self.pos, moore=True, include_center=False
|
||||
)
|
||||
new_position = self.random.choice(possible_steps)
|
||||
self.model.grid.move_agent(self, new_position)
|
||||
|
||||
@ -37,8 +39,10 @@ class MoneyAgent(Agent):
|
||||
if self.wealth > 0:
|
||||
self.give_money()
|
||||
|
||||
|
||||
class MoneyModel(Model):
|
||||
"""A model with some number of agents."""
|
||||
|
||||
def __init__(self, N, width, height):
|
||||
self.num_agents = N
|
||||
self.grid = MultiGrid(width, height, True)
|
||||
@ -55,29 +59,29 @@ class MoneyModel(Model):
|
||||
self.grid.place_agent(a, (x, y))
|
||||
|
||||
self.datacollector = DataCollector(
|
||||
model_reporters={"Gini": compute_gini},
|
||||
agent_reporters={"Wealth": "wealth"})
|
||||
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
|
||||
)
|
||||
|
||||
def step(self):
|
||||
self.datacollector.collect(self)
|
||||
self.schedule.step()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
|
||||
fixed_params = {"width": 10,
|
||||
"height": 10}
|
||||
fixed_params = {"width": 10, "height": 10}
|
||||
variable_params = {"N": range(10, 500, 10)}
|
||||
|
||||
batch_run = BatchRunner(MoneyModel,
|
||||
variable_params,
|
||||
fixed_params,
|
||||
iterations=5,
|
||||
max_steps=100,
|
||||
model_reporters={"Gini": compute_gini})
|
||||
batch_run = BatchRunner(
|
||||
MoneyModel,
|
||||
variable_params,
|
||||
fixed_params,
|
||||
iterations=5,
|
||||
max_steps=100,
|
||||
model_reporters={"Gini": compute_gini},
|
||||
)
|
||||
batch_run.run_all()
|
||||
|
||||
run_data = batch_run.get_model_vars_dataframe()
|
||||
run_data.head()
|
||||
print(run_data.Gini)
|
||||
|
||||
|
@ -3,84 +3,83 @@ import logging
|
||||
|
||||
|
||||
class DumbViewer(FSM, NetworkAgent):
|
||||
'''
|
||||
"""
|
||||
A viewer that gets infected via TV (if it has one) and tries to infect
|
||||
its neighbors once it's infected.
|
||||
'''
|
||||
"""
|
||||
|
||||
defaults = {
|
||||
'prob_neighbor_spread': 0.5,
|
||||
'prob_tv_spread': 0.1,
|
||||
"prob_neighbor_spread": 0.5,
|
||||
"prob_tv_spread": 0.1,
|
||||
}
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def neutral(self):
|
||||
if self['has_tv']:
|
||||
if self.prob(self.model['prob_tv_spread']):
|
||||
if self["has_tv"]:
|
||||
if self.prob(self.model["prob_tv_spread"]):
|
||||
return self.infected
|
||||
|
||||
@state
|
||||
def infected(self):
|
||||
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
|
||||
if self.prob(self.model['prob_neighbor_spread']):
|
||||
if self.prob(self.model["prob_neighbor_spread"]):
|
||||
neighbor.infect()
|
||||
|
||||
def infect(self):
|
||||
'''
|
||||
"""
|
||||
This is not a state. It is a function that other agents can use to try to
|
||||
infect this agent. DumbViewer always gets infected, but other agents like
|
||||
HerdViewer might not become infected right away
|
||||
'''
|
||||
"""
|
||||
|
||||
self.set_state(self.infected)
|
||||
|
||||
|
||||
class HerdViewer(DumbViewer):
|
||||
'''
|
||||
"""
|
||||
A viewer whose probability of infection depends on the state of its neighbors.
|
||||
'''
|
||||
"""
|
||||
|
||||
def infect(self):
|
||||
'''Notice again that this is NOT a state. See DumbViewer.infect for reference'''
|
||||
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
|
||||
infected = self.count_neighboring_agents(state_id=self.infected.id)
|
||||
total = self.count_neighboring_agents()
|
||||
prob_infect = self.model['prob_neighbor_spread'] * infected/total
|
||||
self.debug('prob_infect', prob_infect)
|
||||
prob_infect = self.model["prob_neighbor_spread"] * infected / total
|
||||
self.debug("prob_infect", prob_infect)
|
||||
if self.prob(prob_infect):
|
||||
self.set_state(self.infected)
|
||||
|
||||
|
||||
class WiseViewer(HerdViewer):
|
||||
'''
|
||||
"""
|
||||
A viewer that can change its mind.
|
||||
'''
|
||||
"""
|
||||
|
||||
defaults = {
|
||||
'prob_neighbor_spread': 0.5,
|
||||
'prob_neighbor_cure': 0.25,
|
||||
'prob_tv_spread': 0.1,
|
||||
"prob_neighbor_spread": 0.5,
|
||||
"prob_neighbor_cure": 0.25,
|
||||
"prob_tv_spread": 0.1,
|
||||
}
|
||||
|
||||
@state
|
||||
def cured(self):
|
||||
prob_cure = self.model['prob_neighbor_cure']
|
||||
prob_cure = self.model["prob_neighbor_cure"]
|
||||
for neighbor in self.get_neighboring_agents(state_id=self.infected.id):
|
||||
if self.prob(prob_cure):
|
||||
try:
|
||||
neighbor.cure()
|
||||
except AttributeError:
|
||||
self.debug('Viewer {} cannot be cured'.format(neighbor.id))
|
||||
self.debug("Viewer {} cannot be cured".format(neighbor.id))
|
||||
|
||||
def cure(self):
|
||||
self.set_state(self.cured.id)
|
||||
|
||||
@state
|
||||
def infected(self):
|
||||
cured = max(self.count_neighboring_agents(self.cured.id),
|
||||
1.0)
|
||||
infected = max(self.count_neighboring_agents(self.infected.id),
|
||||
1.0)
|
||||
prob_cure = self.model['prob_neighbor_cure'] * (cured/infected)
|
||||
cured = max(self.count_neighboring_agents(self.cured.id), 1.0)
|
||||
infected = max(self.count_neighboring_agents(self.infected.id), 1.0)
|
||||
prob_cure = self.model["prob_neighbor_cure"] * (cured / infected)
|
||||
if self.prob(prob_cure):
|
||||
return self.cured
|
||||
return self.set_state(super().infected)
|
||||
|
@ -1,6 +1,6 @@
|
||||
'''
|
||||
"""
|
||||
Example of a fully programmatic simulation, without definition files.
|
||||
'''
|
||||
"""
|
||||
from soil import Simulation, agents
|
||||
from networkx import Graph
|
||||
import logging
|
||||
@ -14,21 +14,22 @@ def mygenerator():
|
||||
|
||||
|
||||
class MyAgent(agents.FSM):
|
||||
|
||||
@agents.default_state
|
||||
@agents.state
|
||||
def neutral(self):
|
||||
self.debug('I am running')
|
||||
self.debug("I am running")
|
||||
if agents.prob(0.2):
|
||||
self.info('This runs 2/10 times on average')
|
||||
self.info("This runs 2/10 times on average")
|
||||
|
||||
|
||||
s = Simulation(name='Programmatic',
|
||||
network_params={'generator': mygenerator},
|
||||
num_trials=1,
|
||||
max_time=100,
|
||||
agent_class=MyAgent,
|
||||
dry_run=True)
|
||||
s = Simulation(
|
||||
name="Programmatic",
|
||||
network_params={"generator": mygenerator},
|
||||
num_trials=1,
|
||||
max_time=100,
|
||||
agent_class=MyAgent,
|
||||
dry_run=True,
|
||||
)
|
||||
|
||||
|
||||
# By default, logging will only print WARNING logs (and above).
|
||||
|
@ -5,7 +5,8 @@ import logging
|
||||
|
||||
|
||||
class CityPubs(Environment):
|
||||
'''Environment with Pubs'''
|
||||
"""Environment with Pubs"""
|
||||
|
||||
level = logging.INFO
|
||||
|
||||
def __init__(self, *args, number_of_pubs=3, pub_capacity=10, **kwargs):
|
||||
@ -13,68 +14,70 @@ class CityPubs(Environment):
|
||||
pubs = {}
|
||||
for i in range(number_of_pubs):
|
||||
newpub = {
|
||||
'name': 'The awesome pub #{}'.format(i),
|
||||
'open': True,
|
||||
'capacity': pub_capacity,
|
||||
'occupancy': 0,
|
||||
"name": "The awesome pub #{}".format(i),
|
||||
"open": True,
|
||||
"capacity": pub_capacity,
|
||||
"occupancy": 0,
|
||||
}
|
||||
pubs[newpub['name']] = newpub
|
||||
self['pubs'] = pubs
|
||||
pubs[newpub["name"]] = newpub
|
||||
self["pubs"] = pubs
|
||||
|
||||
def enter(self, pub_id, *nodes):
|
||||
'''Agents will try to enter. The pub checks if it is possible'''
|
||||
"""Agents will try to enter. The pub checks if it is possible"""
|
||||
try:
|
||||
pub = self['pubs'][pub_id]
|
||||
pub = self["pubs"][pub_id]
|
||||
except KeyError:
|
||||
raise ValueError('Pub {} is not available'.format(pub_id))
|
||||
if not pub['open'] or (pub['capacity'] < (len(nodes) + pub['occupancy'])):
|
||||
raise ValueError("Pub {} is not available".format(pub_id))
|
||||
if not pub["open"] or (pub["capacity"] < (len(nodes) + pub["occupancy"])):
|
||||
return False
|
||||
pub['occupancy'] += len(nodes)
|
||||
pub["occupancy"] += len(nodes)
|
||||
for node in nodes:
|
||||
node['pub'] = pub_id
|
||||
node["pub"] = pub_id
|
||||
return True
|
||||
|
||||
def available_pubs(self):
|
||||
for pub in self['pubs'].values():
|
||||
if pub['open'] and (pub['occupancy'] < pub['capacity']):
|
||||
yield pub['name']
|
||||
for pub in self["pubs"].values():
|
||||
if pub["open"] and (pub["occupancy"] < pub["capacity"]):
|
||||
yield pub["name"]
|
||||
|
||||
def exit(self, pub_id, *node_ids):
|
||||
'''Agents will notify the pub they want to leave'''
|
||||
"""Agents will notify the pub they want to leave"""
|
||||
try:
|
||||
pub = self['pubs'][pub_id]
|
||||
pub = self["pubs"][pub_id]
|
||||
except KeyError:
|
||||
raise ValueError('Pub {} is not available'.format(pub_id))
|
||||
raise ValueError("Pub {} is not available".format(pub_id))
|
||||
for node_id in node_ids:
|
||||
node = self.get_agent(node_id)
|
||||
if pub_id == node['pub']:
|
||||
del node['pub']
|
||||
pub['occupancy'] -= 1
|
||||
if pub_id == node["pub"]:
|
||||
del node["pub"]
|
||||
pub["occupancy"] -= 1
|
||||
|
||||
|
||||
class Patron(FSM, NetworkAgent):
|
||||
'''Agent that looks for friends to drink with. It will do three things:
|
||||
1) Look for other patrons to drink with
|
||||
2) Look for a bar where the agent and other agents in the same group can get in.
|
||||
3) While in the bar, patrons only drink, until they get drunk and taken home.
|
||||
'''
|
||||
"""Agent that looks for friends to drink with. It will do three things:
|
||||
1) Look for other patrons to drink with
|
||||
2) Look for a bar where the agent and other agents in the same group can get in.
|
||||
3) While in the bar, patrons only drink, until they get drunk and taken home.
|
||||
"""
|
||||
|
||||
level = logging.DEBUG
|
||||
|
||||
pub = None
|
||||
drunk = False
|
||||
pints = 0
|
||||
max_pints = 3
|
||||
kicked_out = False
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def looking_for_friends(self):
|
||||
'''Look for friends to drink with'''
|
||||
self.info('I am looking for friends')
|
||||
available_friends = list(self.get_agents(drunk=False,
|
||||
pub=None,
|
||||
state_id=self.looking_for_friends.id))
|
||||
"""Look for friends to drink with"""
|
||||
self.info("I am looking for friends")
|
||||
available_friends = list(
|
||||
self.get_agents(drunk=False, pub=None, state_id=self.looking_for_friends.id)
|
||||
)
|
||||
if not available_friends:
|
||||
self.info('Life sucks and I\'m alone!')
|
||||
self.info("Life sucks and I'm alone!")
|
||||
return self.at_home
|
||||
befriended = self.try_friends(available_friends)
|
||||
if befriended:
|
||||
@ -82,91 +85,91 @@ class Patron(FSM, NetworkAgent):
|
||||
|
||||
@state
|
||||
def looking_for_pub(self):
|
||||
'''Look for a pub that accepts me and my friends'''
|
||||
if self['pub'] != None:
|
||||
"""Look for a pub that accepts me and my friends"""
|
||||
if self["pub"] != None:
|
||||
return self.sober_in_pub
|
||||
self.debug('I am looking for a pub')
|
||||
self.debug("I am looking for a pub")
|
||||
group = list(self.get_neighboring_agents())
|
||||
for pub in self.model.available_pubs():
|
||||
self.debug('We\'re trying to get into {}: total: {}'.format(pub, len(group)))
|
||||
self.debug("We're trying to get into {}: total: {}".format(pub, len(group)))
|
||||
if self.model.enter(pub, self, *group):
|
||||
self.info('We\'re all {} getting in {}!'.format(len(group), pub))
|
||||
self.info("We're all {} getting in {}!".format(len(group), pub))
|
||||
return self.sober_in_pub
|
||||
|
||||
@state
|
||||
def sober_in_pub(self):
|
||||
'''Drink up.'''
|
||||
"""Drink up."""
|
||||
self.drink()
|
||||
if self['pints'] > self['max_pints']:
|
||||
if self["pints"] > self["max_pints"]:
|
||||
return self.drunk_in_pub
|
||||
|
||||
@state
|
||||
def drunk_in_pub(self):
|
||||
'''I'm out. Take me home!'''
|
||||
self.info('I\'m so drunk. Take me home!')
|
||||
self['drunk'] = True
|
||||
pass # out drunk
|
||||
"""I'm out. Take me home!"""
|
||||
self.info("I'm so drunk. Take me home!")
|
||||
self["drunk"] = True
|
||||
if self.kicked_out:
|
||||
return self.at_home
|
||||
pass # out drun
|
||||
|
||||
@state
|
||||
def at_home(self):
|
||||
'''The end'''
|
||||
"""The end"""
|
||||
others = self.get_agents(state_id=Patron.at_home.id, limit_neighbors=True)
|
||||
self.debug('I\'m home. Just like {} of my friends'.format(len(others)))
|
||||
|
||||
self.debug("I'm home. Just like {} of my friends".format(len(others)))
|
||||
|
||||
def drink(self):
|
||||
self['pints'] += 1
|
||||
self.debug('Cheers to that')
|
||||
|
||||
self["pints"] += 1
|
||||
self.debug("Cheers to that")
|
||||
|
||||
def kick_out(self):
|
||||
self.set_state(self.at_home)
|
||||
self.kicked_out = True
|
||||
|
||||
def befriend(self, other_agent, force=False):
|
||||
'''
|
||||
"""
|
||||
Try to become friends with another agent. The chances of
|
||||
success depend on both agents' openness.
|
||||
'''
|
||||
if force or self['openness'] > self.random.random():
|
||||
"""
|
||||
if force or self["openness"] > self.random.random():
|
||||
self.add_edge(self, other_agent)
|
||||
self.info('Made some friend {}'.format(other_agent))
|
||||
self.info("Made some friend {}".format(other_agent))
|
||||
return True
|
||||
return False
|
||||
|
||||
def try_friends(self, others):
|
||||
''' Look for random agents around me and try to befriend them'''
|
||||
"""Look for random agents around me and try to befriend them"""
|
||||
befriended = False
|
||||
k = int(10*self['openness'])
|
||||
k = int(10 * self["openness"])
|
||||
self.random.shuffle(others)
|
||||
for friend in islice(others, k): # random.choice >= 3.7
|
||||
if friend == self:
|
||||
continue
|
||||
if friend.befriend(self):
|
||||
self.befriend(friend, force=True)
|
||||
self.debug('Hooray! new friend: {}'.format(friend.id))
|
||||
self.debug("Hooray! new friend: {}".format(friend.id))
|
||||
befriended = True
|
||||
else:
|
||||
self.debug('{} does not want to be friends'.format(friend.id))
|
||||
self.debug("{} does not want to be friends".format(friend.id))
|
||||
return befriended
|
||||
|
||||
|
||||
class Police(FSM):
|
||||
'''Simple agent to take drunk people out of pubs.'''
|
||||
"""Simple agent to take drunk people out of pubs."""
|
||||
|
||||
level = logging.INFO
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def patrol(self):
|
||||
drunksters = list(self.get_agents(drunk=True,
|
||||
state_id=Patron.drunk_in_pub.id))
|
||||
drunksters = list(self.get_agents(drunk=True, state_id=Patron.drunk_in_pub.id))
|
||||
for drunk in drunksters:
|
||||
self.info('Kicking out the trash: {}'.format(drunk.id))
|
||||
self.info("Kicking out the trash: {}".format(drunk.id))
|
||||
drunk.kick_out()
|
||||
else:
|
||||
self.info('No trash to take out. Too bad.')
|
||||
self.info("No trash to take out. Too bad.")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
from soil import simulation
|
||||
simulation.run_from_config('pubcrawl.yml',
|
||||
dry_run=True,
|
||||
dump=None,
|
||||
parallel=False)
|
||||
|
||||
simulation.run_from_config("pubcrawl.yml", dry_run=True, dump=None, parallel=False)
|
||||
|
@ -2,3 +2,13 @@ There are two similar implementations of this simulation.
|
||||
|
||||
- `basic`. Using simple primites
|
||||
- `improved`. Using more advanced features such as the `time` module to avoid unnecessary computations (i.e., skip steps), and generator functions.
|
||||
|
||||
The examples can be run directly in the terminal, and they accept command like arguments.
|
||||
For example, to enable the CSV exporter and the Summary exporter, while setting `max_time` to `100` and `seed` to `CustomSeed`:
|
||||
|
||||
```
|
||||
python rabbit_agents.py --set max_time=100 --csv -e summary --set 'seed="CustomSeed"'
|
||||
```
|
||||
|
||||
To learn more about how this functionality works, check out the `soil.easy` function.
|
||||
|
||||
|
@ -1,13 +1,10 @@
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
|
||||
from soil.time import Delta
|
||||
from enum import Enum
|
||||
from collections import Counter
|
||||
import logging
|
||||
import math
|
||||
|
||||
|
||||
class RabbitEnv(Environment):
|
||||
|
||||
@property
|
||||
def num_rabbits(self):
|
||||
return self.count_agents(agent_class=Rabbit)
|
||||
@ -21,7 +18,7 @@ class RabbitEnv(Environment):
|
||||
return self.count_agents(agent_class=Female)
|
||||
|
||||
|
||||
class Rabbit(FSM, NetworkAgent):
|
||||
class Rabbit(NetworkAgent, FSM):
|
||||
|
||||
sexual_maturity = 30
|
||||
life_expectancy = 300
|
||||
@ -29,7 +26,7 @@ class Rabbit(FSM, NetworkAgent):
|
||||
@default_state
|
||||
@state
|
||||
def newborn(self):
|
||||
self.info('I am a newborn.')
|
||||
self.info("I am a newborn.")
|
||||
self.age = 0
|
||||
self.offspring = 0
|
||||
return self.youngling
|
||||
@ -38,7 +35,7 @@ class Rabbit(FSM, NetworkAgent):
|
||||
def youngling(self):
|
||||
self.age += 1
|
||||
if self.age >= self.sexual_maturity:
|
||||
self.info(f'I am fertile! My age is {self.age}')
|
||||
self.info(f"I am fertile! My age is {self.age}")
|
||||
return self.fertile
|
||||
|
||||
@state
|
||||
@ -62,17 +59,18 @@ class Male(Rabbit):
|
||||
return self.dead
|
||||
|
||||
# Males try to mate
|
||||
for f in self.model.agents(agent_class=Female,
|
||||
state_id=Female.fertile.id,
|
||||
limit=self.max_females):
|
||||
self.debug('FOUND A FEMALE: ', repr(f), self.mating_prob)
|
||||
if self.prob(self['mating_prob']):
|
||||
for f in self.model.agents(
|
||||
agent_class=Female, state_id=Female.fertile.id, limit=self.max_females
|
||||
):
|
||||
self.debug("FOUND A FEMALE: ", repr(f), self.mating_prob)
|
||||
if self.prob(self["mating_prob"]):
|
||||
f.impregnate(self)
|
||||
break # Take a break
|
||||
|
||||
|
||||
class Female(Rabbit):
|
||||
gestation = 30
|
||||
gestation = 10
|
||||
pregnancy = -1
|
||||
|
||||
@state
|
||||
def fertile(self):
|
||||
@ -80,69 +78,73 @@ class Female(Rabbit):
|
||||
self.age += 1
|
||||
if self.age > self.life_expectancy:
|
||||
return self.dead
|
||||
if self.pregnancy >= 0:
|
||||
return self.pregnant
|
||||
|
||||
def impregnate(self, male):
|
||||
self.info(f'{repr(male)} impregnating female {repr(self)}')
|
||||
self.info(f"impregnated by {repr(male)}")
|
||||
self.mate = male
|
||||
self.pregnancy = -1
|
||||
self.set_state(self.pregnant, when=self.now)
|
||||
self.number_of_babies = int(8+4*self.random.random())
|
||||
self.pregnancy = 0
|
||||
self.number_of_babies = int(8 + 4 * self.random.random())
|
||||
|
||||
@state
|
||||
def pregnant(self):
|
||||
self.debug('I am pregnant')
|
||||
self.info("I am pregnant")
|
||||
self.age += 1
|
||||
self.pregnancy += 1
|
||||
|
||||
if self.prob(self.age / self.life_expectancy):
|
||||
if self.age >= self.life_expectancy:
|
||||
return self.die()
|
||||
|
||||
if self.pregnancy >= self.gestation:
|
||||
self.info('Having {} babies'.format(self.number_of_babies))
|
||||
for i in range(self.number_of_babies):
|
||||
state = {}
|
||||
agent_class = self.random.choice([Male, Female])
|
||||
child = self.model.add_node(agent_class=agent_class,
|
||||
**state)
|
||||
child.add_edge(self)
|
||||
try:
|
||||
child.add_edge(self.mate)
|
||||
self.model.agents[self.mate].offspring += 1
|
||||
except ValueError:
|
||||
self.debug('The father has passed away')
|
||||
if self.pregnancy < self.gestation:
|
||||
self.pregnancy += 1
|
||||
return
|
||||
|
||||
self.offspring += 1
|
||||
self.mate = None
|
||||
return self.fertile
|
||||
self.info("Having {} babies".format(self.number_of_babies))
|
||||
for i in range(self.number_of_babies):
|
||||
state = {}
|
||||
agent_class = self.random.choice([Male, Female])
|
||||
child = self.model.add_node(agent_class=agent_class, **state)
|
||||
child.add_edge(self)
|
||||
try:
|
||||
child.add_edge(self.mate)
|
||||
self.model.agents[self.mate].offspring += 1
|
||||
except ValueError:
|
||||
self.debug("The father has passed away")
|
||||
|
||||
@state
|
||||
def dead(self):
|
||||
super().dead()
|
||||
if 'pregnancy' in self and self['pregnancy'] > -1:
|
||||
self.info('A mother has died carrying a baby!!')
|
||||
self.offspring += 1
|
||||
self.mate = None
|
||||
self.pregnancy = -1
|
||||
return self.fertile
|
||||
|
||||
def die(self):
|
||||
if "pregnancy" in self and self["pregnancy"] > -1:
|
||||
self.info("A mother has died carrying a baby!!")
|
||||
return super().die()
|
||||
|
||||
|
||||
class RandomAccident(BaseAgent):
|
||||
|
||||
def step(self):
|
||||
rabbits_alive = self.model.G.number_of_nodes()
|
||||
|
||||
if not rabbits_alive:
|
||||
return self.die()
|
||||
|
||||
prob_death = self.model.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
|
||||
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
|
||||
prob_death = self.model.get("prob_death", 1e-100) * math.floor(
|
||||
math.log10(max(1, rabbits_alive))
|
||||
)
|
||||
self.debug("Killing some rabbits with prob={}!".format(prob_death))
|
||||
for i in self.iter_agents(agent_class=Rabbit):
|
||||
if i.state_id == i.dead.id:
|
||||
continue
|
||||
if self.prob(prob_death):
|
||||
self.info('I killed a rabbit: {}'.format(i.id))
|
||||
self.info("I killed a rabbit: {}".format(i.id))
|
||||
rabbits_alive -= 1
|
||||
i.set_state(i.dead)
|
||||
self.debug('Rabbits alive: {}'.format(rabbits_alive))
|
||||
i.die()
|
||||
self.debug("Rabbits alive: {}".format(rabbits_alive))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
from soil import easy
|
||||
sim = easy('rabbits.yml')
|
||||
sim.run()
|
||||
|
||||
with easy("rabbits.yml") as sim:
|
||||
sim.run()
|
||||
|
@ -1,130 +1,157 @@
|
||||
from soil.agents import FSM, state, default_state, BaseAgent, NetworkAgent
|
||||
from soil.time import Delta, When, NEVER
|
||||
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
|
||||
from soil.time import Delta
|
||||
from enum import Enum
|
||||
from collections import Counter
|
||||
import logging
|
||||
import math
|
||||
|
||||
|
||||
class RabbitModel(FSM, NetworkAgent):
|
||||
class RabbitEnv(Environment):
|
||||
@property
|
||||
def num_rabbits(self):
|
||||
return self.count_agents(agent_class=Rabbit)
|
||||
|
||||
mating_prob = 0.005
|
||||
offspring = 0
|
||||
@property
|
||||
def num_males(self):
|
||||
return self.count_agents(agent_class=Male)
|
||||
|
||||
@property
|
||||
def num_females(self):
|
||||
return self.count_agents(agent_class=Female)
|
||||
|
||||
|
||||
class Rabbit(FSM, NetworkAgent):
|
||||
|
||||
sexual_maturity = 30
|
||||
life_expectancy = 300
|
||||
birth = None
|
||||
|
||||
sexual_maturity = 3
|
||||
life_expectancy = 30
|
||||
@property
|
||||
def age(self):
|
||||
if self.birth is None:
|
||||
return None
|
||||
return self.now - self.birth
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def newborn(self):
|
||||
self.info("I am a newborn.")
|
||||
self.birth = self.now
|
||||
self.info(f'I am a newborn.')
|
||||
self.model['rabbits_alive'] = self.model.get('rabbits_alive', 0) + 1
|
||||
self.offspring = 0
|
||||
return self.youngling, Delta(self.sexual_maturity - self.age)
|
||||
|
||||
# Here we can skip the `youngling` state by using a coroutine/generator.
|
||||
while self.age < self.sexual_maturity:
|
||||
interval = self.sexual_maturity - self.age
|
||||
yield Delta(interval)
|
||||
|
||||
self.info(f'I am fertile! My age is {self.age}')
|
||||
return self.fertile
|
||||
|
||||
@property
|
||||
def age(self):
|
||||
return self.now - self.birth
|
||||
@state
|
||||
def youngling(self):
|
||||
if self.age >= self.sexual_maturity:
|
||||
self.info(f"I am fertile! My age is {self.age}")
|
||||
return self.fertile
|
||||
|
||||
@state
|
||||
def fertile(self):
|
||||
raise Exception("Each subclass should define its fertile state")
|
||||
|
||||
def step(self):
|
||||
super().step()
|
||||
if self.prob(self.age / self.life_expectancy):
|
||||
return self.die()
|
||||
@state
|
||||
def dead(self):
|
||||
self.die()
|
||||
|
||||
|
||||
class Male(RabbitModel):
|
||||
|
||||
class Male(Rabbit):
|
||||
max_females = 5
|
||||
mating_prob = 0.001
|
||||
|
||||
@state
|
||||
def fertile(self):
|
||||
# Males try to mate
|
||||
for f in self.model.agents(agent_class=Female,
|
||||
state_id=Female.fertile.id,
|
||||
limit=self.max_females):
|
||||
self.debug('Found a female:', repr(f))
|
||||
if self.prob(self['mating_prob']):
|
||||
f.impregnate(self)
|
||||
break # Take a break, don't try to impregnate the rest
|
||||
|
||||
|
||||
class Female(RabbitModel):
|
||||
due_date = None
|
||||
age_of_pregnancy = None
|
||||
gestation = 10
|
||||
mate = None
|
||||
|
||||
@state
|
||||
def fertile(self):
|
||||
return self.fertile, NEVER
|
||||
|
||||
@state
|
||||
def pregnant(self):
|
||||
self.info('I am pregnant')
|
||||
if self.age > self.life_expectancy:
|
||||
return self.dead
|
||||
|
||||
self.due_date = self.now + self.gestation
|
||||
# Males try to mate
|
||||
for f in self.model.agents(
|
||||
agent_class=Female, state_id=Female.fertile.id, limit=self.max_females
|
||||
):
|
||||
self.debug("FOUND A FEMALE: ", repr(f), self.mating_prob)
|
||||
if self.prob(self["mating_prob"]):
|
||||
f.impregnate(self)
|
||||
break # Do not try to impregnate other females
|
||||
|
||||
number_of_babies = int(8+4*self.random.random())
|
||||
|
||||
while self.now < self.due_date:
|
||||
yield When(self.due_date)
|
||||
|
||||
self.info('Having {} babies'.format(number_of_babies))
|
||||
for i in range(number_of_babies):
|
||||
agent_class = self.random.choice([Male, Female])
|
||||
child = self.model.add_node(agent_class=agent_class,
|
||||
topology=self.topology)
|
||||
self.model.add_edge(self, child)
|
||||
self.model.add_edge(self.mate, child)
|
||||
self.offspring += 1
|
||||
self.model.agents[self.mate].offspring += 1
|
||||
self.mate = None
|
||||
self.due_date = None
|
||||
return self.fertile
|
||||
class Female(Rabbit):
|
||||
gestation = 10
|
||||
conception = None
|
||||
|
||||
@state
|
||||
def dead(self):
|
||||
super().dead()
|
||||
if self.due_date is not None:
|
||||
self.info('A mother has died carrying a baby!!')
|
||||
def fertile(self):
|
||||
# Just wait for a Male
|
||||
if self.age > self.life_expectancy:
|
||||
return self.dead
|
||||
if self.conception is not None:
|
||||
return self.pregnant
|
||||
|
||||
@property
|
||||
def pregnancy(self):
|
||||
if self.conception is None:
|
||||
return None
|
||||
return self.now - self.conception
|
||||
|
||||
def impregnate(self, male):
|
||||
self.info(f'{repr(male)} impregnating female {repr(self)}')
|
||||
self.info(f"impregnated by {repr(male)}")
|
||||
self.mate = male
|
||||
self.set_state(self.pregnant, when=self.now)
|
||||
self.conception = self.now
|
||||
self.number_of_babies = int(8 + 4 * self.random.random())
|
||||
|
||||
@state
|
||||
def pregnant(self):
|
||||
self.debug("I am pregnant")
|
||||
|
||||
if self.age > self.life_expectancy:
|
||||
self.info("Dying before giving birth")
|
||||
return self.die()
|
||||
|
||||
if self.pregnancy >= self.gestation:
|
||||
self.info("Having {} babies".format(self.number_of_babies))
|
||||
for i in range(self.number_of_babies):
|
||||
state = {}
|
||||
agent_class = self.random.choice([Male, Female])
|
||||
child = self.model.add_node(agent_class=agent_class, **state)
|
||||
child.add_edge(self)
|
||||
if self.mate:
|
||||
child.add_edge(self.mate)
|
||||
self.mate.offspring += 1
|
||||
else:
|
||||
self.debug("The father has passed away")
|
||||
|
||||
self.offspring += 1
|
||||
self.mate = None
|
||||
return self.fertile
|
||||
|
||||
def die(self):
|
||||
if self.pregnancy is not None:
|
||||
self.info("A mother has died carrying a baby!!")
|
||||
return super().die()
|
||||
|
||||
|
||||
class RandomAccident(BaseAgent):
|
||||
|
||||
level = logging.INFO
|
||||
|
||||
def step(self):
|
||||
rabbits_total = self.model.topology.number_of_nodes()
|
||||
if 'rabbits_alive' not in self.model:
|
||||
self.model['rabbits_alive'] = 0
|
||||
rabbits_alive = self.model.get('rabbits_alive', rabbits_total)
|
||||
prob_death = self.model.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
|
||||
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
|
||||
for i in self.model.network_agents:
|
||||
if i.state.id == i.dead.id:
|
||||
rabbits_alive = self.model.G.number_of_nodes()
|
||||
|
||||
if not rabbits_alive:
|
||||
return self.die()
|
||||
|
||||
prob_death = self.model.get("prob_death", 1e-100) * math.floor(
|
||||
math.log10(max(1, rabbits_alive))
|
||||
)
|
||||
self.debug("Killing some rabbits with prob={}!".format(prob_death))
|
||||
for i in self.iter_agents(agent_class=Rabbit):
|
||||
if i.state_id == i.dead.id:
|
||||
continue
|
||||
if self.prob(prob_death):
|
||||
self.info('I killed a rabbit: {}'.format(i.id))
|
||||
rabbits_alive = self.model['rabbits_alive'] = rabbits_alive -1
|
||||
i.set_state(i.dead)
|
||||
self.debug('Rabbits alive: {}/{}'.format(rabbits_alive, rabbits_total))
|
||||
if self.model.count_agents(state_id=RabbitModel.dead.id) == self.model.topology.number_of_nodes():
|
||||
self.die()
|
||||
self.info("I killed a rabbit: {}".format(i.id))
|
||||
rabbits_alive -= 1
|
||||
i.die()
|
||||
self.debug("Rabbits alive: {}".format(rabbits_alive))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from soil import easy
|
||||
|
||||
with easy("rabbits.yml") as sim:
|
||||
sim.run()
|
||||
|
@ -7,11 +7,10 @@ description: null
|
||||
group: null
|
||||
interval: 1.0
|
||||
max_time: 100
|
||||
model_class: soil.environment.Environment
|
||||
model_class: rabbit_agents.RabbitEnv
|
||||
model_params:
|
||||
agents:
|
||||
topology: true
|
||||
agent_class: rabbit_agents.RabbitModel
|
||||
distribution:
|
||||
- agent_class: rabbit_agents.Male
|
||||
weight: 1
|
||||
@ -34,5 +33,10 @@ model_params:
|
||||
nodes:
|
||||
- id: 1
|
||||
- id: 0
|
||||
model_reporters:
|
||||
num_males: 'num_males'
|
||||
num_females: 'num_females'
|
||||
num_rabbits: |
|
||||
py:lambda env: env.num_males + env.num_females
|
||||
extra:
|
||||
visualization_params: {}
|
||||
|
@ -1,42 +1,43 @@
|
||||
'''
|
||||
"""
|
||||
Example of setting a
|
||||
Example of a fully programmatic simulation, without definition files.
|
||||
'''
|
||||
"""
|
||||
from soil import Simulation, agents
|
||||
from soil.time import Delta
|
||||
|
||||
|
||||
|
||||
class MyAgent(agents.FSM):
|
||||
'''
|
||||
"""
|
||||
An agent that first does a ping
|
||||
'''
|
||||
"""
|
||||
|
||||
defaults = {'pong_counts': 2}
|
||||
defaults = {"pong_counts": 2}
|
||||
|
||||
@agents.default_state
|
||||
@agents.state
|
||||
def ping(self):
|
||||
self.info('Ping')
|
||||
return self.pong, Delta(self.random.expovariate(1/16))
|
||||
self.info("Ping")
|
||||
return self.pong, Delta(self.random.expovariate(1 / 16))
|
||||
|
||||
@agents.state
|
||||
def pong(self):
|
||||
self.info('Pong')
|
||||
self.info("Pong")
|
||||
self.pong_counts -= 1
|
||||
self.info(str(self.pong_counts))
|
||||
if self.pong_counts < 1:
|
||||
return self.die()
|
||||
return None, Delta(self.random.expovariate(1/16))
|
||||
return None, Delta(self.random.expovariate(1 / 16))
|
||||
|
||||
|
||||
s = Simulation(name='Programmatic',
|
||||
network_agents=[{'agent_class': MyAgent, 'id': 0}],
|
||||
topology={'nodes': [{'id': 0}], 'links': []},
|
||||
num_trials=1,
|
||||
max_time=100,
|
||||
agent_class=MyAgent,
|
||||
dry_run=True)
|
||||
s = Simulation(
|
||||
name="Programmatic",
|
||||
network_agents=[{"agent_class": MyAgent, "id": 0}],
|
||||
topology={"nodes": [{"id": 0}], "links": []},
|
||||
num_trials=1,
|
||||
max_time=100,
|
||||
agent_class=MyAgent,
|
||||
dry_run=True,
|
||||
)
|
||||
|
||||
|
||||
envs = s.run()
|
||||
|
@ -20,56 +20,83 @@ class TerroristSpreadModel(FSM, Geo):
|
||||
def __init__(self, model=None, unique_id=0, state=()):
|
||||
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||
|
||||
self.information_spread_intensity = model.environment_params['information_spread_intensity']
|
||||
self.terrorist_additional_influence = model.environment_params['terrorist_additional_influence']
|
||||
self.prob_interaction = model.environment_params['prob_interaction']
|
||||
self.information_spread_intensity = model.environment_params[
|
||||
"information_spread_intensity"
|
||||
]
|
||||
self.terrorist_additional_influence = model.environment_params[
|
||||
"terrorist_additional_influence"
|
||||
]
|
||||
self.prob_interaction = model.environment_params["prob_interaction"]
|
||||
|
||||
if self['id'] == self.civilian.id: # Civilian
|
||||
if self["id"] == self.civilian.id: # Civilian
|
||||
self.mean_belief = self.random.uniform(0.00, 0.5)
|
||||
elif self['id'] == self.terrorist.id: # Terrorist
|
||||
elif self["id"] == self.terrorist.id: # Terrorist
|
||||
self.mean_belief = self.random.uniform(0.8, 1.00)
|
||||
elif self['id'] == self.leader.id: # Leader
|
||||
elif self["id"] == self.leader.id: # Leader
|
||||
self.mean_belief = 1.00
|
||||
else:
|
||||
raise Exception('Invalid state id: {}'.format(self['id']))
|
||||
|
||||
if 'min_vulnerability' in model.environment_params:
|
||||
self.vulnerability = self.random.uniform( model.environment_params['min_vulnerability'], model.environment_params['max_vulnerability'] )
|
||||
else :
|
||||
self.vulnerability = self.random.uniform( 0, model.environment_params['max_vulnerability'] )
|
||||
raise Exception("Invalid state id: {}".format(self["id"]))
|
||||
|
||||
if "min_vulnerability" in model.environment_params:
|
||||
self.vulnerability = self.random.uniform(
|
||||
model.environment_params["min_vulnerability"],
|
||||
model.environment_params["max_vulnerability"],
|
||||
)
|
||||
else:
|
||||
self.vulnerability = self.random.uniform(
|
||||
0, model.environment_params["max_vulnerability"]
|
||||
)
|
||||
|
||||
@state
|
||||
def civilian(self):
|
||||
neighbours = list(self.get_neighboring_agents(agent_class=TerroristSpreadModel))
|
||||
if len(neighbours) > 0:
|
||||
# Only interact with some of the neighbors
|
||||
interactions = list(n for n in neighbours if self.random.random() <= self.prob_interaction)
|
||||
influence = sum( self.degree(i) for i in interactions )
|
||||
mean_belief = sum( i.mean_belief * self.degree(i) / influence for i in interactions )
|
||||
mean_belief = mean_belief * self.information_spread_intensity + self.mean_belief * ( 1 - self.information_spread_intensity )
|
||||
self.mean_belief = mean_belief * self.vulnerability + self.mean_belief * ( 1 - self.vulnerability )
|
||||
|
||||
interactions = list(
|
||||
n for n in neighbours if self.random.random() <= self.prob_interaction
|
||||
)
|
||||
influence = sum(self.degree(i) for i in interactions)
|
||||
mean_belief = sum(
|
||||
i.mean_belief * self.degree(i) / influence for i in interactions
|
||||
)
|
||||
mean_belief = (
|
||||
mean_belief * self.information_spread_intensity
|
||||
+ self.mean_belief * (1 - self.information_spread_intensity)
|
||||
)
|
||||
self.mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
|
||||
1 - self.vulnerability
|
||||
)
|
||||
|
||||
if self.mean_belief >= 0.8:
|
||||
return self.terrorist
|
||||
|
||||
@state
|
||||
def leader(self):
|
||||
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
|
||||
for neighbour in self.get_neighboring_agents(state_id=[self.terrorist.id, self.leader.id]):
|
||||
self.mean_belief = self.mean_belief ** (1 - self.terrorist_additional_influence)
|
||||
for neighbour in self.get_neighboring_agents(
|
||||
state_id=[self.terrorist.id, self.leader.id]
|
||||
):
|
||||
if self.betweenness(neighbour) > self.betweenness(self):
|
||||
return self.terrorist
|
||||
|
||||
@state
|
||||
def terrorist(self):
|
||||
neighbours = self.get_agents(state_id=[self.terrorist.id, self.leader.id],
|
||||
agent_class=TerroristSpreadModel,
|
||||
limit_neighbors=True)
|
||||
neighbours = self.get_agents(
|
||||
state_id=[self.terrorist.id, self.leader.id],
|
||||
agent_class=TerroristSpreadModel,
|
||||
limit_neighbors=True,
|
||||
)
|
||||
if len(neighbours) > 0:
|
||||
influence = sum( self.degree(n) for n in neighbours )
|
||||
mean_belief = sum( n.mean_belief * self.degree(n) / influence for n in neighbours )
|
||||
mean_belief = mean_belief * self.vulnerability + self.mean_belief * ( 1 - self.vulnerability )
|
||||
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
|
||||
influence = sum(self.degree(n) for n in neighbours)
|
||||
mean_belief = sum(
|
||||
n.mean_belief * self.degree(n) / influence for n in neighbours
|
||||
)
|
||||
mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
|
||||
1 - self.vulnerability
|
||||
)
|
||||
self.mean_belief = self.mean_belief ** (
|
||||
1 - self.terrorist_additional_influence
|
||||
)
|
||||
|
||||
# Check if there are any leaders in the group
|
||||
leaders = list(filter(lambda x: x.state.id == self.leader.id, neighbours))
|
||||
@ -82,21 +109,29 @@ class TerroristSpreadModel(FSM, Geo):
|
||||
return self.leader
|
||||
|
||||
def ego_search(self, steps=1, center=False, node=None, **kwargs):
|
||||
'''Get a list of nodes in the ego network of *node* of radius *steps*'''
|
||||
"""Get a list of nodes in the ego network of *node* of radius *steps*"""
|
||||
node = as_node(node if node is not None else self)
|
||||
G = self.subgraph(**kwargs)
|
||||
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
|
||||
|
||||
def degree(self, node, force=False):
|
||||
node = as_node(node)
|
||||
if force or (not hasattr(self.model, '_degree')) or getattr(self.model, '_last_step', 0) < self.now:
|
||||
if (
|
||||
force
|
||||
or (not hasattr(self.model, "_degree"))
|
||||
or getattr(self.model, "_last_step", 0) < self.now
|
||||
):
|
||||
self.model._degree = nx.degree_centrality(self.G)
|
||||
self.model._last_step = self.now
|
||||
return self.model._degree[node]
|
||||
|
||||
def betweenness(self, node, force=False):
|
||||
node = as_node(node)
|
||||
if force or (not hasattr(self.model, '_betweenness')) or getattr(self.model, '_last_step', 0) < self.now:
|
||||
if (
|
||||
force
|
||||
or (not hasattr(self.model, "_betweenness"))
|
||||
or getattr(self.model, "_last_step", 0) < self.now
|
||||
):
|
||||
self.model._betweenness = nx.betweenness_centrality(self.G)
|
||||
self.model._last_step = self.now
|
||||
return self.model._betweenness[node]
|
||||
@ -114,17 +149,20 @@ class TrainingAreaModel(FSM, Geo):
|
||||
|
||||
def __init__(self, model=None, unique_id=0, state=()):
|
||||
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||
self.training_influence = model.environment_params['training_influence']
|
||||
if 'min_vulnerability' in model.environment_params:
|
||||
self.min_vulnerability = model.environment_params['min_vulnerability']
|
||||
else: self.min_vulnerability = 0
|
||||
self.training_influence = model.environment_params["training_influence"]
|
||||
if "min_vulnerability" in model.environment_params:
|
||||
self.min_vulnerability = model.environment_params["min_vulnerability"]
|
||||
else:
|
||||
self.min_vulnerability = 0
|
||||
|
||||
@default_state
|
||||
@state
|
||||
def terrorist(self):
|
||||
for neighbour in self.get_neighboring_agents(agent_class=TerroristSpreadModel):
|
||||
if neighbour.vulnerability > self.min_vulnerability:
|
||||
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.training_influence )
|
||||
neighbour.vulnerability = neighbour.vulnerability ** (
|
||||
1 - self.training_influence
|
||||
)
|
||||
|
||||
|
||||
class HavenModel(FSM, Geo):
|
||||
@ -141,11 +179,12 @@ class HavenModel(FSM, Geo):
|
||||
|
||||
def __init__(self, model=None, unique_id=0, state=()):
|
||||
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||
self.haven_influence = model.environment_params['haven_influence']
|
||||
if 'min_vulnerability' in model.environment_params:
|
||||
self.min_vulnerability = model.environment_params['min_vulnerability']
|
||||
else: self.min_vulnerability = 0
|
||||
self.max_vulnerability = model.environment_params['max_vulnerability']
|
||||
self.haven_influence = model.environment_params["haven_influence"]
|
||||
if "min_vulnerability" in model.environment_params:
|
||||
self.min_vulnerability = model.environment_params["min_vulnerability"]
|
||||
else:
|
||||
self.min_vulnerability = 0
|
||||
self.max_vulnerability = model.environment_params["max_vulnerability"]
|
||||
|
||||
def get_occupants(self, **kwargs):
|
||||
return self.get_neighboring_agents(agent_class=TerroristSpreadModel, **kwargs)
|
||||
@ -158,14 +197,18 @@ class HavenModel(FSM, Geo):
|
||||
|
||||
for neighbour in self.get_occupants():
|
||||
if neighbour.vulnerability > self.min_vulnerability:
|
||||
neighbour.vulnerability = neighbour.vulnerability * ( 1 - self.haven_influence )
|
||||
neighbour.vulnerability = neighbour.vulnerability * (
|
||||
1 - self.haven_influence
|
||||
)
|
||||
return self.civilian
|
||||
|
||||
@state
|
||||
def terrorist(self):
|
||||
for neighbour in self.get_occupants():
|
||||
if neighbour.vulnerability < self.max_vulnerability:
|
||||
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.haven_influence )
|
||||
neighbour.vulnerability = neighbour.vulnerability ** (
|
||||
1 - self.haven_influence
|
||||
)
|
||||
return self.terrorist
|
||||
|
||||
|
||||
@ -184,10 +227,10 @@ class TerroristNetworkModel(TerroristSpreadModel):
|
||||
def __init__(self, model=None, unique_id=0, state=()):
|
||||
super().__init__(model=model, unique_id=unique_id, state=state)
|
||||
|
||||
self.vision_range = model.environment_params['vision_range']
|
||||
self.sphere_influence = model.environment_params['sphere_influence']
|
||||
self.weight_social_distance = model.environment_params['weight_social_distance']
|
||||
self.weight_link_distance = model.environment_params['weight_link_distance']
|
||||
self.vision_range = model.environment_params["vision_range"]
|
||||
self.sphere_influence = model.environment_params["sphere_influence"]
|
||||
self.weight_social_distance = model.environment_params["weight_social_distance"]
|
||||
self.weight_link_distance = model.environment_params["weight_link_distance"]
|
||||
|
||||
@state
|
||||
def terrorist(self):
|
||||
@ -201,27 +244,48 @@ class TerroristNetworkModel(TerroristSpreadModel):
|
||||
|
||||
def update_relationships(self):
|
||||
if self.count_neighboring_agents(state_id=self.civilian.id) == 0:
|
||||
close_ups = set(self.geo_search(radius=self.vision_range, agent_class=TerroristNetworkModel))
|
||||
step_neighbours = set(self.ego_search(self.sphere_influence, agent_class=TerroristNetworkModel, center=False))
|
||||
neighbours = set(agent.id for agent in self.get_neighboring_agents(agent_class=TerroristNetworkModel))
|
||||
close_ups = set(
|
||||
self.geo_search(
|
||||
radius=self.vision_range, agent_class=TerroristNetworkModel
|
||||
)
|
||||
)
|
||||
step_neighbours = set(
|
||||
self.ego_search(
|
||||
self.sphere_influence,
|
||||
agent_class=TerroristNetworkModel,
|
||||
center=False,
|
||||
)
|
||||
)
|
||||
neighbours = set(
|
||||
agent.id
|
||||
for agent in self.get_neighboring_agents(
|
||||
agent_class=TerroristNetworkModel
|
||||
)
|
||||
)
|
||||
search = (close_ups | step_neighbours) - neighbours
|
||||
for agent in self.get_agents(search):
|
||||
social_distance = 1 / self.shortest_path_length(agent.id)
|
||||
spatial_proximity = ( 1 - self.get_distance(agent.id) )
|
||||
prob_new_interaction = self.weight_social_distance * social_distance + self.weight_link_distance * spatial_proximity
|
||||
if agent['id'] == agent.civilian.id and self.random.random() < prob_new_interaction:
|
||||
spatial_proximity = 1 - self.get_distance(agent.id)
|
||||
prob_new_interaction = (
|
||||
self.weight_social_distance * social_distance
|
||||
+ self.weight_link_distance * spatial_proximity
|
||||
)
|
||||
if (
|
||||
agent["id"] == agent.civilian.id
|
||||
and self.random.random() < prob_new_interaction
|
||||
):
|
||||
self.add_edge(agent)
|
||||
break
|
||||
|
||||
def get_distance(self, target):
|
||||
source_x, source_y = nx.get_node_attributes(self.G, 'pos')[self.id]
|
||||
target_x, target_y = nx.get_node_attributes(self.G, 'pos')[target]
|
||||
dx = abs( source_x - target_x )
|
||||
dy = abs( source_y - target_y )
|
||||
return ( dx ** 2 + dy ** 2 ) ** ( 1 / 2 )
|
||||
source_x, source_y = nx.get_node_attributes(self.G, "pos")[self.id]
|
||||
target_x, target_y = nx.get_node_attributes(self.G, "pos")[target]
|
||||
dx = abs(source_x - target_x)
|
||||
dy = abs(source_y - target_y)
|
||||
return (dx**2 + dy**2) ** (1 / 2)
|
||||
|
||||
def shortest_path_length(self, target):
|
||||
try:
|
||||
return nx.shortest_path_length(self.G, self.id, target)
|
||||
except nx.NetworkXNoPath:
|
||||
return float('inf')
|
||||
return float("inf")
|
||||
|
@ -5,6 +5,7 @@ import sys
|
||||
import os
|
||||
import logging
|
||||
import traceback
|
||||
from contextlib import contextmanager
|
||||
|
||||
from .version import __version__
|
||||
|
||||
@ -30,6 +31,7 @@ def main(
|
||||
*,
|
||||
do_run=False,
|
||||
debug=False,
|
||||
pdb=False,
|
||||
**kwargs,
|
||||
):
|
||||
import argparse
|
||||
@ -154,6 +156,7 @@ def main(
|
||||
|
||||
if args.pdb or debug:
|
||||
args.synchronous = True
|
||||
os.environ["SOIL_POSTMORTEM"] = "true"
|
||||
|
||||
res = []
|
||||
try:
|
||||
@ -214,8 +217,21 @@ def main(
|
||||
return res
|
||||
|
||||
|
||||
def easy(cfg, debug=False, **kwargs):
|
||||
return main(cfg, **kwargs)[0]
|
||||
@contextmanager
|
||||
def easy(cfg, pdb=False, debug=False, **kwargs):
|
||||
ex = None
|
||||
try:
|
||||
yield main(cfg, **kwargs)[0]
|
||||
except Exception as e:
|
||||
if os.environ.get("SOIL_POSTMORTEM"):
|
||||
from .debugging import post_mortem
|
||||
|
||||
print(traceback.format_exc())
|
||||
post_mortem()
|
||||
ex = e
|
||||
finally:
|
||||
if ex:
|
||||
raise ex
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -29,10 +29,6 @@ def as_node(agent):
|
||||
IGNORED_FIELDS = ("model", "logger")
|
||||
|
||||
|
||||
class DeadAgent(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class MetaAgent(ABCMeta):
|
||||
def __new__(mcls, name, bases, namespace):
|
||||
defaults = {}
|
||||
@ -47,9 +43,9 @@ class MetaAgent(ABCMeta):
|
||||
}
|
||||
|
||||
for attr, func in namespace.items():
|
||||
if attr == 'step' and inspect.isgeneratorfunction(func):
|
||||
if attr == "step" and inspect.isgeneratorfunction(func):
|
||||
orig_func = func
|
||||
new_nmspc['_MetaAgent__coroutine'] = None
|
||||
new_nmspc["_MetaAgent__coroutine"] = None
|
||||
|
||||
@wraps(func)
|
||||
def func(self):
|
||||
@ -66,10 +62,10 @@ class MetaAgent(ABCMeta):
|
||||
func.is_default = False
|
||||
new_nmspc[attr] = func
|
||||
elif (
|
||||
isinstance(func, types.FunctionType)
|
||||
or isinstance(func, property)
|
||||
or isinstance(func, classmethod)
|
||||
or attr[0] == "_"
|
||||
isinstance(func, types.FunctionType)
|
||||
or isinstance(func, property)
|
||||
or isinstance(func, classmethod)
|
||||
or attr[0] == "_"
|
||||
):
|
||||
new_nmspc[attr] = func
|
||||
elif attr == "defaults":
|
||||
@ -198,7 +194,7 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
|
||||
|
||||
def step(self):
|
||||
if not self.alive:
|
||||
raise DeadAgent(self.unique_id)
|
||||
raise time.DeadAgent(self.unique_id)
|
||||
return super().step() or time.Delta(self.interval)
|
||||
|
||||
def log(self, message, *args, level=logging.INFO, **kwargs):
|
||||
@ -264,6 +260,10 @@ class NetworkAgent(BaseAgent):
|
||||
return list(self.iter_agents(limit_neighbors=True, **kwargs))
|
||||
|
||||
def add_edge(self, other):
|
||||
assert self.node_id
|
||||
assert other.node_id
|
||||
assert self.node_id in self.G.nodes
|
||||
assert other.node_id in self.G.nodes
|
||||
self.topology.add_edge(self.node_id, other.node_id)
|
||||
|
||||
@property
|
||||
@ -303,7 +303,9 @@ class NetworkAgent(BaseAgent):
|
||||
return G
|
||||
|
||||
def remove_node(self):
|
||||
print(f"Removing node for {self.unique_id}: {self.node_id}")
|
||||
self.G.remove_node(self.node_id)
|
||||
self.node_id = None
|
||||
|
||||
def add_edge(self, other, edge_attr_dict=None, *edge_attrs):
|
||||
if self.node_id not in self.G.nodes(data=False):
|
||||
@ -322,6 +324,8 @@ class NetworkAgent(BaseAgent):
|
||||
)
|
||||
|
||||
def die(self, remove=True):
|
||||
if not self.alive:
|
||||
return
|
||||
if remove:
|
||||
self.remove_node()
|
||||
return super().die()
|
||||
@ -351,7 +355,7 @@ def state(name=None):
|
||||
self._coroutine = None
|
||||
next_state = ex.value
|
||||
if next_state is not None:
|
||||
self.set_state(next_state)
|
||||
self._set_state(next_state)
|
||||
return next_state
|
||||
|
||||
func.id = name or func.__name__
|
||||
@ -401,8 +405,8 @@ class MetaFSM(MetaAgent):
|
||||
|
||||
|
||||
class FSM(BaseAgent, metaclass=MetaFSM):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(FSM, self).__init__(*args, **kwargs)
|
||||
def __init__(self, **kwargs):
|
||||
super(FSM, self).__init__(**kwargs)
|
||||
if not hasattr(self, "state_id"):
|
||||
if not self._default_state:
|
||||
raise ValueError(
|
||||
@ -411,7 +415,7 @@ class FSM(BaseAgent, metaclass=MetaFSM):
|
||||
self.state_id = self._default_state.id
|
||||
|
||||
self._coroutine = None
|
||||
self.set_state(self.state_id)
|
||||
self._set_state(self.state_id)
|
||||
|
||||
def step(self):
|
||||
self.debug(f"Agent {self.unique_id} @ state {self.state_id}")
|
||||
@ -434,11 +438,11 @@ class FSM(BaseAgent, metaclass=MetaFSM):
|
||||
pass
|
||||
|
||||
if next_state is not None:
|
||||
self.set_state(next_state)
|
||||
self._set_state(next_state)
|
||||
|
||||
return when or default_interval
|
||||
|
||||
def set_state(self, state, when=None):
|
||||
def _set_state(self, state, when=None):
|
||||
if hasattr(state, "id"):
|
||||
state = state.id
|
||||
if state not in self._states:
|
||||
@ -576,83 +580,6 @@ def _convert_agent_classs(ind, to_string=False, **kwargs):
|
||||
return deserialize_definition(ind, **kwargs)
|
||||
|
||||
|
||||
# def _agent_from_definition(definition, random, value=-1, unique_id=None):
|
||||
# """Used in the initialization of agents given an agent distribution."""
|
||||
# if value < 0:
|
||||
# value = random.random()
|
||||
# for d in sorted(definition, key=lambda x: x.get('threshold')):
|
||||
# threshold = d.get('threshold', (-1, -1))
|
||||
# # Check if the definition matches by id (first) or by threshold
|
||||
# if (unique_id is not None and unique_id in d.get('ids', [])) or \
|
||||
# (value >= threshold[0] and value < threshold[1]):
|
||||
# state = {}
|
||||
# if 'state' in d:
|
||||
# state = deepcopy(d['state'])
|
||||
# return d['agent_class'], state
|
||||
|
||||
# raise Exception('Definition for value {} not found in: {}'.format(value, definition))
|
||||
|
||||
|
||||
# def _definition_to_dict(definition, random, size=None, default_state=None):
|
||||
# state = default_state or {}
|
||||
# agents = {}
|
||||
# remaining = {}
|
||||
# if size:
|
||||
# for ix in range(size):
|
||||
# remaining[ix] = copy(state)
|
||||
# else:
|
||||
# remaining = defaultdict(lambda x: copy(state))
|
||||
|
||||
# distro = sorted([item for item in definition if 'weight' in item])
|
||||
|
||||
# id = 0
|
||||
|
||||
# def init_agent(item, id=ix):
|
||||
# while id in agents:
|
||||
# id += 1
|
||||
|
||||
# agent = remaining[id]
|
||||
# agent['state'].update(copy(item.get('state', {})))
|
||||
# agents[agent.unique_id] = agent
|
||||
# del remaining[id]
|
||||
# return agent
|
||||
|
||||
# for item in definition:
|
||||
# if 'ids' in item:
|
||||
# ids = item['ids']
|
||||
# del item['ids']
|
||||
# for id in ids:
|
||||
# agent = init_agent(item, id)
|
||||
|
||||
# for item in definition:
|
||||
# if 'number' in item:
|
||||
# times = item['number']
|
||||
# del item['number']
|
||||
# for times in range(times):
|
||||
# if size:
|
||||
# ix = random.choice(remaining.keys())
|
||||
# agent = init_agent(item, id)
|
||||
# else:
|
||||
# agent = init_agent(item)
|
||||
# if not size:
|
||||
# return agents
|
||||
|
||||
# if len(remaining) < 0:
|
||||
# raise Exception('Invalid definition. Too many agents to add')
|
||||
|
||||
|
||||
# total_weight = float(sum(s['weight'] for s in distro))
|
||||
# unit = size / total_weight
|
||||
|
||||
# for item in distro:
|
||||
# times = unit * item['weight']
|
||||
# del item['weight']
|
||||
# for times in range(times):
|
||||
# ix = random.choice(remaining.keys())
|
||||
# agent = init_agent(item, id)
|
||||
# return agents
|
||||
|
||||
|
||||
class AgentView(Mapping, Set):
|
||||
"""A lazy-loaded list of agents."""
|
||||
|
||||
|
@ -31,8 +31,8 @@ class Debug(pdb.Pdb):
|
||||
def __init__(self, *args, skip_soil=False, **kwargs):
|
||||
skip = kwargs.get("skip", [])
|
||||
skip.append("soil")
|
||||
skip.append("contextlib")
|
||||
if skip_soil:
|
||||
skip.append("soil")
|
||||
skip.append("soil.*")
|
||||
skip.append("mesa.*")
|
||||
super(Debug, self).__init__(*args, skip=skip, **kwargs)
|
||||
@ -181,7 +181,7 @@ def set_trace(frame=None, **kwargs):
|
||||
debugger.set_trace(frame)
|
||||
|
||||
|
||||
def post_mortem(traceback=None):
|
||||
def post_mortem(traceback=None, **kwargs):
|
||||
global debugger
|
||||
if debugger is None:
|
||||
debugger = Debug(**kwargs)
|
||||
|
@ -142,12 +142,12 @@ class BaseEnvironment(Model):
|
||||
"The environment has not been scheduled, so it has no sense of time"
|
||||
)
|
||||
|
||||
def add_agent(self, agent_class, unique_id=None, **kwargs):
|
||||
a = None
|
||||
def add_agent(self, unique_id=None, **kwargs):
|
||||
if unique_id is None:
|
||||
unique_id = self.next_id()
|
||||
|
||||
a = agent_class(model=self, unique_id=unique_id, **args)
|
||||
kwargs["unique_id"] = unique_id
|
||||
a = self._agent_from_dict(kwargs)
|
||||
|
||||
self.schedule.add(a)
|
||||
return a
|
||||
@ -169,7 +169,9 @@ class BaseEnvironment(Model):
|
||||
Advance one step in the simulation, and update the data collection and scheduler appropriately
|
||||
"""
|
||||
super().step()
|
||||
self.logger.info(f"--- Step: {self.schedule.steps:^5} - Time: {self.now:^5} ---")
|
||||
self.logger.info(
|
||||
f"--- Step: {self.schedule.steps:^5} - Time: {self.now:^5} ---"
|
||||
)
|
||||
self.schedule.step()
|
||||
self.datacollector.collect(self)
|
||||
|
||||
@ -236,6 +238,7 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
node_id = agent.get("node_id", None)
|
||||
if node_id is None:
|
||||
node_id = network.find_unassigned(self.G, random=self.random)
|
||||
self.G.nodes[node_id]["agent"] = None
|
||||
agent["node_id"] = node_id
|
||||
agent["unique_id"] = unique_id
|
||||
agent["topology"] = self.G
|
||||
@ -269,18 +272,35 @@ class NetworkEnvironment(BaseEnvironment):
|
||||
node_id = network.find_unassigned(
|
||||
G=self.G, shuffle=True, random=self.random
|
||||
)
|
||||
if node_id is None:
|
||||
node_id = f"node_for_{unique_id}"
|
||||
|
||||
if node_id in G.nodes:
|
||||
self.G.nodes[node_id]["agent"] = None # Reserve
|
||||
else:
|
||||
if node_id not in self.G.nodes:
|
||||
self.G.add_node(node_id)
|
||||
|
||||
assert "agent" not in self.G.nodes[node_id]
|
||||
self.G.nodes[node_id]["agent"] = None # Reserve
|
||||
|
||||
a = self.add_agent(
|
||||
unique_id=unique_id, agent_class=agent_class, node_id=node_id, **kwargs
|
||||
unique_id=unique_id,
|
||||
agent_class=agent_class,
|
||||
topology=self.G,
|
||||
node_id=node_id,
|
||||
**kwargs,
|
||||
)
|
||||
a["visible"] = True
|
||||
return a
|
||||
|
||||
def add_agent(self, *args, **kwargs):
|
||||
a = super().add_agent(*args, **kwargs)
|
||||
if "node_id" in a:
|
||||
if a.node_id == 24:
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
assert self.G.nodes[a.node_id]["agent"] == a
|
||||
return a
|
||||
|
||||
def agent_for_node_id(self, node_id):
|
||||
return self.G.nodes[node_id].get("agent")
|
||||
|
||||
|
@ -202,7 +202,12 @@ class summary(Exporter):
|
||||
for (t, df) in self.get_dfs(env):
|
||||
if not len(df):
|
||||
continue
|
||||
msg = indent(str(df.describe()), ' ')
|
||||
logger.info(dedent(f'''
|
||||
msg = indent(str(df.describe()), " ")
|
||||
logger.info(
|
||||
dedent(
|
||||
f"""
|
||||
Dataframe {t}:
|
||||
''') + msg)
|
||||
"""
|
||||
)
|
||||
+ msg
|
||||
)
|
||||
|
@ -65,10 +65,8 @@ def find_unassigned(G, shuffle=False, random=random):
|
||||
random.shuffle(candidates)
|
||||
for next_id, data in candidates:
|
||||
if "agent" not in data:
|
||||
node_id = next_id
|
||||
break
|
||||
|
||||
return node_id
|
||||
return next_id
|
||||
return None
|
||||
|
||||
|
||||
def dump_gexf(G, f):
|
||||
|
@ -226,7 +226,9 @@ Model stats:
|
||||
)
|
||||
model.step()
|
||||
|
||||
if model.schedule.time < until: # Simulation ended (no more steps) before until (i.e., no changes expected)
|
||||
if (
|
||||
model.schedule.time < until
|
||||
): # Simulation ended (no more steps) before the expected time
|
||||
model.schedule.time = until
|
||||
return model
|
||||
|
||||
|
39
soil/time.py
39
soil/time.py
@ -13,6 +13,10 @@ from mesa import Agent as MesaAgent
|
||||
INFINITY = float("inf")
|
||||
|
||||
|
||||
class DeadAgent(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class When:
|
||||
def __init__(self, time):
|
||||
if isinstance(time, When):
|
||||
@ -38,23 +42,27 @@ class When:
|
||||
return self._time > other
|
||||
return self._time > other.next(self._time)
|
||||
|
||||
def ready(self, time):
|
||||
return self._time <= time
|
||||
def ready(self, agent):
|
||||
return self._time <= agent.model.schedule.time
|
||||
|
||||
|
||||
class Cond(When):
|
||||
def __init__(self, func, delta=1):
|
||||
self._func = func
|
||||
self._delta = delta
|
||||
self._checked = False
|
||||
|
||||
def next(self, time):
|
||||
return time + self._delta
|
||||
if self._checked:
|
||||
return time + self._delta
|
||||
return time
|
||||
|
||||
def abs(self, time):
|
||||
return self
|
||||
|
||||
def ready(self, time):
|
||||
return self._func(time)
|
||||
def ready(self, agent):
|
||||
self._checked = True
|
||||
return self._func(agent)
|
||||
|
||||
def __eq__(self, other):
|
||||
return False
|
||||
@ -109,10 +117,12 @@ class TimedActivation(BaseScheduler):
|
||||
elif not isinstance(when, When):
|
||||
when = When(when)
|
||||
if agent.unique_id in self._agents:
|
||||
self._queue.remove((self._next[agent.unique_id], agent))
|
||||
del self._agents[agent.unique_id]
|
||||
heapify(self._queue)
|
||||
if agent.unique_id in self._next:
|
||||
self._queue.remove((self._next[agent.unique_id], agent))
|
||||
heapify(self._queue)
|
||||
|
||||
self._next[agent.unique_id] = when
|
||||
heappush(self._queue, (when, agent))
|
||||
super().add(agent)
|
||||
|
||||
@ -139,8 +149,9 @@ class TimedActivation(BaseScheduler):
|
||||
if when > self.time:
|
||||
break
|
||||
heappop(self._queue)
|
||||
if when.ready(self.time):
|
||||
if when.ready(agent):
|
||||
to_process.append(agent)
|
||||
self._next.pop(agent.unique_id, None)
|
||||
continue
|
||||
|
||||
next_time = min(next_time, when.next(self.time))
|
||||
@ -155,13 +166,19 @@ class TimedActivation(BaseScheduler):
|
||||
for agent in to_process:
|
||||
self.logger.debug(f"Stepping agent {agent}")
|
||||
|
||||
returned = ((agent.step() or Delta(1))).abs(self.time)
|
||||
try:
|
||||
returned = ((agent.step() or Delta(1))).abs(self.time)
|
||||
except DeadAgent:
|
||||
if agent.unique_id in self._next:
|
||||
del self._next[agent.unique_id]
|
||||
agent.alive = False
|
||||
continue
|
||||
|
||||
if not getattr(agent, "alive", True):
|
||||
self.remove(agent)
|
||||
continue
|
||||
|
||||
value = when.next(self.time)
|
||||
value = returned.next(self.time)
|
||||
|
||||
if value < self.time:
|
||||
raise Exception(
|
||||
@ -172,6 +189,8 @@ class TimedActivation(BaseScheduler):
|
||||
|
||||
self._next[agent.unique_id] = returned
|
||||
heappush(self._queue, (returned, agent))
|
||||
else:
|
||||
assert not self._next[agent.unique_id]
|
||||
|
||||
self.steps += 1
|
||||
self.logger.debug(f"Updating time step: {self.time} -> {next_time}")
|
||||
|
@ -24,7 +24,7 @@ class TestMain(TestCase):
|
||||
'''A dead agent should raise an exception if it is stepped after death'''
|
||||
d = Dead(unique_id=0, model=environment.Environment())
|
||||
d.step()
|
||||
with pytest.raises(agents.DeadAgent):
|
||||
with pytest.raises(stime.DeadAgent):
|
||||
d.step()
|
||||
|
||||
|
||||
|
74
tests/test_time.py
Normal file
74
tests/test_time.py
Normal file
@ -0,0 +1,74 @@
|
||||
from unittest import TestCase
|
||||
|
||||
from soil import time, agents, environment
|
||||
|
||||
class TestMain(TestCase):
|
||||
def test_cond(self):
|
||||
'''
|
||||
A condition should match a When if the concition is True
|
||||
'''
|
||||
|
||||
t = time.Cond(lambda t: True)
|
||||
f = time.Cond(lambda t: False)
|
||||
for i in range(10):
|
||||
w = time.When(i)
|
||||
assert w == t
|
||||
assert w is not f
|
||||
|
||||
def test_cond(self):
|
||||
'''
|
||||
Comparing a Cond to a Delta should always return False
|
||||
'''
|
||||
|
||||
c = time.Cond(lambda t: False)
|
||||
d = time.Delta(1)
|
||||
assert c is not d
|
||||
|
||||
def test_cond_env(self):
|
||||
'''
|
||||
'''
|
||||
|
||||
times_started = []
|
||||
times_awakened = []
|
||||
times = []
|
||||
done = 0
|
||||
|
||||
class CondAgent(agents.BaseAgent):
|
||||
|
||||
def step(self):
|
||||
nonlocal done
|
||||
times_started.append(self.now)
|
||||
while True:
|
||||
yield time.Cond(lambda agent: agent.model.schedule.time >= 10)
|
||||
times_awakened.append(self.now)
|
||||
if self.now >= 10:
|
||||
break
|
||||
done += 1
|
||||
|
||||
env = environment.Environment(agents=[{'agent_class': CondAgent}])
|
||||
|
||||
|
||||
while env.schedule.time < 11:
|
||||
env.step()
|
||||
times.append(env.now)
|
||||
assert env.schedule.time == 11
|
||||
assert times_started == [0]
|
||||
assert times_awakened == [10]
|
||||
assert done == 1
|
||||
# The first time will produce the Cond.
|
||||
# Since there are no other agents, time will not advance, but the number
|
||||
# of steps will.
|
||||
assert env.schedule.steps == 12
|
||||
assert len(times) == 12
|
||||
|
||||
while env.schedule.time < 12:
|
||||
env.step()
|
||||
times.append(env.now)
|
||||
|
||||
assert env.schedule.time == 12
|
||||
assert times_started == [0, 11]
|
||||
assert times_awakened == [10, 11]
|
||||
assert done == 2
|
||||
# Once more to yield the cond, another one to continue
|
||||
assert env.schedule.steps == 14
|
||||
assert len(times) == 14
|
Loading…
Reference in New Issue
Block a user