1
0
mirror of https://github.com/gsi-upm/soil synced 2025-01-05 06:11:27 +00:00

Compare commits

...

2 Commits

Author SHA1 Message Date
J. Fernando Sánchez
880a9f2a1c black formatting 2022-10-17 20:23:57 +02:00
J. Fernando Sánchez
227fdf050e Fix conditionals 2022-10-17 19:29:39 +02:00
24 changed files with 719 additions and 528 deletions

View File

@ -2,16 +2,17 @@ from networkx import Graph
import random
import networkx as nx
def mygenerator(n=5, n_edges=5):
'''
"""
Just a simple generator that creates a network with n nodes and
n_edges edges. Edges are assigned randomly, only avoiding self loops.
'''
"""
G = nx.Graph()
for i in range(n):
G.add_node(i)
for i in range(n_edges):
nodes = list(G.nodes)
n_in = random.choice(nodes)
@ -19,9 +20,3 @@ def mygenerator(n=5, n_edges=5):
n_out = random.choice(nodes)
G.add_edge(n_in, n_out)
return G

View File

@ -2,34 +2,37 @@ from soil.agents import FSM, state, default_state
class Fibonacci(FSM):
'''Agent that only executes in t_steps that are Fibonacci numbers'''
"""Agent that only executes in t_steps that are Fibonacci numbers"""
defaults = {
'prev': 1
}
defaults = {"prev": 1}
@default_state
@state
def counting(self):
self.log('Stopping at {}'.format(self.now))
prev, self['prev'] = self['prev'], max([self.now, self['prev']])
self.log("Stopping at {}".format(self.now))
prev, self["prev"] = self["prev"], max([self.now, self["prev"]])
return None, self.env.timeout(prev)
class Odds(FSM):
'''Agent that only executes in odd t_steps'''
"""Agent that only executes in odd t_steps"""
@default_state
@state
def odds(self):
self.log('Stopping at {}'.format(self.now))
return None, self.env.timeout(1+self.now%2)
self.log("Stopping at {}".format(self.now))
return None, self.env.timeout(1 + self.now % 2)
if __name__ == '__main__':
if __name__ == "__main__":
from soil import Simulation
s = Simulation(network_agents=[{'ids': [0], 'agent_class': Fibonacci},
{'ids': [1], 'agent_class': Odds}],
network_params={"generator": "complete_graph", "n": 2},
max_time=100,
)
s = Simulation(
network_agents=[
{"ids": [0], "agent_class": Fibonacci},
{"ids": [1], "agent_class": Odds},
],
network_params={"generator": "complete_graph", "n": 2},
max_time=100,
)
s.run(dry_run=True)

View File

@ -14,16 +14,18 @@ def network_portrayal(env):
# The model ensures there is 0 or 1 agent per node
portrayal = dict()
wealths = {node_id: data['agent'].wealth for (node_id, data) in env.G.nodes(data=True)}
wealths = {
node_id: data["agent"].wealth for (node_id, data) in env.G.nodes(data=True)
}
portrayal["nodes"] = [
{
"id": node_id,
"size": 2*(wealth+1),
"size": 2 * (wealth + 1),
"color": "#CC0000" if wealth == 0 else "#007959",
# "color": "#CC0000",
"label": f"{node_id}: {wealth}",
} for (node_id, wealth) in wealths.items()
}
for (node_id, wealth) in wealths.items()
]
portrayal["edges"] = [
@ -41,7 +43,7 @@ def gridPortrayal(agent):
:param agent: the agent in the simulation
:return: the portrayal dictionary
"""
color = max(10, min(agent.wealth*10, 100))
color = max(10, min(agent.wealth * 10, 100))
return {
"Shape": "rect",
"w": 1,
@ -52,7 +54,7 @@ def gridPortrayal(agent):
"Text": agent.unique_id,
"x": agent.pos[0],
"y": agent.pos[1],
"Color": f"rgba(31, 10, 255, 0.{color})"
"Color": f"rgba(31, 10, 255, 0.{color})",
}
@ -79,7 +81,7 @@ model_params = {
10,
1,
description="Grid height",
),
),
"width": UserSettableParameter(
"slider",
"width",
@ -88,16 +90,20 @@ model_params = {
10,
1,
description="Grid width",
),
"agent_class": UserSettableParameter('choice', 'Agent class', value='MoneyAgent',
choices=['MoneyAgent', 'SocialMoneyAgent']),
),
"agent_class": UserSettableParameter(
"choice",
"Agent class",
value="MoneyAgent",
choices=["MoneyAgent", "SocialMoneyAgent"],
),
"generator": graph_generator,
}
canvas_element = CanvasGrid(gridPortrayal,
model_params["width"].value,
model_params["height"].value, 500, 500)
canvas_element = CanvasGrid(
gridPortrayal, model_params["width"].value, model_params["height"].value, 500, 500
)
server = ModularServer(

View File

@ -1,9 +1,10 @@
'''
"""
This is an example that adds soil agents and environment in a normal
mesa workflow.
'''
"""
from mesa import Agent as MesaAgent
from mesa.space import MultiGrid
# from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner
@ -12,12 +13,13 @@ import networkx as nx
from soil import NetworkAgent, Environment, serialization
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.agents]
x = sorted(agent_wealths)
N = len(list(model.agents))
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
return (1 + (1/N) - 2*B)
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B
class MoneyAgent(MesaAgent):
@ -32,9 +34,8 @@ class MoneyAgent(MesaAgent):
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos,
moore=True,
include_center=False)
self.pos, moore=True, include_center=False
)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
@ -69,6 +70,7 @@ class SocialMoneyAgent(NetworkAgent, MoneyAgent):
other.wealth += 1
self.wealth -= 1
def graph_generator(n=5):
G = nx.Graph()
for ix in range(n):
@ -78,16 +80,22 @@ def graph_generator(n=5):
class MoneyEnv(Environment):
"""A model with some number of agents."""
def __init__(self, width, height, N, generator=graph_generator,
agent_class=SocialMoneyAgent,
topology=None, **kwargs):
def __init__(
self,
width,
height,
N,
generator=graph_generator,
agent_class=SocialMoneyAgent,
topology=None,
**kwargs
):
generator = serialization.deserialize(generator)
agent_class = serialization.deserialize(agent_class, globs=globals())
topology = generator(n=N)
super().__init__(topology=topology,
N=N,
**kwargs)
super().__init__(topology=topology, N=N, **kwargs)
self.grid = MultiGrid(width, height, False)
self.populate_network(agent_class=agent_class)
@ -99,26 +107,29 @@ class MoneyEnv(Environment):
self.grid.place_agent(agent, (x, y))
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini},
agent_reporters={"Wealth": "wealth"})
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
)
if __name__ == '__main__':
if __name__ == "__main__":
fixed_params = {"generator": nx.complete_graph,
"width": 10,
"network_agents": [{"agent_class": SocialMoneyAgent,
'weight': 1}],
"height": 10}
fixed_params = {
"generator": nx.complete_graph,
"width": 10,
"network_agents": [{"agent_class": SocialMoneyAgent, "weight": 1}],
"height": 10,
}
variable_params = {"N": range(10, 100, 10)}
batch_run = BatchRunner(MoneyEnv,
variable_parameters=variable_params,
fixed_parameters=fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini})
batch_run = BatchRunner(
MoneyEnv,
variable_parameters=variable_params,
fixed_parameters=fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini},
)
batch_run.run_all()
run_data = batch_run.get_model_vars_dataframe()

View File

@ -4,24 +4,26 @@ from mesa.time import RandomActivation
from mesa.datacollection import DataCollector
from mesa.batchrunner import BatchRunner
def compute_gini(model):
agent_wealths = [agent.wealth for agent in model.schedule.agents]
x = sorted(agent_wealths)
N = model.num_agents
B = sum( xi * (N-i) for i,xi in enumerate(x) ) / (N*sum(x))
return (1 + (1/N) - 2*B)
B = sum(xi * (N - i) for i, xi in enumerate(x)) / (N * sum(x))
return 1 + (1 / N) - 2 * B
class MoneyAgent(Agent):
""" An agent with fixed initial wealth."""
"""An agent with fixed initial wealth."""
def __init__(self, unique_id, model):
super().__init__(unique_id, model)
self.wealth = 1
def move(self):
possible_steps = self.model.grid.get_neighborhood(
self.pos,
moore=True,
include_center=False)
self.pos, moore=True, include_center=False
)
new_position = self.random.choice(possible_steps)
self.model.grid.move_agent(self, new_position)
@ -37,8 +39,10 @@ class MoneyAgent(Agent):
if self.wealth > 0:
self.give_money()
class MoneyModel(Model):
"""A model with some number of agents."""
def __init__(self, N, width, height):
self.num_agents = N
self.grid = MultiGrid(width, height, True)
@ -55,29 +59,29 @@ class MoneyModel(Model):
self.grid.place_agent(a, (x, y))
self.datacollector = DataCollector(
model_reporters={"Gini": compute_gini},
agent_reporters={"Wealth": "wealth"})
model_reporters={"Gini": compute_gini}, agent_reporters={"Wealth": "wealth"}
)
def step(self):
self.datacollector.collect(self)
self.schedule.step()
if __name__ == '__main__':
if __name__ == "__main__":
fixed_params = {"width": 10,
"height": 10}
fixed_params = {"width": 10, "height": 10}
variable_params = {"N": range(10, 500, 10)}
batch_run = BatchRunner(MoneyModel,
variable_params,
fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini})
batch_run = BatchRunner(
MoneyModel,
variable_params,
fixed_params,
iterations=5,
max_steps=100,
model_reporters={"Gini": compute_gini},
)
batch_run.run_all()
run_data = batch_run.get_model_vars_dataframe()
run_data.head()
print(run_data.Gini)

View File

@ -3,84 +3,83 @@ import logging
class DumbViewer(FSM, NetworkAgent):
'''
"""
A viewer that gets infected via TV (if it has one) and tries to infect
its neighbors once it's infected.
'''
"""
defaults = {
'prob_neighbor_spread': 0.5,
'prob_tv_spread': 0.1,
"prob_neighbor_spread": 0.5,
"prob_tv_spread": 0.1,
}
@default_state
@state
def neutral(self):
if self['has_tv']:
if self.prob(self.model['prob_tv_spread']):
if self["has_tv"]:
if self.prob(self.model["prob_tv_spread"]):
return self.infected
@state
def infected(self):
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
if self.prob(self.model['prob_neighbor_spread']):
if self.prob(self.model["prob_neighbor_spread"]):
neighbor.infect()
def infect(self):
'''
"""
This is not a state. It is a function that other agents can use to try to
infect this agent. DumbViewer always gets infected, but other agents like
HerdViewer might not become infected right away
'''
"""
self.set_state(self.infected)
class HerdViewer(DumbViewer):
'''
"""
A viewer whose probability of infection depends on the state of its neighbors.
'''
"""
def infect(self):
'''Notice again that this is NOT a state. See DumbViewer.infect for reference'''
"""Notice again that this is NOT a state. See DumbViewer.infect for reference"""
infected = self.count_neighboring_agents(state_id=self.infected.id)
total = self.count_neighboring_agents()
prob_infect = self.model['prob_neighbor_spread'] * infected/total
self.debug('prob_infect', prob_infect)
prob_infect = self.model["prob_neighbor_spread"] * infected / total
self.debug("prob_infect", prob_infect)
if self.prob(prob_infect):
self.set_state(self.infected)
class WiseViewer(HerdViewer):
'''
"""
A viewer that can change its mind.
'''
"""
defaults = {
'prob_neighbor_spread': 0.5,
'prob_neighbor_cure': 0.25,
'prob_tv_spread': 0.1,
"prob_neighbor_spread": 0.5,
"prob_neighbor_cure": 0.25,
"prob_tv_spread": 0.1,
}
@state
def cured(self):
prob_cure = self.model['prob_neighbor_cure']
prob_cure = self.model["prob_neighbor_cure"]
for neighbor in self.get_neighboring_agents(state_id=self.infected.id):
if self.prob(prob_cure):
try:
neighbor.cure()
except AttributeError:
self.debug('Viewer {} cannot be cured'.format(neighbor.id))
self.debug("Viewer {} cannot be cured".format(neighbor.id))
def cure(self):
self.set_state(self.cured.id)
@state
def infected(self):
cured = max(self.count_neighboring_agents(self.cured.id),
1.0)
infected = max(self.count_neighboring_agents(self.infected.id),
1.0)
prob_cure = self.model['prob_neighbor_cure'] * (cured/infected)
cured = max(self.count_neighboring_agents(self.cured.id), 1.0)
infected = max(self.count_neighboring_agents(self.infected.id), 1.0)
prob_cure = self.model["prob_neighbor_cure"] * (cured / infected)
if self.prob(prob_cure):
return self.cured
return self.set_state(super().infected)

View File

@ -1,6 +1,6 @@
'''
"""
Example of a fully programmatic simulation, without definition files.
'''
"""
from soil import Simulation, agents
from networkx import Graph
import logging
@ -14,21 +14,22 @@ def mygenerator():
class MyAgent(agents.FSM):
@agents.default_state
@agents.state
def neutral(self):
self.debug('I am running')
self.debug("I am running")
if agents.prob(0.2):
self.info('This runs 2/10 times on average')
self.info("This runs 2/10 times on average")
s = Simulation(name='Programmatic',
network_params={'generator': mygenerator},
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True)
s = Simulation(
name="Programmatic",
network_params={"generator": mygenerator},
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True,
)
# By default, logging will only print WARNING logs (and above).

View File

@ -5,7 +5,8 @@ import logging
class CityPubs(Environment):
'''Environment with Pubs'''
"""Environment with Pubs"""
level = logging.INFO
def __init__(self, *args, number_of_pubs=3, pub_capacity=10, **kwargs):
@ -13,68 +14,70 @@ class CityPubs(Environment):
pubs = {}
for i in range(number_of_pubs):
newpub = {
'name': 'The awesome pub #{}'.format(i),
'open': True,
'capacity': pub_capacity,
'occupancy': 0,
"name": "The awesome pub #{}".format(i),
"open": True,
"capacity": pub_capacity,
"occupancy": 0,
}
pubs[newpub['name']] = newpub
self['pubs'] = pubs
pubs[newpub["name"]] = newpub
self["pubs"] = pubs
def enter(self, pub_id, *nodes):
'''Agents will try to enter. The pub checks if it is possible'''
"""Agents will try to enter. The pub checks if it is possible"""
try:
pub = self['pubs'][pub_id]
pub = self["pubs"][pub_id]
except KeyError:
raise ValueError('Pub {} is not available'.format(pub_id))
if not pub['open'] or (pub['capacity'] < (len(nodes) + pub['occupancy'])):
raise ValueError("Pub {} is not available".format(pub_id))
if not pub["open"] or (pub["capacity"] < (len(nodes) + pub["occupancy"])):
return False
pub['occupancy'] += len(nodes)
pub["occupancy"] += len(nodes)
for node in nodes:
node['pub'] = pub_id
node["pub"] = pub_id
return True
def available_pubs(self):
for pub in self['pubs'].values():
if pub['open'] and (pub['occupancy'] < pub['capacity']):
yield pub['name']
for pub in self["pubs"].values():
if pub["open"] and (pub["occupancy"] < pub["capacity"]):
yield pub["name"]
def exit(self, pub_id, *node_ids):
'''Agents will notify the pub they want to leave'''
"""Agents will notify the pub they want to leave"""
try:
pub = self['pubs'][pub_id]
pub = self["pubs"][pub_id]
except KeyError:
raise ValueError('Pub {} is not available'.format(pub_id))
raise ValueError("Pub {} is not available".format(pub_id))
for node_id in node_ids:
node = self.get_agent(node_id)
if pub_id == node['pub']:
del node['pub']
pub['occupancy'] -= 1
if pub_id == node["pub"]:
del node["pub"]
pub["occupancy"] -= 1
class Patron(FSM, NetworkAgent):
'''Agent that looks for friends to drink with. It will do three things:
1) Look for other patrons to drink with
2) Look for a bar where the agent and other agents in the same group can get in.
3) While in the bar, patrons only drink, until they get drunk and taken home.
'''
"""Agent that looks for friends to drink with. It will do three things:
1) Look for other patrons to drink with
2) Look for a bar where the agent and other agents in the same group can get in.
3) While in the bar, patrons only drink, until they get drunk and taken home.
"""
level = logging.DEBUG
pub = None
drunk = False
pints = 0
max_pints = 3
kicked_out = False
@default_state
@state
def looking_for_friends(self):
'''Look for friends to drink with'''
self.info('I am looking for friends')
available_friends = list(self.get_agents(drunk=False,
pub=None,
state_id=self.looking_for_friends.id))
"""Look for friends to drink with"""
self.info("I am looking for friends")
available_friends = list(
self.get_agents(drunk=False, pub=None, state_id=self.looking_for_friends.id)
)
if not available_friends:
self.info('Life sucks and I\'m alone!')
self.info("Life sucks and I'm alone!")
return self.at_home
befriended = self.try_friends(available_friends)
if befriended:
@ -82,91 +85,91 @@ class Patron(FSM, NetworkAgent):
@state
def looking_for_pub(self):
'''Look for a pub that accepts me and my friends'''
if self['pub'] != None:
"""Look for a pub that accepts me and my friends"""
if self["pub"] != None:
return self.sober_in_pub
self.debug('I am looking for a pub')
self.debug("I am looking for a pub")
group = list(self.get_neighboring_agents())
for pub in self.model.available_pubs():
self.debug('We\'re trying to get into {}: total: {}'.format(pub, len(group)))
self.debug("We're trying to get into {}: total: {}".format(pub, len(group)))
if self.model.enter(pub, self, *group):
self.info('We\'re all {} getting in {}!'.format(len(group), pub))
self.info("We're all {} getting in {}!".format(len(group), pub))
return self.sober_in_pub
@state
def sober_in_pub(self):
'''Drink up.'''
"""Drink up."""
self.drink()
if self['pints'] > self['max_pints']:
if self["pints"] > self["max_pints"]:
return self.drunk_in_pub
@state
def drunk_in_pub(self):
'''I'm out. Take me home!'''
self.info('I\'m so drunk. Take me home!')
self['drunk'] = True
pass # out drunk
"""I'm out. Take me home!"""
self.info("I'm so drunk. Take me home!")
self["drunk"] = True
if self.kicked_out:
return self.at_home
pass # out drun
@state
def at_home(self):
'''The end'''
"""The end"""
others = self.get_agents(state_id=Patron.at_home.id, limit_neighbors=True)
self.debug('I\'m home. Just like {} of my friends'.format(len(others)))
self.debug("I'm home. Just like {} of my friends".format(len(others)))
def drink(self):
self['pints'] += 1
self.debug('Cheers to that')
self["pints"] += 1
self.debug("Cheers to that")
def kick_out(self):
self.set_state(self.at_home)
self.kicked_out = True
def befriend(self, other_agent, force=False):
'''
"""
Try to become friends with another agent. The chances of
success depend on both agents' openness.
'''
if force or self['openness'] > self.random.random():
"""
if force or self["openness"] > self.random.random():
self.add_edge(self, other_agent)
self.info('Made some friend {}'.format(other_agent))
self.info("Made some friend {}".format(other_agent))
return True
return False
def try_friends(self, others):
''' Look for random agents around me and try to befriend them'''
"""Look for random agents around me and try to befriend them"""
befriended = False
k = int(10*self['openness'])
k = int(10 * self["openness"])
self.random.shuffle(others)
for friend in islice(others, k): # random.choice >= 3.7
if friend == self:
continue
if friend.befriend(self):
self.befriend(friend, force=True)
self.debug('Hooray! new friend: {}'.format(friend.id))
self.debug("Hooray! new friend: {}".format(friend.id))
befriended = True
else:
self.debug('{} does not want to be friends'.format(friend.id))
self.debug("{} does not want to be friends".format(friend.id))
return befriended
class Police(FSM):
'''Simple agent to take drunk people out of pubs.'''
"""Simple agent to take drunk people out of pubs."""
level = logging.INFO
@default_state
@state
def patrol(self):
drunksters = list(self.get_agents(drunk=True,
state_id=Patron.drunk_in_pub.id))
drunksters = list(self.get_agents(drunk=True, state_id=Patron.drunk_in_pub.id))
for drunk in drunksters:
self.info('Kicking out the trash: {}'.format(drunk.id))
self.info("Kicking out the trash: {}".format(drunk.id))
drunk.kick_out()
else:
self.info('No trash to take out. Too bad.')
self.info("No trash to take out. Too bad.")
if __name__ == '__main__':
if __name__ == "__main__":
from soil import simulation
simulation.run_from_config('pubcrawl.yml',
dry_run=True,
dump=None,
parallel=False)
simulation.run_from_config("pubcrawl.yml", dry_run=True, dump=None, parallel=False)

View File

@ -2,3 +2,13 @@ There are two similar implementations of this simulation.
- `basic`. Using simple primites
- `improved`. Using more advanced features such as the `time` module to avoid unnecessary computations (i.e., skip steps), and generator functions.
The examples can be run directly in the terminal, and they accept command like arguments.
For example, to enable the CSV exporter and the Summary exporter, while setting `max_time` to `100` and `seed` to `CustomSeed`:
```
python rabbit_agents.py --set max_time=100 --csv -e summary --set 'seed="CustomSeed"'
```
To learn more about how this functionality works, check out the `soil.easy` function.

View File

@ -1,13 +1,10 @@
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
from soil.time import Delta
from enum import Enum
from collections import Counter
import logging
import math
class RabbitEnv(Environment):
@property
def num_rabbits(self):
return self.count_agents(agent_class=Rabbit)
@ -21,7 +18,7 @@ class RabbitEnv(Environment):
return self.count_agents(agent_class=Female)
class Rabbit(FSM, NetworkAgent):
class Rabbit(NetworkAgent, FSM):
sexual_maturity = 30
life_expectancy = 300
@ -29,7 +26,7 @@ class Rabbit(FSM, NetworkAgent):
@default_state
@state
def newborn(self):
self.info('I am a newborn.')
self.info("I am a newborn.")
self.age = 0
self.offspring = 0
return self.youngling
@ -38,7 +35,7 @@ class Rabbit(FSM, NetworkAgent):
def youngling(self):
self.age += 1
if self.age >= self.sexual_maturity:
self.info(f'I am fertile! My age is {self.age}')
self.info(f"I am fertile! My age is {self.age}")
return self.fertile
@state
@ -62,17 +59,18 @@ class Male(Rabbit):
return self.dead
# Males try to mate
for f in self.model.agents(agent_class=Female,
state_id=Female.fertile.id,
limit=self.max_females):
self.debug('FOUND A FEMALE: ', repr(f), self.mating_prob)
if self.prob(self['mating_prob']):
for f in self.model.agents(
agent_class=Female, state_id=Female.fertile.id, limit=self.max_females
):
self.debug("FOUND A FEMALE: ", repr(f), self.mating_prob)
if self.prob(self["mating_prob"]):
f.impregnate(self)
break # Take a break
class Female(Rabbit):
gestation = 30
gestation = 10
pregnancy = -1
@state
def fertile(self):
@ -80,69 +78,73 @@ class Female(Rabbit):
self.age += 1
if self.age > self.life_expectancy:
return self.dead
if self.pregnancy >= 0:
return self.pregnant
def impregnate(self, male):
self.info(f'{repr(male)} impregnating female {repr(self)}')
self.info(f"impregnated by {repr(male)}")
self.mate = male
self.pregnancy = -1
self.set_state(self.pregnant, when=self.now)
self.number_of_babies = int(8+4*self.random.random())
self.pregnancy = 0
self.number_of_babies = int(8 + 4 * self.random.random())
@state
def pregnant(self):
self.debug('I am pregnant')
self.info("I am pregnant")
self.age += 1
self.pregnancy += 1
if self.prob(self.age / self.life_expectancy):
if self.age >= self.life_expectancy:
return self.die()
if self.pregnancy >= self.gestation:
self.info('Having {} babies'.format(self.number_of_babies))
for i in range(self.number_of_babies):
state = {}
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class,
**state)
child.add_edge(self)
try:
child.add_edge(self.mate)
self.model.agents[self.mate].offspring += 1
except ValueError:
self.debug('The father has passed away')
if self.pregnancy < self.gestation:
self.pregnancy += 1
return
self.offspring += 1
self.mate = None
return self.fertile
self.info("Having {} babies".format(self.number_of_babies))
for i in range(self.number_of_babies):
state = {}
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class, **state)
child.add_edge(self)
try:
child.add_edge(self.mate)
self.model.agents[self.mate].offspring += 1
except ValueError:
self.debug("The father has passed away")
@state
def dead(self):
super().dead()
if 'pregnancy' in self and self['pregnancy'] > -1:
self.info('A mother has died carrying a baby!!')
self.offspring += 1
self.mate = None
self.pregnancy = -1
return self.fertile
def die(self):
if "pregnancy" in self and self["pregnancy"] > -1:
self.info("A mother has died carrying a baby!!")
return super().die()
class RandomAccident(BaseAgent):
def step(self):
rabbits_alive = self.model.G.number_of_nodes()
if not rabbits_alive:
return self.die()
prob_death = self.model.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
prob_death = self.model.get("prob_death", 1e-100) * math.floor(
math.log10(max(1, rabbits_alive))
)
self.debug("Killing some rabbits with prob={}!".format(prob_death))
for i in self.iter_agents(agent_class=Rabbit):
if i.state_id == i.dead.id:
continue
if self.prob(prob_death):
self.info('I killed a rabbit: {}'.format(i.id))
self.info("I killed a rabbit: {}".format(i.id))
rabbits_alive -= 1
i.set_state(i.dead)
self.debug('Rabbits alive: {}'.format(rabbits_alive))
i.die()
self.debug("Rabbits alive: {}".format(rabbits_alive))
if __name__ == '__main__':
if __name__ == "__main__":
from soil import easy
sim = easy('rabbits.yml')
sim.run()
with easy("rabbits.yml") as sim:
sim.run()

View File

@ -1,130 +1,157 @@
from soil.agents import FSM, state, default_state, BaseAgent, NetworkAgent
from soil.time import Delta, When, NEVER
from soil import FSM, state, default_state, BaseAgent, NetworkAgent, Environment
from soil.time import Delta
from enum import Enum
from collections import Counter
import logging
import math
class RabbitModel(FSM, NetworkAgent):
class RabbitEnv(Environment):
@property
def num_rabbits(self):
return self.count_agents(agent_class=Rabbit)
mating_prob = 0.005
offspring = 0
@property
def num_males(self):
return self.count_agents(agent_class=Male)
@property
def num_females(self):
return self.count_agents(agent_class=Female)
class Rabbit(FSM, NetworkAgent):
sexual_maturity = 30
life_expectancy = 300
birth = None
sexual_maturity = 3
life_expectancy = 30
@property
def age(self):
if self.birth is None:
return None
return self.now - self.birth
@default_state
@state
def newborn(self):
self.info("I am a newborn.")
self.birth = self.now
self.info(f'I am a newborn.')
self.model['rabbits_alive'] = self.model.get('rabbits_alive', 0) + 1
self.offspring = 0
return self.youngling, Delta(self.sexual_maturity - self.age)
# Here we can skip the `youngling` state by using a coroutine/generator.
while self.age < self.sexual_maturity:
interval = self.sexual_maturity - self.age
yield Delta(interval)
self.info(f'I am fertile! My age is {self.age}')
return self.fertile
@property
def age(self):
return self.now - self.birth
@state
def youngling(self):
if self.age >= self.sexual_maturity:
self.info(f"I am fertile! My age is {self.age}")
return self.fertile
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
def step(self):
super().step()
if self.prob(self.age / self.life_expectancy):
return self.die()
@state
def dead(self):
self.die()
class Male(RabbitModel):
class Male(Rabbit):
max_females = 5
mating_prob = 0.001
@state
def fertile(self):
# Males try to mate
for f in self.model.agents(agent_class=Female,
state_id=Female.fertile.id,
limit=self.max_females):
self.debug('Found a female:', repr(f))
if self.prob(self['mating_prob']):
f.impregnate(self)
break # Take a break, don't try to impregnate the rest
class Female(RabbitModel):
due_date = None
age_of_pregnancy = None
gestation = 10
mate = None
@state
def fertile(self):
return self.fertile, NEVER
@state
def pregnant(self):
self.info('I am pregnant')
if self.age > self.life_expectancy:
return self.dead
self.due_date = self.now + self.gestation
# Males try to mate
for f in self.model.agents(
agent_class=Female, state_id=Female.fertile.id, limit=self.max_females
):
self.debug("FOUND A FEMALE: ", repr(f), self.mating_prob)
if self.prob(self["mating_prob"]):
f.impregnate(self)
break # Do not try to impregnate other females
number_of_babies = int(8+4*self.random.random())
while self.now < self.due_date:
yield When(self.due_date)
self.info('Having {} babies'.format(number_of_babies))
for i in range(number_of_babies):
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class,
topology=self.topology)
self.model.add_edge(self, child)
self.model.add_edge(self.mate, child)
self.offspring += 1
self.model.agents[self.mate].offspring += 1
self.mate = None
self.due_date = None
return self.fertile
class Female(Rabbit):
gestation = 10
conception = None
@state
def dead(self):
super().dead()
if self.due_date is not None:
self.info('A mother has died carrying a baby!!')
def fertile(self):
# Just wait for a Male
if self.age > self.life_expectancy:
return self.dead
if self.conception is not None:
return self.pregnant
@property
def pregnancy(self):
if self.conception is None:
return None
return self.now - self.conception
def impregnate(self, male):
self.info(f'{repr(male)} impregnating female {repr(self)}')
self.info(f"impregnated by {repr(male)}")
self.mate = male
self.set_state(self.pregnant, when=self.now)
self.conception = self.now
self.number_of_babies = int(8 + 4 * self.random.random())
@state
def pregnant(self):
self.debug("I am pregnant")
if self.age > self.life_expectancy:
self.info("Dying before giving birth")
return self.die()
if self.pregnancy >= self.gestation:
self.info("Having {} babies".format(self.number_of_babies))
for i in range(self.number_of_babies):
state = {}
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class, **state)
child.add_edge(self)
if self.mate:
child.add_edge(self.mate)
self.mate.offspring += 1
else:
self.debug("The father has passed away")
self.offspring += 1
self.mate = None
return self.fertile
def die(self):
if self.pregnancy is not None:
self.info("A mother has died carrying a baby!!")
return super().die()
class RandomAccident(BaseAgent):
level = logging.INFO
def step(self):
rabbits_total = self.model.topology.number_of_nodes()
if 'rabbits_alive' not in self.model:
self.model['rabbits_alive'] = 0
rabbits_alive = self.model.get('rabbits_alive', rabbits_total)
prob_death = self.model.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.model.network_agents:
if i.state.id == i.dead.id:
rabbits_alive = self.model.G.number_of_nodes()
if not rabbits_alive:
return self.die()
prob_death = self.model.get("prob_death", 1e-100) * math.floor(
math.log10(max(1, rabbits_alive))
)
self.debug("Killing some rabbits with prob={}!".format(prob_death))
for i in self.iter_agents(agent_class=Rabbit):
if i.state_id == i.dead.id:
continue
if self.prob(prob_death):
self.info('I killed a rabbit: {}'.format(i.id))
rabbits_alive = self.model['rabbits_alive'] = rabbits_alive -1
i.set_state(i.dead)
self.debug('Rabbits alive: {}/{}'.format(rabbits_alive, rabbits_total))
if self.model.count_agents(state_id=RabbitModel.dead.id) == self.model.topology.number_of_nodes():
self.die()
self.info("I killed a rabbit: {}".format(i.id))
rabbits_alive -= 1
i.die()
self.debug("Rabbits alive: {}".format(rabbits_alive))
if __name__ == "__main__":
from soil import easy
with easy("rabbits.yml") as sim:
sim.run()

View File

@ -7,11 +7,10 @@ description: null
group: null
interval: 1.0
max_time: 100
model_class: soil.environment.Environment
model_class: rabbit_agents.RabbitEnv
model_params:
agents:
topology: true
agent_class: rabbit_agents.RabbitModel
distribution:
- agent_class: rabbit_agents.Male
weight: 1
@ -34,5 +33,10 @@ model_params:
nodes:
- id: 1
- id: 0
model_reporters:
num_males: 'num_males'
num_females: 'num_females'
num_rabbits: |
py:lambda env: env.num_males + env.num_females
extra:
visualization_params: {}

View File

@ -1,42 +1,43 @@
'''
"""
Example of setting a
Example of a fully programmatic simulation, without definition files.
'''
"""
from soil import Simulation, agents
from soil.time import Delta
class MyAgent(agents.FSM):
'''
"""
An agent that first does a ping
'''
"""
defaults = {'pong_counts': 2}
defaults = {"pong_counts": 2}
@agents.default_state
@agents.state
def ping(self):
self.info('Ping')
return self.pong, Delta(self.random.expovariate(1/16))
self.info("Ping")
return self.pong, Delta(self.random.expovariate(1 / 16))
@agents.state
def pong(self):
self.info('Pong')
self.info("Pong")
self.pong_counts -= 1
self.info(str(self.pong_counts))
if self.pong_counts < 1:
return self.die()
return None, Delta(self.random.expovariate(1/16))
return None, Delta(self.random.expovariate(1 / 16))
s = Simulation(name='Programmatic',
network_agents=[{'agent_class': MyAgent, 'id': 0}],
topology={'nodes': [{'id': 0}], 'links': []},
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True)
s = Simulation(
name="Programmatic",
network_agents=[{"agent_class": MyAgent, "id": 0}],
topology={"nodes": [{"id": 0}], "links": []},
num_trials=1,
max_time=100,
agent_class=MyAgent,
dry_run=True,
)
envs = s.run()

View File

@ -20,56 +20,83 @@ class TerroristSpreadModel(FSM, Geo):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.information_spread_intensity = model.environment_params['information_spread_intensity']
self.terrorist_additional_influence = model.environment_params['terrorist_additional_influence']
self.prob_interaction = model.environment_params['prob_interaction']
self.information_spread_intensity = model.environment_params[
"information_spread_intensity"
]
self.terrorist_additional_influence = model.environment_params[
"terrorist_additional_influence"
]
self.prob_interaction = model.environment_params["prob_interaction"]
if self['id'] == self.civilian.id: # Civilian
if self["id"] == self.civilian.id: # Civilian
self.mean_belief = self.random.uniform(0.00, 0.5)
elif self['id'] == self.terrorist.id: # Terrorist
elif self["id"] == self.terrorist.id: # Terrorist
self.mean_belief = self.random.uniform(0.8, 1.00)
elif self['id'] == self.leader.id: # Leader
elif self["id"] == self.leader.id: # Leader
self.mean_belief = 1.00
else:
raise Exception('Invalid state id: {}'.format(self['id']))
if 'min_vulnerability' in model.environment_params:
self.vulnerability = self.random.uniform( model.environment_params['min_vulnerability'], model.environment_params['max_vulnerability'] )
else :
self.vulnerability = self.random.uniform( 0, model.environment_params['max_vulnerability'] )
raise Exception("Invalid state id: {}".format(self["id"]))
if "min_vulnerability" in model.environment_params:
self.vulnerability = self.random.uniform(
model.environment_params["min_vulnerability"],
model.environment_params["max_vulnerability"],
)
else:
self.vulnerability = self.random.uniform(
0, model.environment_params["max_vulnerability"]
)
@state
def civilian(self):
neighbours = list(self.get_neighboring_agents(agent_class=TerroristSpreadModel))
if len(neighbours) > 0:
# Only interact with some of the neighbors
interactions = list(n for n in neighbours if self.random.random() <= self.prob_interaction)
influence = sum( self.degree(i) for i in interactions )
mean_belief = sum( i.mean_belief * self.degree(i) / influence for i in interactions )
mean_belief = mean_belief * self.information_spread_intensity + self.mean_belief * ( 1 - self.information_spread_intensity )
self.mean_belief = mean_belief * self.vulnerability + self.mean_belief * ( 1 - self.vulnerability )
interactions = list(
n for n in neighbours if self.random.random() <= self.prob_interaction
)
influence = sum(self.degree(i) for i in interactions)
mean_belief = sum(
i.mean_belief * self.degree(i) / influence for i in interactions
)
mean_belief = (
mean_belief * self.information_spread_intensity
+ self.mean_belief * (1 - self.information_spread_intensity)
)
self.mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
1 - self.vulnerability
)
if self.mean_belief >= 0.8:
return self.terrorist
@state
def leader(self):
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
for neighbour in self.get_neighboring_agents(state_id=[self.terrorist.id, self.leader.id]):
self.mean_belief = self.mean_belief ** (1 - self.terrorist_additional_influence)
for neighbour in self.get_neighboring_agents(
state_id=[self.terrorist.id, self.leader.id]
):
if self.betweenness(neighbour) > self.betweenness(self):
return self.terrorist
@state
def terrorist(self):
neighbours = self.get_agents(state_id=[self.terrorist.id, self.leader.id],
agent_class=TerroristSpreadModel,
limit_neighbors=True)
neighbours = self.get_agents(
state_id=[self.terrorist.id, self.leader.id],
agent_class=TerroristSpreadModel,
limit_neighbors=True,
)
if len(neighbours) > 0:
influence = sum( self.degree(n) for n in neighbours )
mean_belief = sum( n.mean_belief * self.degree(n) / influence for n in neighbours )
mean_belief = mean_belief * self.vulnerability + self.mean_belief * ( 1 - self.vulnerability )
self.mean_belief = self.mean_belief ** ( 1 - self.terrorist_additional_influence )
influence = sum(self.degree(n) for n in neighbours)
mean_belief = sum(
n.mean_belief * self.degree(n) / influence for n in neighbours
)
mean_belief = mean_belief * self.vulnerability + self.mean_belief * (
1 - self.vulnerability
)
self.mean_belief = self.mean_belief ** (
1 - self.terrorist_additional_influence
)
# Check if there are any leaders in the group
leaders = list(filter(lambda x: x.state.id == self.leader.id, neighbours))
@ -82,21 +109,29 @@ class TerroristSpreadModel(FSM, Geo):
return self.leader
def ego_search(self, steps=1, center=False, node=None, **kwargs):
'''Get a list of nodes in the ego network of *node* of radius *steps*'''
"""Get a list of nodes in the ego network of *node* of radius *steps*"""
node = as_node(node if node is not None else self)
G = self.subgraph(**kwargs)
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
def degree(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.model, '_degree')) or getattr(self.model, '_last_step', 0) < self.now:
if (
force
or (not hasattr(self.model, "_degree"))
or getattr(self.model, "_last_step", 0) < self.now
):
self.model._degree = nx.degree_centrality(self.G)
self.model._last_step = self.now
return self.model._degree[node]
def betweenness(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.model, '_betweenness')) or getattr(self.model, '_last_step', 0) < self.now:
if (
force
or (not hasattr(self.model, "_betweenness"))
or getattr(self.model, "_last_step", 0) < self.now
):
self.model._betweenness = nx.betweenness_centrality(self.G)
self.model._last_step = self.now
return self.model._betweenness[node]
@ -114,17 +149,20 @@ class TrainingAreaModel(FSM, Geo):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.training_influence = model.environment_params['training_influence']
if 'min_vulnerability' in model.environment_params:
self.min_vulnerability = model.environment_params['min_vulnerability']
else: self.min_vulnerability = 0
self.training_influence = model.environment_params["training_influence"]
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"]
else:
self.min_vulnerability = 0
@default_state
@state
def terrorist(self):
for neighbour in self.get_neighboring_agents(agent_class=TerroristSpreadModel):
if neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.training_influence )
neighbour.vulnerability = neighbour.vulnerability ** (
1 - self.training_influence
)
class HavenModel(FSM, Geo):
@ -141,11 +179,12 @@ class HavenModel(FSM, Geo):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.haven_influence = model.environment_params['haven_influence']
if 'min_vulnerability' in model.environment_params:
self.min_vulnerability = model.environment_params['min_vulnerability']
else: self.min_vulnerability = 0
self.max_vulnerability = model.environment_params['max_vulnerability']
self.haven_influence = model.environment_params["haven_influence"]
if "min_vulnerability" in model.environment_params:
self.min_vulnerability = model.environment_params["min_vulnerability"]
else:
self.min_vulnerability = 0
self.max_vulnerability = model.environment_params["max_vulnerability"]
def get_occupants(self, **kwargs):
return self.get_neighboring_agents(agent_class=TerroristSpreadModel, **kwargs)
@ -158,14 +197,18 @@ class HavenModel(FSM, Geo):
for neighbour in self.get_occupants():
if neighbour.vulnerability > self.min_vulnerability:
neighbour.vulnerability = neighbour.vulnerability * ( 1 - self.haven_influence )
neighbour.vulnerability = neighbour.vulnerability * (
1 - self.haven_influence
)
return self.civilian
@state
def terrorist(self):
for neighbour in self.get_occupants():
if neighbour.vulnerability < self.max_vulnerability:
neighbour.vulnerability = neighbour.vulnerability ** ( 1 - self.haven_influence )
neighbour.vulnerability = neighbour.vulnerability ** (
1 - self.haven_influence
)
return self.terrorist
@ -184,10 +227,10 @@ class TerroristNetworkModel(TerroristSpreadModel):
def __init__(self, model=None, unique_id=0, state=()):
super().__init__(model=model, unique_id=unique_id, state=state)
self.vision_range = model.environment_params['vision_range']
self.sphere_influence = model.environment_params['sphere_influence']
self.weight_social_distance = model.environment_params['weight_social_distance']
self.weight_link_distance = model.environment_params['weight_link_distance']
self.vision_range = model.environment_params["vision_range"]
self.sphere_influence = model.environment_params["sphere_influence"]
self.weight_social_distance = model.environment_params["weight_social_distance"]
self.weight_link_distance = model.environment_params["weight_link_distance"]
@state
def terrorist(self):
@ -201,27 +244,48 @@ class TerroristNetworkModel(TerroristSpreadModel):
def update_relationships(self):
if self.count_neighboring_agents(state_id=self.civilian.id) == 0:
close_ups = set(self.geo_search(radius=self.vision_range, agent_class=TerroristNetworkModel))
step_neighbours = set(self.ego_search(self.sphere_influence, agent_class=TerroristNetworkModel, center=False))
neighbours = set(agent.id for agent in self.get_neighboring_agents(agent_class=TerroristNetworkModel))
close_ups = set(
self.geo_search(
radius=self.vision_range, agent_class=TerroristNetworkModel
)
)
step_neighbours = set(
self.ego_search(
self.sphere_influence,
agent_class=TerroristNetworkModel,
center=False,
)
)
neighbours = set(
agent.id
for agent in self.get_neighboring_agents(
agent_class=TerroristNetworkModel
)
)
search = (close_ups | step_neighbours) - neighbours
for agent in self.get_agents(search):
social_distance = 1 / self.shortest_path_length(agent.id)
spatial_proximity = ( 1 - self.get_distance(agent.id) )
prob_new_interaction = self.weight_social_distance * social_distance + self.weight_link_distance * spatial_proximity
if agent['id'] == agent.civilian.id and self.random.random() < prob_new_interaction:
spatial_proximity = 1 - self.get_distance(agent.id)
prob_new_interaction = (
self.weight_social_distance * social_distance
+ self.weight_link_distance * spatial_proximity
)
if (
agent["id"] == agent.civilian.id
and self.random.random() < prob_new_interaction
):
self.add_edge(agent)
break
def get_distance(self, target):
source_x, source_y = nx.get_node_attributes(self.G, 'pos')[self.id]
target_x, target_y = nx.get_node_attributes(self.G, 'pos')[target]
dx = abs( source_x - target_x )
dy = abs( source_y - target_y )
return ( dx ** 2 + dy ** 2 ) ** ( 1 / 2 )
source_x, source_y = nx.get_node_attributes(self.G, "pos")[self.id]
target_x, target_y = nx.get_node_attributes(self.G, "pos")[target]
dx = abs(source_x - target_x)
dy = abs(source_y - target_y)
return (dx**2 + dy**2) ** (1 / 2)
def shortest_path_length(self, target):
try:
return nx.shortest_path_length(self.G, self.id, target)
except nx.NetworkXNoPath:
return float('inf')
return float("inf")

View File

@ -5,6 +5,7 @@ import sys
import os
import logging
import traceback
from contextlib import contextmanager
from .version import __version__
@ -30,6 +31,7 @@ def main(
*,
do_run=False,
debug=False,
pdb=False,
**kwargs,
):
import argparse
@ -154,6 +156,7 @@ def main(
if args.pdb or debug:
args.synchronous = True
os.environ["SOIL_POSTMORTEM"] = "true"
res = []
try:
@ -214,8 +217,21 @@ def main(
return res
def easy(cfg, debug=False, **kwargs):
return main(cfg, **kwargs)[0]
@contextmanager
def easy(cfg, pdb=False, debug=False, **kwargs):
ex = None
try:
yield main(cfg, **kwargs)[0]
except Exception as e:
if os.environ.get("SOIL_POSTMORTEM"):
from .debugging import post_mortem
print(traceback.format_exc())
post_mortem()
ex = e
finally:
if ex:
raise ex
if __name__ == "__main__":

View File

@ -29,10 +29,6 @@ def as_node(agent):
IGNORED_FIELDS = ("model", "logger")
class DeadAgent(Exception):
pass
class MetaAgent(ABCMeta):
def __new__(mcls, name, bases, namespace):
defaults = {}
@ -47,9 +43,9 @@ class MetaAgent(ABCMeta):
}
for attr, func in namespace.items():
if attr == 'step' and inspect.isgeneratorfunction(func):
if attr == "step" and inspect.isgeneratorfunction(func):
orig_func = func
new_nmspc['_MetaAgent__coroutine'] = None
new_nmspc["_MetaAgent__coroutine"] = None
@wraps(func)
def func(self):
@ -66,10 +62,10 @@ class MetaAgent(ABCMeta):
func.is_default = False
new_nmspc[attr] = func
elif (
isinstance(func, types.FunctionType)
or isinstance(func, property)
or isinstance(func, classmethod)
or attr[0] == "_"
isinstance(func, types.FunctionType)
or isinstance(func, property)
or isinstance(func, classmethod)
or attr[0] == "_"
):
new_nmspc[attr] = func
elif attr == "defaults":
@ -198,7 +194,7 @@ class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
def step(self):
if not self.alive:
raise DeadAgent(self.unique_id)
raise time.DeadAgent(self.unique_id)
return super().step() or time.Delta(self.interval)
def log(self, message, *args, level=logging.INFO, **kwargs):
@ -264,6 +260,10 @@ class NetworkAgent(BaseAgent):
return list(self.iter_agents(limit_neighbors=True, **kwargs))
def add_edge(self, other):
assert self.node_id
assert other.node_id
assert self.node_id in self.G.nodes
assert other.node_id in self.G.nodes
self.topology.add_edge(self.node_id, other.node_id)
@property
@ -303,7 +303,9 @@ class NetworkAgent(BaseAgent):
return G
def remove_node(self):
print(f"Removing node for {self.unique_id}: {self.node_id}")
self.G.remove_node(self.node_id)
self.node_id = None
def add_edge(self, other, edge_attr_dict=None, *edge_attrs):
if self.node_id not in self.G.nodes(data=False):
@ -322,6 +324,8 @@ class NetworkAgent(BaseAgent):
)
def die(self, remove=True):
if not self.alive:
return
if remove:
self.remove_node()
return super().die()
@ -351,7 +355,7 @@ def state(name=None):
self._coroutine = None
next_state = ex.value
if next_state is not None:
self.set_state(next_state)
self._set_state(next_state)
return next_state
func.id = name or func.__name__
@ -401,8 +405,8 @@ class MetaFSM(MetaAgent):
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, *args, **kwargs):
super(FSM, self).__init__(*args, **kwargs)
def __init__(self, **kwargs):
super(FSM, self).__init__(**kwargs)
if not hasattr(self, "state_id"):
if not self._default_state:
raise ValueError(
@ -411,7 +415,7 @@ class FSM(BaseAgent, metaclass=MetaFSM):
self.state_id = self._default_state.id
self._coroutine = None
self.set_state(self.state_id)
self._set_state(self.state_id)
def step(self):
self.debug(f"Agent {self.unique_id} @ state {self.state_id}")
@ -434,11 +438,11 @@ class FSM(BaseAgent, metaclass=MetaFSM):
pass
if next_state is not None:
self.set_state(next_state)
self._set_state(next_state)
return when or default_interval
def set_state(self, state, when=None):
def _set_state(self, state, when=None):
if hasattr(state, "id"):
state = state.id
if state not in self._states:
@ -576,83 +580,6 @@ def _convert_agent_classs(ind, to_string=False, **kwargs):
return deserialize_definition(ind, **kwargs)
# def _agent_from_definition(definition, random, value=-1, unique_id=None):
# """Used in the initialization of agents given an agent distribution."""
# if value < 0:
# value = random.random()
# for d in sorted(definition, key=lambda x: x.get('threshold')):
# threshold = d.get('threshold', (-1, -1))
# # Check if the definition matches by id (first) or by threshold
# if (unique_id is not None and unique_id in d.get('ids', [])) or \
# (value >= threshold[0] and value < threshold[1]):
# state = {}
# if 'state' in d:
# state = deepcopy(d['state'])
# return d['agent_class'], state
# raise Exception('Definition for value {} not found in: {}'.format(value, definition))
# def _definition_to_dict(definition, random, size=None, default_state=None):
# state = default_state or {}
# agents = {}
# remaining = {}
# if size:
# for ix in range(size):
# remaining[ix] = copy(state)
# else:
# remaining = defaultdict(lambda x: copy(state))
# distro = sorted([item for item in definition if 'weight' in item])
# id = 0
# def init_agent(item, id=ix):
# while id in agents:
# id += 1
# agent = remaining[id]
# agent['state'].update(copy(item.get('state', {})))
# agents[agent.unique_id] = agent
# del remaining[id]
# return agent
# for item in definition:
# if 'ids' in item:
# ids = item['ids']
# del item['ids']
# for id in ids:
# agent = init_agent(item, id)
# for item in definition:
# if 'number' in item:
# times = item['number']
# del item['number']
# for times in range(times):
# if size:
# ix = random.choice(remaining.keys())
# agent = init_agent(item, id)
# else:
# agent = init_agent(item)
# if not size:
# return agents
# if len(remaining) < 0:
# raise Exception('Invalid definition. Too many agents to add')
# total_weight = float(sum(s['weight'] for s in distro))
# unit = size / total_weight
# for item in distro:
# times = unit * item['weight']
# del item['weight']
# for times in range(times):
# ix = random.choice(remaining.keys())
# agent = init_agent(item, id)
# return agents
class AgentView(Mapping, Set):
"""A lazy-loaded list of agents."""

View File

@ -31,8 +31,8 @@ class Debug(pdb.Pdb):
def __init__(self, *args, skip_soil=False, **kwargs):
skip = kwargs.get("skip", [])
skip.append("soil")
skip.append("contextlib")
if skip_soil:
skip.append("soil")
skip.append("soil.*")
skip.append("mesa.*")
super(Debug, self).__init__(*args, skip=skip, **kwargs)
@ -181,7 +181,7 @@ def set_trace(frame=None, **kwargs):
debugger.set_trace(frame)
def post_mortem(traceback=None):
def post_mortem(traceback=None, **kwargs):
global debugger
if debugger is None:
debugger = Debug(**kwargs)

View File

@ -142,12 +142,12 @@ class BaseEnvironment(Model):
"The environment has not been scheduled, so it has no sense of time"
)
def add_agent(self, agent_class, unique_id=None, **kwargs):
a = None
def add_agent(self, unique_id=None, **kwargs):
if unique_id is None:
unique_id = self.next_id()
a = agent_class(model=self, unique_id=unique_id, **args)
kwargs["unique_id"] = unique_id
a = self._agent_from_dict(kwargs)
self.schedule.add(a)
return a
@ -169,7 +169,9 @@ class BaseEnvironment(Model):
Advance one step in the simulation, and update the data collection and scheduler appropriately
"""
super().step()
self.logger.info(f"--- Step: {self.schedule.steps:^5} - Time: {self.now:^5} ---")
self.logger.info(
f"--- Step: {self.schedule.steps:^5} - Time: {self.now:^5} ---"
)
self.schedule.step()
self.datacollector.collect(self)
@ -236,6 +238,7 @@ class NetworkEnvironment(BaseEnvironment):
node_id = agent.get("node_id", None)
if node_id is None:
node_id = network.find_unassigned(self.G, random=self.random)
self.G.nodes[node_id]["agent"] = None
agent["node_id"] = node_id
agent["unique_id"] = unique_id
agent["topology"] = self.G
@ -269,18 +272,35 @@ class NetworkEnvironment(BaseEnvironment):
node_id = network.find_unassigned(
G=self.G, shuffle=True, random=self.random
)
if node_id is None:
node_id = f"node_for_{unique_id}"
if node_id in G.nodes:
self.G.nodes[node_id]["agent"] = None # Reserve
else:
if node_id not in self.G.nodes:
self.G.add_node(node_id)
assert "agent" not in self.G.nodes[node_id]
self.G.nodes[node_id]["agent"] = None # Reserve
a = self.add_agent(
unique_id=unique_id, agent_class=agent_class, node_id=node_id, **kwargs
unique_id=unique_id,
agent_class=agent_class,
topology=self.G,
node_id=node_id,
**kwargs,
)
a["visible"] = True
return a
def add_agent(self, *args, **kwargs):
a = super().add_agent(*args, **kwargs)
if "node_id" in a:
if a.node_id == 24:
import pdb
pdb.set_trace()
assert self.G.nodes[a.node_id]["agent"] == a
return a
def agent_for_node_id(self, node_id):
return self.G.nodes[node_id].get("agent")

View File

@ -202,7 +202,12 @@ class summary(Exporter):
for (t, df) in self.get_dfs(env):
if not len(df):
continue
msg = indent(str(df.describe()), ' ')
logger.info(dedent(f'''
msg = indent(str(df.describe()), " ")
logger.info(
dedent(
f"""
Dataframe {t}:
''') + msg)
"""
)
+ msg
)

View File

@ -65,10 +65,8 @@ def find_unassigned(G, shuffle=False, random=random):
random.shuffle(candidates)
for next_id, data in candidates:
if "agent" not in data:
node_id = next_id
break
return node_id
return next_id
return None
def dump_gexf(G, f):

View File

@ -226,7 +226,9 @@ Model stats:
)
model.step()
if model.schedule.time < until: # Simulation ended (no more steps) before until (i.e., no changes expected)
if (
model.schedule.time < until
): # Simulation ended (no more steps) before the expected time
model.schedule.time = until
return model

View File

@ -13,6 +13,10 @@ from mesa import Agent as MesaAgent
INFINITY = float("inf")
class DeadAgent(Exception):
pass
class When:
def __init__(self, time):
if isinstance(time, When):
@ -38,23 +42,27 @@ class When:
return self._time > other
return self._time > other.next(self._time)
def ready(self, time):
return self._time <= time
def ready(self, agent):
return self._time <= agent.model.schedule.time
class Cond(When):
def __init__(self, func, delta=1):
self._func = func
self._delta = delta
self._checked = False
def next(self, time):
return time + self._delta
if self._checked:
return time + self._delta
return time
def abs(self, time):
return self
def ready(self, time):
return self._func(time)
def ready(self, agent):
self._checked = True
return self._func(agent)
def __eq__(self, other):
return False
@ -109,10 +117,12 @@ class TimedActivation(BaseScheduler):
elif not isinstance(when, When):
when = When(when)
if agent.unique_id in self._agents:
self._queue.remove((self._next[agent.unique_id], agent))
del self._agents[agent.unique_id]
heapify(self._queue)
if agent.unique_id in self._next:
self._queue.remove((self._next[agent.unique_id], agent))
heapify(self._queue)
self._next[agent.unique_id] = when
heappush(self._queue, (when, agent))
super().add(agent)
@ -139,8 +149,9 @@ class TimedActivation(BaseScheduler):
if when > self.time:
break
heappop(self._queue)
if when.ready(self.time):
if when.ready(agent):
to_process.append(agent)
self._next.pop(agent.unique_id, None)
continue
next_time = min(next_time, when.next(self.time))
@ -155,13 +166,19 @@ class TimedActivation(BaseScheduler):
for agent in to_process:
self.logger.debug(f"Stepping agent {agent}")
returned = ((agent.step() or Delta(1))).abs(self.time)
try:
returned = ((agent.step() or Delta(1))).abs(self.time)
except DeadAgent:
if agent.unique_id in self._next:
del self._next[agent.unique_id]
agent.alive = False
continue
if not getattr(agent, "alive", True):
self.remove(agent)
continue
value = when.next(self.time)
value = returned.next(self.time)
if value < self.time:
raise Exception(
@ -172,6 +189,8 @@ class TimedActivation(BaseScheduler):
self._next[agent.unique_id] = returned
heappush(self._queue, (returned, agent))
else:
assert not self._next[agent.unique_id]
self.steps += 1
self.logger.debug(f"Updating time step: {self.time} -> {next_time}")

View File

@ -24,7 +24,7 @@ class TestMain(TestCase):
'''A dead agent should raise an exception if it is stepped after death'''
d = Dead(unique_id=0, model=environment.Environment())
d.step()
with pytest.raises(agents.DeadAgent):
with pytest.raises(stime.DeadAgent):
d.step()

74
tests/test_time.py Normal file
View File

@ -0,0 +1,74 @@
from unittest import TestCase
from soil import time, agents, environment
class TestMain(TestCase):
def test_cond(self):
'''
A condition should match a When if the concition is True
'''
t = time.Cond(lambda t: True)
f = time.Cond(lambda t: False)
for i in range(10):
w = time.When(i)
assert w == t
assert w is not f
def test_cond(self):
'''
Comparing a Cond to a Delta should always return False
'''
c = time.Cond(lambda t: False)
d = time.Delta(1)
assert c is not d
def test_cond_env(self):
'''
'''
times_started = []
times_awakened = []
times = []
done = 0
class CondAgent(agents.BaseAgent):
def step(self):
nonlocal done
times_started.append(self.now)
while True:
yield time.Cond(lambda agent: agent.model.schedule.time >= 10)
times_awakened.append(self.now)
if self.now >= 10:
break
done += 1
env = environment.Environment(agents=[{'agent_class': CondAgent}])
while env.schedule.time < 11:
env.step()
times.append(env.now)
assert env.schedule.time == 11
assert times_started == [0]
assert times_awakened == [10]
assert done == 1
# The first time will produce the Cond.
# Since there are no other agents, time will not advance, but the number
# of steps will.
assert env.schedule.steps == 12
assert len(times) == 12
while env.schedule.time < 12:
env.step()
times.append(env.now)
assert env.schedule.time == 12
assert times_started == [0, 11]
assert times_awakened == [10, 11]
assert done == 2
# Once more to yield the cond, another one to continue
assert env.schedule.steps == 14
assert len(times) == 14