mirror of
https://github.com/gsi-upm/soil
synced 2025-08-23 19:52:19 +00:00
Tidying up the repository
This commit is contained in:
@@ -8,6 +8,31 @@ Welcome to Soil's documentation!
|
||||
|
||||
Soil is an Agent-based Social Simulator in Python for modelling and simulation of Social Networks.
|
||||
|
||||
If you use Soil in your research, do not forget to cite this paper:
|
||||
|
||||
.. code:: bibtex
|
||||
|
||||
@inbook{soil-gsi-conference-2017,
|
||||
author = "S{\'a}nchez, Jes{\'u}s M. and Iglesias, Carlos A. and S{\'a}nchez-Rada, J. Fernando",
|
||||
booktitle = "Advances in Practical Applications of Cyber-Physical Multi-Agent Systems: The PAAMS Collection",
|
||||
doi = "10.1007/978-3-319-59930-4_19",
|
||||
editor = "Demazeau Y., Davidsson P., Bajo J., Vale Z.",
|
||||
isbn = "978-3-319-59929-8",
|
||||
keywords = "soil;social networks;agent based social simulation;python",
|
||||
month = "June",
|
||||
organization = "PAAMS 2017",
|
||||
pages = "234-245",
|
||||
publisher = "Springer Verlag",
|
||||
series = "LNAI",
|
||||
title = "{S}oil: {A}n {A}gent-{B}ased {S}ocial {S}imulator in {P}ython for {M}odelling and {S}imulation of {S}ocial {N}etworks",
|
||||
url = "https://link.springer.com/chapter/10.1007/978-3-319-59930-4_19",
|
||||
volume = "10349",
|
||||
year = "2017",
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:caption: Learn more about soil:
|
||||
|
112
docs/models.rst
112
docs/models.rst
@@ -1,112 +0,0 @@
|
||||
Developing new models
|
||||
---------------------
|
||||
This document describes how to develop a new analysis model.
|
||||
|
||||
What is a model?
|
||||
================
|
||||
|
||||
A model defines the behaviour of the agents with a view to assessing their effects on the system as a whole.
|
||||
In practice, a model consists of at least two parts:
|
||||
|
||||
* Python module: the actual code that describes the behaviour.
|
||||
* Setting up the variables in the Settings JSON file.
|
||||
|
||||
This separation allows us to run the simulation with different agents.
|
||||
|
||||
Models Code
|
||||
===========
|
||||
|
||||
All the models are imported to the main file. The initialization look like this:
|
||||
|
||||
.. code:: python
|
||||
|
||||
import settings
|
||||
|
||||
networkStatus = {} # Dict that will contain the status of every agent in the network
|
||||
|
||||
sentimentCorrelationNodeArray = []
|
||||
for x in range(0, settings.network_params["number_of_nodes"]):
|
||||
sentimentCorrelationNodeArray.append({'id': x})
|
||||
# Initialize agent states. Let's assume everyone is normal.
|
||||
init_states = [{'id': 0, } for _ in range(settings.network_params["number_of_nodes"])]
|
||||
# add keys as as necessary, but "id" must always refer to that state category
|
||||
|
||||
A new model have to inherit the BaseBehaviour class which is in the same module.
|
||||
There are two basics methods:
|
||||
|
||||
* __init__
|
||||
* step: used to define the behaviour over time.
|
||||
|
||||
Variable Initialization
|
||||
=======================
|
||||
|
||||
The different parameters of the model have to be initialize in the Simulation Settings JSON file which will be
|
||||
passed as a parameter to the simulation.
|
||||
|
||||
.. code:: json
|
||||
|
||||
{
|
||||
"agent": ["SISaModel","ControlModelM2"],
|
||||
|
||||
"neutral_discontent_spon_prob": 0.04,
|
||||
"neutral_discontent_infected_prob": 0.04,
|
||||
"neutral_content_spon_prob": 0.18,
|
||||
"neutral_content_infected_prob": 0.02,
|
||||
|
||||
"discontent_neutral": 0.13,
|
||||
"discontent_content": 0.07,
|
||||
"variance_d_c": 0.02,
|
||||
|
||||
"content_discontent": 0.009,
|
||||
"variance_c_d": 0.003,
|
||||
"content_neutral": 0.088,
|
||||
|
||||
"standard_variance": 0.055,
|
||||
|
||||
|
||||
"prob_neutral_making_denier": 0.035,
|
||||
|
||||
"prob_infect": 0.075,
|
||||
|
||||
"prob_cured_healing_infected": 0.035,
|
||||
"prob_cured_vaccinate_neutral": 0.035,
|
||||
|
||||
"prob_vaccinated_healing_infected": 0.035,
|
||||
"prob_vaccinated_vaccinate_neutral": 0.035,
|
||||
"prob_generate_anti_rumor": 0.035
|
||||
}
|
||||
|
||||
In this file you will also define the models you are going to simulate. You can simulate as many models as you want.
|
||||
The simulation returns one result for each model, executing each model separately. For the usage, see :doc:`usage`.
|
||||
|
||||
Example Model
|
||||
=============
|
||||
|
||||
In this section, we will implement a Sentiment Correlation Model.
|
||||
|
||||
The class would look like this:
|
||||
|
||||
.. code:: python
|
||||
|
||||
from ..BaseBehaviour import *
|
||||
from .. import sentimentCorrelationNodeArray
|
||||
|
||||
class SentimentCorrelationModel(BaseBehaviour):
|
||||
|
||||
def __init__(self, environment=None, agent_id=0, state=()):
|
||||
super().__init__(environment=environment, agent_id=agent_id, state=state)
|
||||
self.outside_effects_prob = environment.environment_params['outside_effects_prob']
|
||||
self.anger_prob = environment.environment_params['anger_prob']
|
||||
self.joy_prob = environment.environment_params['joy_prob']
|
||||
self.sadness_prob = environment.environment_params['sadness_prob']
|
||||
self.disgust_prob = environment.environment_params['disgust_prob']
|
||||
self.time_awareness = []
|
||||
for i in range(4): # In this model we have 4 sentiments
|
||||
self.time_awareness.append(0) # 0-> Anger, 1-> joy, 2->sadness, 3 -> disgust
|
||||
sentimentCorrelationNodeArray[self.id][self.env.now] = 0
|
||||
|
||||
def step(self, now):
|
||||
self.behaviour() # Method which define the behaviour
|
||||
super().step(now)
|
||||
|
||||
The variables will be modified by the user, so you have to include them in the Simulation Settings JSON file.
|
Reference in New Issue
Block a user