1
0
mirror of https://github.com/gsi-upm/soil synced 2024-11-24 20:02:28 +00:00

WIP: all tests pass

This commit is contained in:
J. Fernando Sánchez 2022-10-13 22:43:16 +02:00
parent f811ee18c5
commit cd62c23cb9
46 changed files with 1720 additions and 1434 deletions

View File

@ -4,6 +4,8 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.3 UNRELEASED]
### Added
* Simple debugging capabilities, with a custom `pdb.Debugger` subclass that exposes commands to list agents and their status and set breakpoints on states (for FSM agents)
### Changed
* Configuration schema is very different now. Check `soil.config` for more information. We are also using Pydantic for (de)serialization.
* There may be more than one topology/network in the simulation

12
docs/soil-vs.rst Normal file
View File

@ -0,0 +1,12 @@
### MESA
Starting with version 0.3, Soil has been redesigned to complement Mesa, while remaining compatible with it.
That means that every component in Soil (i.e., Models, Environments, etc.) can be mixed with existing mesa components.
In fact, there are examples that show how that integration may be used, in the `examples/mesa` folder in the repository.
Here are some reasons to use Soil instead of plain mesa:
- Less boilerplate for common scenarios (by some definitions of common)
- Functions to automatically populate a topology with an agent distribution (i.e., different ratios of agent class and state)
- The `soil.Simulation` class allows you to run multiple instances of the same experiment (i.e., multiple trials with the same parameters but a different randomness seed)
- Reporting functions that aggregate multiple

View File

@ -1,14 +1,16 @@
---
version: '2'
general:
id: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
seed: "CompleteSeed!"
topologies:
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_steps: 100
interval: 1
seed: "CompleteSeed!"
model_class: Environment
model_params:
am_i_complete: true
topologies:
default:
params:
generator: complete_graph
@ -17,30 +19,36 @@ topologies:
params:
generator: complete_graph
n: 2
environment:
environment_class: Environment
params:
am_i_complete: true
agents:
# Agents are split several groups, each with its own definition
default: # This is a special group. Its values will be used as default values for the rest of the groups
environment:
agents:
agent_class: CounterModel
topology: default
state:
times: 1
environment:
# In this group we are not specifying any topology
topology: False
fixed:
- name: 'Environment Agent 1'
agent_class: CounterModel
agent_class: BaseAgent
group: environment
topology: null
hidden: true
state:
times: 10
general_counters:
topology: default
- agent_class: CounterModel
id: 0
group: other_counters
topology: another_graph
state:
times: 1
total: 0
- agent_class: CounterModel
topology: another_graph
group: other_counters
id: 1
distribution:
- agent_class: CounterModel
weight: 1
group: general_counters
state:
times: 3
- agent_class: AggregatedCounter
@ -51,16 +59,3 @@ agents:
n: 2
state:
times: 5
other_counters:
topology: another_graph
fixed:
- agent_class: CounterModel
id: 0
state:
times: 1
total: 0
- agent_class: CounterModel
id: 1
# If not specified, it will use the state set in the default
# state:

View File

@ -0,0 +1,63 @@
---
version: '2'
id: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_steps: 100
interval: 1
seed: "CompleteSeed!"
model_class: "soil.Environment"
model_params:
topologies:
default:
params:
generator: complete_graph
n: 10
another_graph:
params:
generator: complete_graph
n: 2
agents:
# The values here will be used as default values for any agent
agent_class: CounterModel
topology: default
state:
times: 1
# This specifies a distribution of agents, each with a `weight` or an explicit number of agents
distribution:
- agent_class: CounterModel
weight: 1
# This is inherited from the default settings
#topology: default
state:
times: 3
- agent_class: AggregatedCounter
topology: default
weight: 0.2
fixed:
- name: 'Environment Agent 1'
# All the other agents will assigned to the 'default' group
group: environment
# Do not count this agent towards total limits
hidden: true
agent_class: soil.BaseAgent
topology: null
state:
times: 10
- agent_class: CounterModel
topology: another_graph
id: 0
state:
times: 1
total: 0
- agent_class: CounterModel
topology: another_graph
id: 1
override:
# 2 agents that match this filter will be updated to match the state {times: 5}
- filter:
agent_class: AggregatedCounter
n: 2
state:
times: 5

View File

@ -2,7 +2,7 @@
name: custom-generator
description: Using a custom generator for the network
num_trials: 3
max_time: 100
max_steps: 100
interval: 1
network_params:
generator: mymodule.mygenerator

View File

@ -1,4 +1,5 @@
from networkx import Graph
import random
import networkx as nx
def mygenerator(n=5, n_edges=5):
@ -13,9 +14,9 @@ def mygenerator(n=5, n_edges=5):
for i in range(n_edges):
nodes = list(G.nodes)
n_in = self.random.choice(nodes)
n_in = random.choice(nodes)
nodes.remove(n_in) # Avoid loops
n_out = self.random.choice(nodes)
n_out = random.choice(nodes)
G.add_edge(n_in, n_out)
return G

View File

@ -3,17 +3,21 @@ name: mesa_sim
group: tests
dir_path: "/tmp"
num_trials: 3
max_time: 100
max_steps: 100
interval: 1
seed: '1'
network_params:
model_class: social_wealth.MoneyEnv
model_params:
topologies:
default:
params:
generator: social_wealth.graph_generator
n: 5
network_agents:
agents:
distribution:
- agent_class: social_wealth.SocialMoneyAgent
topology: default
weight: 1
environment_class: social_wealth.MoneyEnv
environment_params:
mesa_agent_class: social_wealth.MoneyAgent
N: 10
width: 50

View File

@ -5,7 +5,7 @@ environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 300
max_steps: 300
name: Sim_all_dumb
network_agents:
- agent_class: newsspread.DumbViewer
@ -28,7 +28,7 @@ environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 300
max_steps: 300
name: Sim_half_herd
network_agents:
- agent_class: newsspread.DumbViewer
@ -59,7 +59,7 @@ environment_params:
prob_neighbor_spread: 0.0
prob_tv_spread: 0.01
interval: 1
max_time: 300
max_steps: 300
name: Sim_all_herd
network_agents:
- agent_class: newsspread.HerdViewer
@ -85,7 +85,7 @@ environment_params:
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_time: 300
max_steps: 300
name: Sim_wise_herd
network_agents:
- agent_class: newsspread.HerdViewer
@ -110,7 +110,7 @@ environment_params:
prob_tv_spread: 0.01
prob_neighbor_cure: 0.1
interval: 1
max_time: 300
max_steps: 300
name: Sim_all_wise
network_agents:
- agent_class: newsspread.WiseViewer

View File

@ -16,13 +16,13 @@ class DumbViewer(FSM, NetworkAgent):
@state
def neutral(self):
if self['has_tv']:
if prob(self.env['prob_tv_spread']):
if self.prob(self.model['prob_tv_spread']):
return self.infected
@state
def infected(self):
for neighbor in self.get_neighboring_agents(state_id=self.neutral.id):
if prob(self.env['prob_neighbor_spread']):
if self.prob(self.model['prob_neighbor_spread']):
neighbor.infect()
def infect(self):
@ -44,9 +44,9 @@ class HerdViewer(DumbViewer):
'''Notice again that this is NOT a state. See DumbViewer.infect for reference'''
infected = self.count_neighboring_agents(state_id=self.infected.id)
total = self.count_neighboring_agents()
prob_infect = self.env['prob_neighbor_spread'] * infected/total
prob_infect = self.model['prob_neighbor_spread'] * infected/total
self.debug('prob_infect', prob_infect)
if prob(prob_infect):
if self.prob(prob_infect):
self.set_state(self.infected)
@ -63,9 +63,9 @@ class WiseViewer(HerdViewer):
@state
def cured(self):
prob_cure = self.env['prob_neighbor_cure']
prob_cure = self.model['prob_neighbor_cure']
for neighbor in self.get_neighboring_agents(state_id=self.infected.id):
if prob(prob_cure):
if self.prob(prob_cure):
try:
neighbor.cure()
except AttributeError:
@ -80,7 +80,7 @@ class WiseViewer(HerdViewer):
1.0)
infected = max(self.count_neighboring_agents(self.infected.id),
1.0)
prob_cure = self.env['prob_neighbor_cure'] * (cured/infected)
if prob(prob_cure):
prob_cure = self.model['prob_neighbor_cure'] * (cured/infected)
if self.prob(prob_cure):
return self.cured
return self.set_state(super().infected)

View File

@ -60,12 +60,10 @@ class Patron(FSM, NetworkAgent):
'''
level = logging.DEBUG
defaults = {
'pub': None,
'drunk': False,
'pints': 0,
'max_pints': 3,
}
pub = None
drunk = False
pints = 0
max_pints = 3
@default_state
@state
@ -89,9 +87,9 @@ class Patron(FSM, NetworkAgent):
return self.sober_in_pub
self.debug('I am looking for a pub')
group = list(self.get_neighboring_agents())
for pub in self.env.available_pubs():
for pub in self.model.available_pubs():
self.debug('We\'re trying to get into {}: total: {}'.format(pub, len(group)))
if self.env.enter(pub, self, *group):
if self.model.enter(pub, self, *group):
self.info('We\'re all {} getting in {}!'.format(len(group), pub))
return self.sober_in_pub
@ -128,7 +126,7 @@ class Patron(FSM, NetworkAgent):
success depend on both agents' openness.
'''
if force or self['openness'] > self.random.random():
self.env.add_edge(self, other_agent)
self.model.add_edge(self, other_agent)
self.info('Made some friend {}'.format(other_agent))
return True
return False
@ -150,7 +148,7 @@ class Patron(FSM, NetworkAgent):
return befriended
class Police(FSM, NetworkAgent):
class Police(FSM):
'''Simple agent to take drunk people out of pubs.'''
level = logging.INFO

View File

@ -1,7 +1,7 @@
---
name: pubcrawl
num_trials: 3
max_time: 10
max_steps: 10
dump: false
network_params:
# Generate 100 empty nodes. They will be assigned a network agent

View File

@ -0,0 +1,4 @@
There are two similar implementations of this simulation.
- `basic`. Using simple primites
- `improved`. Using more advanced features such as the `time` module to avoid unnecessary computations (i.e., skip steps), and generator functions.

View File

@ -0,0 +1,130 @@
from soil.agents import FSM, state, default_state, BaseAgent, NetworkAgent
from soil.time import Delta
from enum import Enum
from collections import Counter
import logging
import math
class RabbitModel(FSM, NetworkAgent):
sexual_maturity = 30
life_expectancy = 300
@default_state
@state
def newborn(self):
self.info('I am a newborn.')
self.age = 0
self.offspring = 0
return self.youngling
@state
def youngling(self):
self.age += 1
if self.age >= self.sexual_maturity:
self.info(f'I am fertile! My age is {self.age}')
return self.fertile
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
@state
def dead(self):
self.die()
class Male(RabbitModel):
max_females = 5
mating_prob = 0.001
@state
def fertile(self):
self.age += 1
if self.age > self.life_expectancy:
return self.dead
# Males try to mate
for f in self.model.agents(agent_class=Female,
state_id=Female.fertile.id,
limit=self.max_females):
self.debug('FOUND A FEMALE: ', repr(f), self.mating_prob)
if self.prob(self['mating_prob']):
f.impregnate(self)
break # Take a break
class Female(RabbitModel):
gestation = 100
@state
def fertile(self):
# Just wait for a Male
self.age += 1
if self.age > self.life_expectancy:
return self.dead
def impregnate(self, male):
self.info(f'{repr(male)} impregnating female {repr(self)}')
self.mate = male
self.pregnancy = -1
self.set_state(self.pregnant, when=self.now)
self.number_of_babies = int(8+4*self.random.random())
self.debug('I am pregnant')
@state
def pregnant(self):
self.age += 1
self.pregnancy += 1
if self.prob(self.age / self.life_expectancy):
return self.die()
if self.pregnancy >= self.gestation:
self.info('Having {} babies'.format(self.number_of_babies))
for i in range(self.number_of_babies):
state = {}
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class,
topology=self.topology,
**state)
child.add_edge(self)
try:
child.add_edge(self.mate)
self.model.agents[self.mate].offspring += 1
except ValueError:
self.debug('The father has passed away')
self.offspring += 1
self.mate = None
return self.fertile
@state
def dead(self):
super().dead()
if 'pregnancy' in self and self['pregnancy'] > -1:
self.info('A mother has died carrying a baby!!')
class RandomAccident(BaseAgent):
level = logging.INFO
def step(self):
rabbits_alive = self.model.topology.number_of_nodes()
if not rabbits_alive:
return self.die()
prob_death = self.model.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.iter_agents(agent_class=RabbitModel):
if i.state.id == i.dead.id:
continue
if self.prob(prob_death):
self.info('I killed a rabbit: {}'.format(i.id))
rabbits_alive -= 1
i.set_state(i.dead)
self.debug('Rabbits alive: {}'.format(rabbits_alive))

View File

@ -0,0 +1,41 @@
---
version: '2'
name: rabbits_basic
num_trials: 1
seed: MySeed
description: null
group: null
interval: 1.0
max_time: 100
model_class: soil.environment.Environment
model_params:
agents:
topology: default
agent_class: rabbit_agents.RabbitModel
distribution:
- agent_class: rabbit_agents.Male
topology: default
weight: 1
- agent_class: rabbit_agents.Female
topology: default
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: null
hidden: true
state:
group: environment
state:
group: network
mating_prob: 0.1
prob_death: 0.001
topologies:
default:
topology:
directed: true
links: []
nodes:
- id: 1
- id: 0
extra:
visualization_params: {}

View File

@ -0,0 +1,130 @@
from soil.agents import FSM, state, default_state, BaseAgent, NetworkAgent
from soil.time import Delta, When, NEVER
from enum import Enum
import logging
import math
class RabbitModel(FSM, NetworkAgent):
mating_prob = 0.005
offspring = 0
birth = None
sexual_maturity = 3
life_expectancy = 30
@default_state
@state
def newborn(self):
self.birth = self.now
self.info(f'I am a newborn.')
self.model['rabbits_alive'] = self.model.get('rabbits_alive', 0) + 1
# Here we can skip the `youngling` state by using a coroutine/generator.
while self.age < self.sexual_maturity:
interval = self.sexual_maturity - self.age
yield Delta(interval)
self.info(f'I am fertile! My age is {self.age}')
return self.fertile
@property
def age(self):
return self.now - self.birth
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
def step(self):
super().step()
if self.prob(self.age / self.life_expectancy):
return self.die()
class Male(RabbitModel):
max_females = 5
@state
def fertile(self):
# Males try to mate
for f in self.model.agents(agent_class=Female,
state_id=Female.fertile.id,
limit=self.max_females):
self.debug('Found a female:', repr(f))
if self.prob(self['mating_prob']):
f.impregnate(self)
break # Take a break, don't try to impregnate the rest
class Female(RabbitModel):
due_date = None
age_of_pregnancy = None
gestation = 10
mate = None
@state
def fertile(self):
return self.fertile, NEVER
@state
def pregnant(self):
self.info('I am pregnant')
if self.age > self.life_expectancy:
return self.dead
self.due_date = self.now + self.gestation
number_of_babies = int(8+4*self.random.random())
while self.now < self.due_date:
yield When(self.due_date)
self.info('Having {} babies'.format(number_of_babies))
for i in range(number_of_babies):
agent_class = self.random.choice([Male, Female])
child = self.model.add_node(agent_class=agent_class,
topology=self.topology)
self.model.add_edge(self, child)
self.model.add_edge(self.mate, child)
self.offspring += 1
self.model.agents[self.mate].offspring += 1
self.mate = None
self.due_date = None
return self.fertile
@state
def dead(self):
super().dead()
if self.due_date is not None:
self.info('A mother has died carrying a baby!!')
def impregnate(self, male):
self.info(f'{repr(male)} impregnating female {repr(self)}')
self.mate = male
self.set_state(self.pregnant, when=self.now)
class RandomAccident(BaseAgent):
level = logging.INFO
def step(self):
rabbits_total = self.model.topology.number_of_nodes()
if 'rabbits_alive' not in self.model:
self.model['rabbits_alive'] = 0
rabbits_alive = self.model.get('rabbits_alive', rabbits_total)
prob_death = self.model.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.model.network_agents:
if i.state.id == i.dead.id:
continue
if self.prob(prob_death):
self.info('I killed a rabbit: {}'.format(i.id))
rabbits_alive = self.model['rabbits_alive'] = rabbits_alive -1
i.set_state(i.dead)
self.debug('Rabbits alive: {}/{}'.format(rabbits_alive, rabbits_total))
if self.model.count_agents(state_id=RabbitModel.dead.id) == self.model.topology.number_of_nodes():
self.die()

View File

@ -0,0 +1,41 @@
---
version: '2'
name: rabbits_improved
num_trials: 1
seed: MySeed
description: null
group: null
interval: 1.0
max_time: 100
model_class: soil.environment.Environment
model_params:
agents:
topology: default
agent_class: rabbit_agents.RabbitModel
distribution:
- agent_class: rabbit_agents.Male
topology: default
weight: 1
- agent_class: rabbit_agents.Female
topology: default
weight: 1
fixed:
- agent_class: rabbit_agents.RandomAccident
topology: null
hidden: true
state:
group: environment
state:
group: network
mating_prob: 0.1
prob_death: 0.001
topologies:
default:
topology:
directed: true
links: []
nodes:
- id: 1
- id: 0
extra:
visualization_params: {}

View File

@ -1,133 +0,0 @@
from soil.agents import FSM, state, default_state, BaseAgent, NetworkAgent
from enum import Enum
import logging
import math
class Genders(Enum):
male = 'male'
female = 'female'
class RabbitModel(FSM, NetworkAgent):
defaults = {
'age': 0,
'gender': Genders.male.value,
'mating_prob': 0.001,
'offspring': 0,
}
sexual_maturity = 3 #4*30
life_expectancy = 365 * 3
gestation = 33
pregnancy = -1
max_females = 5
@default_state
@state
def newborn(self):
self.debug(f'I am a newborn at age {self["age"]}')
self['age'] += 1
if self['age'] >= self.sexual_maturity:
self.debug('I am fertile!')
return self.fertile
@state
def fertile(self):
raise Exception("Each subclass should define its fertile state")
@state
def dead(self):
self.info('Agent {} is dying'.format(self.id))
self.die()
class Male(RabbitModel):
@state
def fertile(self):
self['age'] += 1
if self['age'] > self.life_expectancy:
return self.dead
if self['gender'] == Genders.female.value:
return
# Males try to mate
for f in self.get_agents(state_id=Female.fertile.id,
agent_class=Female,
limit_neighbors=False,
limit=self.max_females):
r = self.random.random()
if r < self['mating_prob']:
self.impregnate(f)
break # Take a break
def impregnate(self, whom):
whom['pregnancy'] = 0
whom['mate'] = self.id
whom.set_state(whom.pregnant)
self.debug('{} impregnating: {}. {}'.format(self.id, whom.id, whom.state))
class Female(RabbitModel):
@state
def fertile(self):
# Just wait for a Male
pass
@state
def pregnant(self):
self['age'] += 1
if self['age'] > self.life_expectancy:
return self.dead
self['pregnancy'] += 1
self.debug('Pregnancy: {}'.format(self['pregnancy']))
if self['pregnancy'] >= self.gestation:
number_of_babies = int(8+4*self.random.random())
self.info('Having {} babies'.format(number_of_babies))
for i in range(number_of_babies):
state = {}
state['gender'] = self.random.choice(list(Genders)).value
child = self.env.add_node(self.__class__, state)
self.env.add_edge(self.id, child.id)
self.env.add_edge(self['mate'], child.id)
# self.add_edge()
self.debug('A BABY IS COMING TO LIFE')
self.env['rabbits_alive'] = self.env.get('rabbits_alive', self.topology.number_of_nodes())+1
self.debug('Rabbits alive: {}'.format(self.env['rabbits_alive']))
self['offspring'] += 1
self.env.get_agent(self['mate'])['offspring'] += 1
del self['mate']
self['pregnancy'] = -1
return self.fertile
@state
def dead(self):
super().dead()
if 'pregnancy' in self and self['pregnancy'] > -1:
self.info('A mother has died carrying a baby!!')
class RandomAccident(BaseAgent):
level = logging.DEBUG
def step(self):
rabbits_total = self.env.topology.number_of_nodes()
if 'rabbits_alive' not in self.env:
self.env['rabbits_alive'] = 0
rabbits_alive = self.env.get('rabbits_alive', rabbits_total)
prob_death = self.env.get('prob_death', 1e-100)*math.floor(math.log10(max(1, rabbits_alive)))
self.debug('Killing some rabbits with prob={}!'.format(prob_death))
for i in self.env.network_agents:
if i.state['id'] == i.dead.id:
continue
if self.prob(prob_death):
self.debug('I killed a rabbit: {}'.format(i.id))
rabbits_alive = self.env['rabbits_alive'] = rabbits_alive -1
self.log('Rabbits alive: {}'.format(self.env['rabbits_alive']))
i.set_state(i.dead)
self.log('Rabbits alive: {}/{}'.format(rabbits_alive, rabbits_total))
if self.env.count_agents(state_id=RabbitModel.dead.id) == self.env.topology.number_of_nodes():
self.die()

View File

@ -1,20 +0,0 @@
---
name: rabbits_example
max_time: 100
interval: 1
seed: MySeed
agent_class: rabbit_agents.RabbitModel
environment_agents:
- agent_class: rabbit_agents.RandomAccident
environment_params:
prob_death: 0.001
default_state:
mating_prob: 0.1
topology:
nodes:
- id: 1
agent_class: rabbit_agents.Male
- id: 0
agent_class: rabbit_agents.Female
directed: true
links: []

View File

@ -6,9 +6,10 @@ template:
group: simple
num_trials: 1
interval: 1
max_time: 2
max_steps: 2
seed: "CompleteSeed!"
dump: false
model_params:
network_params:
generator: complete_graph
n: 10
@ -19,7 +20,6 @@ template:
state_id: 0
- agent_class: AggregatedCounter
weight: "{{ 1 - x1 }}"
environment_params:
name: "{{ x3 }}"
skip_test: true
vars:

View File

@ -81,6 +81,26 @@ class TerroristSpreadModel(FSM, Geo):
return
return self.leader
def ego_search(self, steps=1, center=False, node=None, **kwargs):
'''Get a list of nodes in the ego network of *node* of radius *steps*'''
node = as_node(node if node is not None else self)
G = self.subgraph(**kwargs)
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
def degree(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.model, '_degree')) or getattr(self.model, '_last_step', 0) < self.now:
self.model._degree = nx.degree_centrality(self.G)
self.model._last_step = self.now
return self.model._degree[node]
def betweenness(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.model, '_betweenness')) or getattr(self.model, '_last_step', 0) < self.now:
self.model._betweenness = nx.betweenness_centrality(self.G)
self.model._last_step = self.now
return self.model._betweenness[node]
class TrainingAreaModel(FSM, Geo):
"""
@ -194,14 +214,14 @@ class TerroristNetworkModel(TerroristSpreadModel):
break
def get_distance(self, target):
source_x, source_y = nx.get_node_attributes(self.topology, 'pos')[self.id]
target_x, target_y = nx.get_node_attributes(self.topology, 'pos')[target]
source_x, source_y = nx.get_node_attributes(self.G, 'pos')[self.id]
target_x, target_y = nx.get_node_attributes(self.G, 'pos')[target]
dx = abs( source_x - target_x )
dy = abs( source_y - target_y )
return ( dx ** 2 + dy ** 2 ) ** ( 1 / 2 )
def shortest_path_length(self, target):
try:
return nx.shortest_path_length(self.topology, self.id, target)
return nx.shortest_path_length(self.G, self.id, target)
except nx.NetworkXNoPath:
return float('inf')

View File

@ -1,13 +1,14 @@
name: TerroristNetworkModel_sim
max_time: 150
max_steps: 150
num_trials: 1
network_params:
model_params:
network_params:
generator: random_geometric_graph
radius: 0.2
# generator: geographical_threshold_graph
# theta: 20
n: 100
network_agents:
network_agents:
- agent_class: TerroristNetworkModel.TerroristNetworkModel
weight: 0.8
state:
@ -25,7 +26,6 @@ network_agents:
state:
id: civilian # Civilian
environment_params:
# TerroristSpreadModel
information_spread_intensity: 0.7
terrorist_additional_influence: 0.035

View File

@ -1,13 +1,14 @@
---
name: torvalds_example
max_time: 10
max_steps: 10
interval: 2
agent_class: CounterModel
default_state:
model_params:
agent_class: CounterModel
default_state:
skill_level: 'beginner'
network_params:
network_params:
path: 'torvalds.edgelist'
states:
states:
Torvalds:
skill_level: 'God'
balkian:

View File

@ -2,8 +2,9 @@ networkx>=2.5
numpy
matplotlib
pyyaml>=5.1
pandas>=0.23
pandas>=1
SALib>=1.3
Jinja2
Mesa>=0.8.9
Mesa>=1
pydantic>=1.9
sqlalchemy>=1.4

View File

@ -1,8 +1,10 @@
from __future__ import annotations
import importlib
import sys
import os
import pdb
import logging
import traceback
from .version import __version__
@ -16,11 +18,10 @@ from . import agents
from .simulation import *
from .environment import Environment
from . import serialization
from . import analysis
from .utils import logger
from .time import *
def main():
def main(cfg='simulation.yml', **kwargs):
import argparse
from . import simulation
@ -29,7 +30,7 @@ def main():
parser = argparse.ArgumentParser(description='Run a SOIL simulation')
parser.add_argument('file', type=str,
nargs="?",
default='simulation.yml',
default=cfg,
help='Configuration file for the simulation (e.g., YAML or JSON)')
parser.add_argument('--version', action='store_true',
help='Show version info and exit')
@ -39,6 +40,8 @@ def main():
help='Do not store the results of the simulation to disk, show in terminal instead.')
parser.add_argument('--pdb', action='store_true',
help='Use a pdb console in case of exception.')
parser.add_argument('--debug', action='store_true',
help='Run a customized version of a pdb console to debug a simulation.')
parser.add_argument('--graph', '-g', action='store_true',
help='Dump each trial\'s network topology as a GEXF graph. Defaults to false.')
parser.add_argument('--csv', action='store_true',
@ -51,9 +54,22 @@ def main():
help='Run trials serially and synchronously instead of in parallel. Defaults to false.')
parser.add_argument('-e', '--exporter', action='append',
help='Export environment and/or simulations using this exporter')
parser.add_argument('--only-convert', '--convert', action='store_true',
help='Do not run the simulation, only convert the configuration file(s) and output them.')
parser.add_argument("--set",
metavar="KEY=VALUE",
action='append',
help="Set a number of parameters that will be passed to the simulation."
"(do not put spaces before or after the = sign). "
"If a value contains spaces, you should define "
"it with double quotes: "
'foo="this is a sentence". Note that '
"values are always treated as strings.")
args = parser.parse_args()
logging.basicConfig(level=getattr(logging, (args.level or 'INFO').upper()))
logger.setLevel(getattr(logging, (args.level or 'INFO').upper()))
if args.version:
return
@ -65,9 +81,10 @@ def main():
logger.info('Loading config file: {}'.format(args.file))
if args.pdb:
if args.pdb or args.debug:
args.synchronous = True
if args.debug:
os.environ['SOIL_DEBUG'] = 'true'
try:
exporters = list(args.exporter or ['default', ])
@ -82,18 +99,48 @@ def main():
if not os.path.exists(args.file):
logger.error('Please, input a valid file')
return
simulation.run_from_config(args.file,
dry_run=args.dry_run,
for sim in simulation.iter_from_config(args.file):
if args.set:
for s in args.set:
k, v = s.split('=', 1)[:2]
v = eval(v)
tail, *head = k.rsplit('.', 1)[::-1]
target = sim
if head:
for part in head[0].split('.'):
try:
target = getattr(target, part)
except AttributeError:
target = target[part]
try:
setattr(target, tail, v)
except AttributeError:
target[tail] = v
if args.only_convert:
print(sim.to_yaml())
continue
sim.run_simulation(dry_run=args.dry_run,
exporters=exporters,
parallel=(not args.synchronous),
outdir=args.output,
exporter_params=exp_params)
except Exception:
exporter_params=exp_params,
**kwargs)
except Exception as ex:
if args.pdb:
pdb.post_mortem()
from .debugging import post_mortem
print(traceback.format_exc())
post_mortem()
else:
raise
def easy(cfg, debug=False):
sim = simulation.from_config(cfg)
if debug or os.environ.get('SOIL_DEBUG'):
from .debugging import setup
setup(sys._getframe().f_back)
return sim
if __name__ == '__main__':
main()

View File

@ -7,15 +7,13 @@ class CounterModel(NetworkAgent):
in each step and adds it to its state.
"""
defaults = {
'times': 0,
'neighbors': 0,
'total': 0
}
times = 0
neighbors = 0
total = 0
def step(self):
# Outside effects
total = len(list(self.env.agents))
total = len(list(self.model.schedule._agents))
neighbors = len(list(self.get_neighboring_agents()))
self['times'] = self.get('times', 0) + 1
self['neighbors'] = neighbors
@ -28,17 +26,15 @@ class AggregatedCounter(NetworkAgent):
in each step and adds it to its state.
"""
defaults = {
'times': 0,
'neighbors': 0,
'total': 0
}
times = 0
neighbors = 0
total = 0
def step(self):
# Outside effects
self['times'] += 1
neighbors = len(list(self.get_neighboring_agents()))
self['neighbors'] += neighbors
total = len(list(self.env.agents))
total = len(list(self.model.schedule.agents))
self['total'] += total
self.debug('Running for step: {}. Total: {}'.format(self.now, total))

View File

@ -1,3 +1,5 @@
from __future__ import annotations
import logging
from collections import OrderedDict, defaultdict
from collections.abc import MutableMapping, Mapping, Set
@ -5,9 +7,13 @@ from abc import ABCMeta
from copy import deepcopy, copy
from functools import partial, wraps
from itertools import islice, chain
import json
import inspect
import types
import textwrap
import networkx as nx
from typing import Any
from mesa import Agent as MesaAgent
from typing import Dict, List
@ -27,7 +33,31 @@ class DeadAgent(Exception):
pass
class BaseAgent(MesaAgent, MutableMapping):
class MetaAgent(ABCMeta):
def __new__(mcls, name, bases, namespace):
defaults = {}
# Re-use defaults from inherited classes
for i in bases:
if isinstance(i, MetaAgent):
defaults.update(i._defaults)
new_nmspc = {
'_defaults': defaults,
}
for attr, func in namespace.items():
if isinstance(func, types.FunctionType) or isinstance(func, property) or attr[0] == '_':
new_nmspc[attr] = func
elif attr == 'defaults':
defaults.update(func)
else:
defaults[attr] = copy(func)
return super().__new__(mcls=mcls, name=name, bases=bases, namespace=new_nmspc)
class BaseAgent(MesaAgent, MutableMapping, metaclass=MetaAgent):
"""
A special type of Mesa Agent that:
@ -39,15 +69,12 @@ class BaseAgent(MesaAgent, MutableMapping):
Any attribute that is not preceded by an underscore (`_`) will also be added to its state.
"""
defaults = {}
def __init__(self,
unique_id,
model,
name=None,
interval=None,
**kwargs
):
**kwargs):
# Check for REQUIRED arguments
# Initialize agent parameters
if isinstance(unique_id, MesaAgent):
@ -58,15 +85,16 @@ class BaseAgent(MesaAgent, MutableMapping):
self.name = str(name) if name else'{}[{}]'.format(type(self).__name__, self.unique_id)
self._neighbors = None
self.alive = True
self.interval = interval or self.get('interval', 1)
self.logger = logging.getLogger(self.model.id).getChild(self.name)
logger = utils.logger.getChild(getattr(self.model, 'id', self.model)).getChild(self.name)
self.logger = logging.LoggerAdapter(logger, {'agent_name': self.name})
if hasattr(self, 'level'):
self.logger.setLevel(self.level)
for (k, v) in self.defaults.items():
for (k, v) in self._defaults.items():
if not hasattr(self, k) or getattr(self, k) is None:
setattr(self, k, deepcopy(v))
@ -74,10 +102,6 @@ class BaseAgent(MesaAgent, MutableMapping):
setattr(self, k, v)
for (k, v) in getattr(self, 'defaults', {}).items():
if not hasattr(self, k) or getattr(self, k) is None:
setattr(self, k, v)
def __hash__(self):
return hash(self.unique_id)
@ -89,14 +113,6 @@ class BaseAgent(MesaAgent, MutableMapping):
def id(self):
return self.unique_id
@property
def env(self):
return self.model
@env.setter
def env(self, model):
self.model = model
@property
def state(self):
'''
@ -108,19 +124,16 @@ class BaseAgent(MesaAgent, MutableMapping):
@state.setter
def state(self, value):
if not value:
return
for k, v in value.items():
self[k] = v
@property
def environment_params(self):
return self.model.environment_params
@environment_params.setter
def environment_params(self, value):
self.model.environment_params = value
def __getitem__(self, key):
try:
return getattr(self, key)
except AttributeError:
raise KeyError(f'key {key} not found in agent')
def __delitem__(self, key):
return delattr(self, key)
@ -138,10 +151,14 @@ class BaseAgent(MesaAgent, MutableMapping):
return self.items()
def keys(self):
return (k for k in self.__dict__ if k[0] != '_')
return (k for k in self.__dict__ if k[0] != '_' and k not in IGNORED_FIELDS)
def items(self):
return ((k, v) for (k, v) in self.__dict__.items() if k[0] != '_')
def items(self, keys=None, skip=None):
keys = keys if keys is not None else self.keys()
it = ((k, self.get(k, None)) for k in keys)
if skip:
return filter(lambda x: x[0] not in skip, it)
return it
def get(self, key, default=None):
return self[key] if key in self else default
@ -154,11 +171,9 @@ class BaseAgent(MesaAgent, MutableMapping):
# No environment
return None
def die(self, remove=False):
self.info(f'agent {self.unique_id} is dying')
def die(self):
self.info(f'agent dying')
self.alive = False
if remove:
self.remove_node(self.id)
return time.NEVER
def step(self):
@ -170,7 +185,7 @@ class BaseAgent(MesaAgent, MutableMapping):
if not self.logger.isEnabledFor(level):
return
message = message + " ".join(str(i) for i in args)
message = " @{:>3}: {}".format(self.now, message)
message = "[@{:>4}]\t{:>10}: {}".format(self.now, repr(self), message)
for k, v in kwargs:
message += " {k}={v} ".format(k, v)
extra = {}
@ -179,33 +194,48 @@ class BaseAgent(MesaAgent, MutableMapping):
extra['agent_name'] = self.name
return self.logger.log(level, message, extra=extra)
def debug(self, *args, **kwargs):
return self.log(*args, level=logging.DEBUG, **kwargs)
def info(self, *args, **kwargs):
return self.log(*args, level=logging.INFO, **kwargs)
# Alias
# Agent = BaseAgent
def count_agents(self, **kwargs):
return len(list(self.get_agents(**kwargs)))
def get_agents(self, *args, **kwargs):
it = self.iter_agents(*args, **kwargs)
return list(it)
def iter_agents(self, *args, **kwargs):
yield from filter_agents(self.model.schedule._agents, *args, **kwargs)
def __str__(self):
return self.to_str()
def to_str(self, keys=None, skip=None, pretty=False):
content = dict(self.items(keys=keys))
if pretty and content:
d = content
content = '\n'
for k, v in d.items():
content += f'- {k}: {v}\n'
content = textwrap.indent(content, ' ')
return f"{repr(self)}{content}"
def __repr__(self):
return f"{self.__class__.__name__}({self.unique_id})"
class NetworkAgent(BaseAgent):
@property
def topology(self):
return self.env.topology_for(self.unique_id)
def __init__(self, *args, topology, node_id, **kwargs):
super().__init__(*args, **kwargs)
@property
def node_id(self):
return self.env.node_id_for(self.unique_id)
@property
def G(self):
return self.model.topologies[self._topology]
def count_agents(self, **kwargs):
return len(list(self.get_agents(**kwargs)))
self.topology = topology
self.node_id = node_id
self.G = self.model.topologies[topology]
assert self.G
def count_neighboring_agents(self, state_id=None, **kwargs):
return len(self.get_neighboring_agents(state_id=state_id, **kwargs))
@ -213,57 +243,47 @@ class NetworkAgent(BaseAgent):
def get_neighboring_agents(self, state_id=None, **kwargs):
return self.get_agents(limit_neighbors=True, state_id=state_id, **kwargs)
def get_agents(self, *args, limit=None, **kwargs):
it = self.iter_agents(*args, **kwargs)
if limit is not None:
it = islice(it, limit)
return list(it)
def iter_agents(self, unique_id=None, limit_neighbors=False, **kwargs):
unique_ids = None
if isinstance(unique_id, list):
unique_ids = set(unique_id)
elif unique_id is not None:
unique_ids = set([unique_id,])
if limit_neighbors:
unique_id = [self.topology.nodes[node]['agent_id'] for node in self.topology.neighbors(self.node_id)]
if not unique_id:
neighbor_ids = set()
for node_id in self.G.neighbors(self.node_id):
if self.G.nodes[node_id].get('agent_id') is not None:
neighbor_ids.add(node_id)
if unique_ids:
unique_ids = unique_ids & neighbor_ids
else:
unique_ids = neighbor_ids
if not unique_ids:
return
yield from self.model.agents(unique_id=unique_id, **kwargs)
unique_ids = list(unique_ids)
yield from super().iter_agents(unique_id=unique_ids, **kwargs)
def subgraph(self, center=True, **kwargs):
include = [self] if center else []
G = self.topology.subgraph(n.node_id for n in list(self.get_agents(**kwargs)+include))
G = self.G.subgraph(n.node_id for n in list(self.get_agents(**kwargs)+include))
return G
def remove_node(self, unique_id):
self.topology.remove_node(unique_id)
def remove_node(self):
self.G.remove_node(self.node_id)
def add_edge(self, other, edge_attr_dict=None, *edge_attrs):
# return super(NetworkAgent, self).add_edge(node1=self.id, node2=other, **kwargs)
if self.unique_id not in self.topology.nodes(data=False):
if self.node_id not in self.G.nodes(data=False):
raise ValueError('{} not in list of existing agents in the network'.format(self.unique_id))
if other.unique_id not in self.topology.nodes(data=False):
if other.node_id not in self.G.nodes(data=False):
raise ValueError('{} not in list of existing agents in the network'.format(other))
self.topology.add_edge(self.unique_id, other.unique_id, edge_attr_dict=edge_attr_dict, *edge_attrs)
self.G.add_edge(self.node_id, other.node_id, edge_attr_dict=edge_attr_dict, *edge_attrs)
def ego_search(self, steps=1, center=False, node=None, **kwargs):
'''Get a list of nodes in the ego network of *node* of radius *steps*'''
node = as_node(node if node is not None else self)
G = self.subgraph(**kwargs)
return nx.ego_graph(G, node, center=center, radius=steps).nodes()
def degree(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.model, '_degree')) or getattr(self.model, '_last_step', 0) < self.now:
self.model._degree = nx.degree_centrality(self.topology)
self.model._last_step = self.now
return self.model._degree[node]
def betweenness(self, node, force=False):
node = as_node(node)
if force or (not hasattr(self.model, '_betweenness')) or getattr(self.model, '_last_step', 0) < self.now:
self.model._betweenness = nx.betweenness_centrality(self.topology)
self.model._last_step = self.now
return self.model._betweenness[node]
def die(self, remove=True):
if remove:
self.remove_node()
return super().die()
def state(name=None):
@ -273,24 +293,29 @@ def state(name=None):
The default value for state_id is the current state id.
The default value for when is the interval defined in the environment.
'''
if inspect.isgeneratorfunction(func):
orig_func = func
@wraps(func)
def func_wrapper(self):
next_state = func(self)
when = None
if next_state is None:
return when
def func(self):
while True:
if not self._coroutine:
self._coroutine = orig_func(self)
try:
next_state, when = next_state
except (ValueError, TypeError):
pass
if next_state:
n = next(self._coroutine)
if n:
return None, n
return
except StopIteration as ex:
self._coroutine = None
next_state = ex.value
if next_state is not None:
self.set_state(next_state)
return when
return next_state
func_wrapper.id = name or func.__name__
func_wrapper.is_default = False
return func_wrapper
func.id = name or func.__name__
func.is_default = False
return func
if callable(name):
return decorator(name)
@ -303,60 +328,84 @@ def default_state(func):
return func
class MetaFSM(ABCMeta):
def __init__(cls, name, bases, nmspc):
super(MetaFSM, cls).__init__(name, bases, nmspc)
class MetaFSM(MetaAgent):
def __new__(mcls, name, bases, namespace):
states = {}
# Re-use states from inherited classes
default_state = None
for i in bases:
if isinstance(i, MetaFSM):
for state_id, state in i.states.items():
for state_id, state in i._states.items():
if state.is_default:
default_state = state
states[state_id] = state
# Add new states
for name, func in nmspc.items():
for attr, func in namespace.items():
if hasattr(func, 'id'):
if func.is_default:
default_state = func
states[func.id] = func
cls.default_state = default_state
cls.states = states
namespace.update({
'_default_state': default_state,
'_states': states,
})
return super(MetaFSM, mcls).__new__(mcls=mcls, name=name, bases=bases, namespace=namespace)
class FSM(BaseAgent, metaclass=MetaFSM):
def __init__(self, *args, **kwargs):
super(FSM, self).__init__(*args, **kwargs)
if not hasattr(self, 'state_id'):
if not self.default_state:
if not self._default_state:
raise ValueError('No default state specified for {}'.format(self.unique_id))
self.state_id = self.default_state.id
self.state_id = self._default_state.id
self._coroutine = None
self.set_state(self.state_id)
def step(self):
self.debug(f'Agent {self.unique_id} @ state {self.state_id}')
interval = super().step()
if 'id' not in self.state:
if self.default_state:
self.set_state(self.default_state.id)
else:
raise Exception('{} has no valid state id or default state'.format(self))
interval = self.states[self.state_id](self) or interval
if not self.alive:
return time.NEVER
return interval
default_interval = super().step()
def set_state(self, state):
next_state = self._states[self.state_id](self)
when = None
try:
next_state, *when = next_state
if not when:
when = None
elif len(when) == 1:
when = when[0]
else:
raise ValueError('Too many values returned. Only state (and time) allowed')
except TypeError:
pass
if next_state is not None:
self.set_state(next_state)
return when or default_interval
def set_state(self, state, when=None):
if hasattr(state, 'id'):
state = state.id
if state not in self.states:
if state not in self._states:
raise ValueError('{} is not a valid state'.format(state))
self.state_id = state
if when is not None:
self.model.schedule.add(self, when=when)
return state
def die(self):
return self.dead, super().die()
@state
def dead(self):
return self.die()
def prob(prob, random):
'''
@ -476,81 +525,81 @@ def _convert_agent_classs(ind, to_string=False, **kwargs):
return deserialize_definition(ind, **kwargs)
def _agent_from_definition(definition, random, value=-1, unique_id=None):
"""Used in the initialization of agents given an agent distribution."""
if value < 0:
value = random.random()
for d in sorted(definition, key=lambda x: x.get('threshold')):
threshold = d.get('threshold', (-1, -1))
# Check if the definition matches by id (first) or by threshold
if (unique_id is not None and unique_id in d.get('ids', [])) or \
(value >= threshold[0] and value < threshold[1]):
state = {}
if 'state' in d:
state = deepcopy(d['state'])
return d['agent_class'], state
# def _agent_from_definition(definition, random, value=-1, unique_id=None):
# """Used in the initialization of agents given an agent distribution."""
# if value < 0:
# value = random.random()
# for d in sorted(definition, key=lambda x: x.get('threshold')):
# threshold = d.get('threshold', (-1, -1))
# # Check if the definition matches by id (first) or by threshold
# if (unique_id is not None and unique_id in d.get('ids', [])) or \
# (value >= threshold[0] and value < threshold[1]):
# state = {}
# if 'state' in d:
# state = deepcopy(d['state'])
# return d['agent_class'], state
raise Exception('Definition for value {} not found in: {}'.format(value, definition))
# raise Exception('Definition for value {} not found in: {}'.format(value, definition))
def _definition_to_dict(definition, random, size=None, default_state=None):
state = default_state or {}
agents = {}
remaining = {}
if size:
for ix in range(size):
remaining[ix] = copy(state)
else:
remaining = defaultdict(lambda x: copy(state))
# def _definition_to_dict(definition, random, size=None, default_state=None):
# state = default_state or {}
# agents = {}
# remaining = {}
# if size:
# for ix in range(size):
# remaining[ix] = copy(state)
# else:
# remaining = defaultdict(lambda x: copy(state))
distro = sorted([item for item in definition if 'weight' in item])
# distro = sorted([item for item in definition if 'weight' in item])
id = 0
# id = 0
def init_agent(item, id=ix):
while id in agents:
id += 1
# def init_agent(item, id=ix):
# while id in agents:
# id += 1
agent = remaining[id]
agent['state'].update(copy(item.get('state', {})))
agents[agent.unique_id] = agent
del remaining[id]
return agent
# agent = remaining[id]
# agent['state'].update(copy(item.get('state', {})))
# agents[agent.unique_id] = agent
# del remaining[id]
# return agent
for item in definition:
if 'ids' in item:
ids = item['ids']
del item['ids']
for id in ids:
agent = init_agent(item, id)
# for item in definition:
# if 'ids' in item:
# ids = item['ids']
# del item['ids']
# for id in ids:
# agent = init_agent(item, id)
for item in definition:
if 'number' in item:
times = item['number']
del item['number']
for times in range(times):
if size:
ix = random.choice(remaining.keys())
agent = init_agent(item, id)
else:
agent = init_agent(item)
if not size:
return agents
# for item in definition:
# if 'number' in item:
# times = item['number']
# del item['number']
# for times in range(times):
# if size:
# ix = random.choice(remaining.keys())
# agent = init_agent(item, id)
# else:
# agent = init_agent(item)
# if not size:
# return agents
if len(remaining) < 0:
raise Exception('Invalid definition. Too many agents to add')
# if len(remaining) < 0:
# raise Exception('Invalid definition. Too many agents to add')
total_weight = float(sum(s['weight'] for s in distro))
unit = size / total_weight
# total_weight = float(sum(s['weight'] for s in distro))
# unit = size / total_weight
for item in distro:
times = unit * item['weight']
del item['weight']
for times in range(times):
ix = random.choice(remaining.keys())
agent = init_agent(item, id)
return agents
# for item in distro:
# times = unit * item['weight']
# del item['weight']
# for times in range(times):
# ix = random.choice(remaining.keys())
# agent = init_agent(item, id)
# return agents
class AgentView(Mapping, Set):
@ -571,59 +620,43 @@ class AgentView(Mapping, Set):
# Mapping methods
def __len__(self):
return sum(len(x) for x in self._agents.values())
return len(self._agents)
def __iter__(self):
yield from iter(chain.from_iterable(g.values() for g in self._agents.values()))
yield from self._agents.values()
def __getitem__(self, agent_id):
if isinstance(agent_id, slice):
raise ValueError(f"Slicing is not supported")
for group in self._agents.values():
if agent_id in group:
return group[agent_id]
if agent_id in self._agents:
return self._agents[agent_id]
raise ValueError(f"Agent {agent_id} not found")
def filter(self, *args, **kwargs):
yield from filter_groups(self._agents, *args, **kwargs)
yield from filter_agents(self._agents, *args, **kwargs)
def one(self, *args, **kwargs):
return next(filter_groups(self._agents, *args, **kwargs))
return next(filter_agents(self._agents, *args, **kwargs))
def __call__(self, *args, **kwargs):
return list(self.filter(*args, **kwargs))
def __contains__(self, agent_id):
return any(agent_id in g for g in self._agents)
return agent_id in self._agents
def __str__(self):
return str(list(a.unique_id for a in self))
return str(list(unique_id for unique_id in self.keys()))
def __repr__(self):
return f"{self.__class__.__name__}({self})"
def filter_groups(groups, *, group=None, **kwargs):
assert isinstance(groups, dict)
if group is not None and not isinstance(group, list):
group = [group]
if group:
groups = list(groups[g] for g in group if g in groups)
else:
groups = list(groups.values())
agents = chain.from_iterable(filter_group(g, **kwargs) for g in groups)
yield from agents
def filter_group(group, *id_args, unique_id=None, state_id=None, agent_class=None, ignore=None, state=None, **kwargs):
def filter_agents(agents, *id_args, unique_id=None, state_id=None, agent_class=None, ignore=None, state=None,
limit=None, **kwargs):
'''
Filter agents given as a dict, by the criteria given as arguments (e.g., certain type or state id).
'''
assert isinstance(group, dict)
assert isinstance(agents, dict)
ids = []
@ -636,6 +669,11 @@ def filter_group(group, *id_args, unique_id=None, state_id=None, agent_class=Non
if id_args:
ids += id_args
if ids:
f = (agents[aid] for aid in ids if aid in agents)
else:
f = (a for a in agents.values())
if state_id is not None and not isinstance(state_id, (tuple, list)):
state_id = tuple([state_id])
@ -646,12 +684,6 @@ def filter_group(group, *id_args, unique_id=None, state_id=None, agent_class=Non
except TypeError:
agent_class = tuple([agent_class])
if ids:
agents = (group[aid] for aid in ids if aid in group)
else:
agents = (a for a in group.values())
f = agents
if ignore:
f = filter(lambda x: x not in ignore, f)
@ -667,83 +699,125 @@ def filter_group(group, *id_args, unique_id=None, state_id=None, agent_class=Non
for k, v in state.items():
f = filter(lambda agent: agent.state.get(k, None) == v, f)
if limit is not None:
f = islice(f, limit)
yield from f
def from_config(cfg: Dict[str, config.AgentConfig], env, random):
def from_config(cfg: config.AgentConfig, random, topologies: Dict[str, nx.Graph] = None) -> List[Dict[str, Any]]:
'''
Agents are specified in groups.
Each group can be specified in two ways, either through a fixed list in which each item has
has the agent type, number of agents to create, and the other parameters, or through what we call
an `agent distribution`, which is similar but instead of number of agents, it specifies the weight
of each agent type.
This function turns an agentconfig into a list of individual "agent specifications", which are just a dictionary
with the parameters that the environment will use to construct each agent.
This function does NOT return a list of agents, mostly because some attributes to the agent are not known at the
time of calling this function, such as `unique_id`.
'''
default = cfg.get('default', None)
return {k: _group_from_config(c, default=default, env=env, random=random) for (k, c) in cfg.items() if k is not 'default'}
default = cfg or config.AgentConfig()
if not isinstance(cfg, config.AgentConfig):
cfg = config.AgentConfig(**cfg)
return _agents_from_config(cfg, topologies=topologies, random=random)
def _group_from_config(cfg: config.AgentConfig, default: config.SingleAgentConfig, env, random):
def _agents_from_config(cfg: config.AgentConfig,
topologies: Dict[str, nx.Graph],
random) -> List[Dict[str, Any]]:
if cfg and not isinstance(cfg, config.AgentConfig):
cfg = config.AgentConfig(**cfg)
if default and not isinstance(default, config.SingleAgentConfig):
default = config.SingleAgentConfig(**default)
agents = {}
agents = []
assigned = defaultdict(int)
if cfg.fixed is not None:
agents = _from_fixed(cfg.fixed, topology=cfg.topology, default=default, env=env)
if cfg.distribution:
n = cfg.n or len(env.topologies[cfg.topology or default.topology])
target = n - len(agents)
agents.update(_from_distro(cfg.distribution, target,
topology=cfg.topology or default.topology,
default=default,
env=env, random=random))
assert len(agents) == n
if cfg.override:
for attrs in cfg.override:
if attrs.filter:
filtered = list(filter_group(agents, **attrs.filter))
else:
filtered = list(agents)
agents, counts = _from_fixed(cfg.fixed, topology=cfg.topology, default=cfg)
assigned.update(counts)
if attrs.n > len(filtered):
raise ValueError(f'Not enough agents to sample. Got {len(filtered)}, expected >= {attrs.n}')
for agent in random.sample(filtered, attrs.n):
agent.state.update(attrs.state)
n = cfg.n
if cfg.distribution:
topo_size = {top: len(topologies[top]) for top in topologies}
grouped = defaultdict(list)
total = []
for d in cfg.distribution:
if d.strategy == config.Strategy.topology:
topology = d.topology if ('topology' in d.__fields_set__) else cfg.topology
if not topology:
raise ValueError('The "topology" strategy only works if the topology parameter is specified')
if topology not in topo_size:
raise ValueError(f'Unknown topology selected: { topology }. Make sure the topology has been defined')
grouped[topology].append(d)
if d.strategy == config.Strategy.total:
if not cfg.n:
raise ValueError('Cannot use the "total" strategy without providing the total number of agents')
total.append(d)
for (topo, distro) in grouped.items():
if not topologies or topo not in topo_size:
raise ValueError(
'You need to specify a target number of agents for the distribution \
or a configuration with a topology, along with a dictionary with \
all the available topologies')
n = len(topologies[topo])
target = topo_size[topo] - assigned[topo]
new_agents = _from_distro(cfg.distribution, target,
topology=topo,
default=cfg,
random=random)
assigned[topo] += len(new_agents)
agents += new_agents
if total:
remaining = n - sum(assigned.values())
agents += _from_distro(total, remaining,
topology='', # DO NOT assign to any topology
default=cfg,
random=random)
if sum(assigned.values()) != sum(topo_size.values()):
utils.logger.warn(f'The total number of agents does not match the total number of nodes in '
'every topology. This may be due to a definition error: assigned: '
f'{ assigned } total sizes: { topo_size }')
return agents
def _from_fixed(lst: List[config.FixedAgentConfig], topology: str, default: config.SingleAgentConfig, env):
agents = {}
def _from_fixed(lst: List[config.FixedAgentConfig], topology: str, default: config.SingleAgentConfig) -> List[Dict[str, Any]]:
agents = []
counts = {}
for fixed in lst:
agent_id = fixed.agent_id
if agent_id is None:
agent_id = env.next_id()
agent = {}
if default:
agent = default.state.copy()
agent.update(fixed.state)
cls = serialization.deserialize(fixed.agent_class or (default and default.agent_class))
agent['agent_class'] = cls
topo = fixed.topology if ('topology' in fixed.__fields_set__) else topology or default.topology
cls = serialization.deserialize(fixed.agent_class or default.agent_class)
state = fixed.state.copy()
state.update(default.state)
agent = cls(unique_id=agent_id,
model=env,
**state)
topology = fixed.topology if (fixed.topology is not None) else (topology or default.topology)
if topology:
env.agent_to_node(agent_id, topology, fixed.node_id)
agents[agent.unique_id] = agent
if topo:
agent['topology'] = topo
if not fixed.hidden:
counts[topo] = counts.get(topo, 0) + 1
agents.append(agent)
return agents
return agents, counts
def _from_distro(distro: List[config.AgentDistro],
n: int,
topology: str,
default: config.SingleAgentConfig,
env,
random):
random) -> List[Dict[str, Any]]:
agents = {}
agents = []
if n is None:
if any(lambda dist: dist.n is None, distro):
@ -775,19 +849,16 @@ def _from_distro(distro: List[config.AgentDistro],
for idx in indices:
d = distro[idx]
agent = d.state.copy()
cls = classes[idx]
agent_id = env.next_id()
state = d.state.copy()
agent['agent_class'] = cls
if default:
state.update(default.state)
agent = cls(unique_id=agent_id, model=env, **state)
topology = d.topology if (d.topology is not None) else topology or default.topology
agent.update(default.state)
# agent = cls(unique_id=agent_id, model=env, **state)
topology = d.topology if ('topology' in d.__fields_set__) else topology or default.topology
if topology:
env.agent_to_node(agent.unique_id, topology)
assert agent.name is not None
assert agent.name != 'None'
assert agent.name
agents[agent.unique_id] = agent
agent['topology'] = topology
agents.append(agent)
return agents

View File

@ -1,206 +0,0 @@
import pandas as pd
import glob
import yaml
from os.path import join
from . import serialization
from tsih import History
def read_data(*args, group=False, **kwargs):
iterable = _read_data(*args, **kwargs)
if group:
return group_trials(iterable)
else:
return list(iterable)
def _read_data(pattern, *args, from_csv=False, process_args=None, **kwargs):
if not process_args:
process_args = {}
for folder in glob.glob(pattern):
config_file = glob.glob(join(folder, '*.yml'))[0]
config = yaml.load(open(config_file), Loader=yaml.SafeLoader)
df = None
if from_csv:
for trial_data in sorted(glob.glob(join(folder,
'*.environment.csv'))):
df = read_csv(trial_data, **kwargs)
yield config_file, df, config
else:
for trial_data in sorted(glob.glob(join(folder, '*.sqlite'))):
df = read_sql(trial_data, **kwargs)
yield config_file, df, config
def read_sql(db, *args, **kwargs):
h = History(db_path=db, backup=False, readonly=True)
df = h.read_sql(*args, **kwargs)
return df
def read_csv(filename, keys=None, convert_types=False, **kwargs):
'''
Read a CSV in canonical form: ::
<agent_id, t_step, key, value, value_type>
'''
df = pd.read_csv(filename)
if convert_types:
df = convert_types_slow(df)
if keys:
df = df[df['key'].isin(keys)]
df = process_one(df)
return df
def convert_row(row):
row['value'] = serialization.deserialize(row['value_type'], row['value'])
return row
def convert_types_slow(df):
'''
Go over every column in a dataframe and convert it to the type determined by the `get_types`
function.
This is a slow operation.
'''
dtypes = get_types(df)
for k, v in dtypes.items():
t = df[df['key']==k]
t['value'] = t['value'].astype(v)
df = df.apply(convert_row, axis=1)
return df
def split_processed(df):
env = df.loc[:, df.columns.get_level_values(1).isin(['env', 'stats'])]
agents = df.loc[:, ~df.columns.get_level_values(1).isin(['env', 'stats'])]
return env, agents
def split_df(df):
'''
Split a dataframe in two dataframes: one with the history of agents,
and one with the environment history
'''
envmask = (df['agent_id'] == 'env')
n_env = envmask.sum()
if n_env == len(df):
return df, None
elif n_env == 0:
return None, df
agents, env = [x for _, x in df.groupby(envmask)]
return env, agents
def process(df, **kwargs):
'''
Process a dataframe in canonical form ``(t_step, agent_id, key, value, value_type)`` into
two dataframes with a column per key: one with the history of the agents, and one for the
history of the environment.
'''
env, agents = split_df(df)
return process_one(env, **kwargs), process_one(agents, **kwargs)
def get_types(df):
'''
Get the value type for every key stored in a raw history dataframe.
'''
dtypes = df.groupby(by=['key'])['value_type'].unique()
return {k:v[0] for k,v in dtypes.iteritems()}
def process_one(df, *keys, columns=['key', 'agent_id'], values='value',
fill=True, index=['t_step',],
aggfunc='first', **kwargs):
'''
Process a dataframe in canonical form ``(t_step, agent_id, key, value, value_type)`` into
a dataframe with a column per key
'''
if df is None:
return df
if keys:
df = df[df['key'].isin(keys)]
df = df.pivot_table(values=values, index=index, columns=columns,
aggfunc=aggfunc, **kwargs)
if fill:
df = fillna(df)
return df
def get_count(df, *keys):
'''
For every t_step and key, get the value count.
The result is a dataframe with `t_step` as index, an a multiindex column based on `key` and the values found for each `key`.
'''
if keys:
df = df[list(keys)]
df.columns = df.columns.remove_unused_levels()
counts = pd.DataFrame()
for key in df.columns.levels[0]:
g = df[[key]].apply(pd.Series.value_counts, axis=1).fillna(0)
for value, series in g.iteritems():
counts[key, value] = series
counts.columns = pd.MultiIndex.from_tuples(counts.columns)
return counts
def get_majority(df, *keys):
'''
For every t_step and key, get the value of the majority of agents
The result is a dataframe with `t_step` as index, and columns based on `key`.
'''
df = get_count(df, *keys)
return df.stack(level=0).idxmax(axis=1).unstack()
def get_value(df, *keys, aggfunc='sum'):
'''
For every t_step and key, get the value of *numeric columns*, aggregated using a specific function.
'''
if keys:
df = df[list(keys)]
df.columns = df.columns.remove_unused_levels()
df = df.select_dtypes('number')
return df.groupby(level='key', axis=1).agg(aggfunc)
def plot_all(*args, plot_args={}, **kwargs):
'''
Read all the trial data and plot the result of applying a function on them.
'''
dfs = do_all(*args, **kwargs)
ps = []
for line in dfs:
f, df, config = line
if len(df) < 1:
continue
df.plot(title=config['name'], **plot_args)
ps.append(df)
return ps
def do_all(pattern, func, *keys, include_env=False, **kwargs):
for config_file, df, config in read_data(pattern, keys=keys):
if len(df) < 1:
continue
p = func(df, *keys, **kwargs)
yield config_file, p, config
def group_trials(trials, aggfunc=['mean', 'min', 'max', 'std']):
trials = list(trials)
trials = list(map(lambda x: x[1] if isinstance(x, tuple) else x, trials))
return pd.concat(trials).groupby(level=0).agg(aggfunc).reorder_levels([2, 0,1] ,axis=1)
def fillna(df):
new_df = df.ffill(axis=0)
return new_df

View File

@ -1,12 +1,18 @@
from __future__ import annotations
from enum import Enum
from pydantic import BaseModel, ValidationError, validator, root_validator
import yaml
import os
import sys
from typing import Any, Callable, Dict, List, Optional, Union, Type
from pydantic import BaseModel, Extra
from . import environment, utils
import networkx as nx
@ -36,7 +42,6 @@ class NetParams(BaseModel, extra=Extra.allow):
class NetConfig(BaseModel):
group: str = 'network'
params: Optional[NetParams]
topology: Optional[Union[Topology, nx.Graph]]
path: Optional[str]
@ -56,9 +61,6 @@ class NetConfig(BaseModel):
class EnvConfig(BaseModel):
environment_class: Union[Type, str] = 'soil.Environment'
params: Dict[str, Any] = {}
schedule: Union[Type, str] = 'soil.time.TimedActivation'
@staticmethod
def default():
@ -67,19 +69,19 @@ class EnvConfig(BaseModel):
class SingleAgentConfig(BaseModel):
agent_class: Optional[Union[Type, str]] = None
agent_id: Optional[int] = None
unique_id: Optional[int] = None
topology: Optional[str] = None
node_id: Optional[Union[int, str]] = None
name: Optional[str] = None
state: Optional[Dict[str, Any]] = {}
class FixedAgentConfig(SingleAgentConfig):
n: Optional[int] = 1
hidden: Optional[bool] = False # Do not count this agent towards total agent count
@root_validator
def validate_all(cls, values):
if values.get('agent_id', None) is not None and values.get('n', 1) > 1:
print(values)
raise ValueError(f"An agent_id can only be provided when there is only one agent ({values.get('n')} given)")
return values
@ -88,13 +90,19 @@ class OverrideAgentConfig(FixedAgentConfig):
filter: Optional[Dict[str, Any]] = None
class Strategy(Enum):
topology = 'topology'
total = 'total'
class AgentDistro(SingleAgentConfig):
weight: Optional[float] = 1
strategy: Strategy = Strategy.topology
class AgentConfig(SingleAgentConfig):
n: Optional[int] = None
topology: Optional[str] = None
topology: Optional[str]
distribution: Optional[List[AgentDistro]] = None
fixed: Optional[List[FixedAgentConfig]] = None
override: Optional[List[OverrideAgentConfig]] = None
@ -110,19 +118,32 @@ class AgentConfig(SingleAgentConfig):
return values
class Config(BaseModel, extra=Extra.forbid):
class Config(BaseModel, extra=Extra.allow):
version: Optional[str] = '1'
id: str = 'Unnamed Simulation'
name: str = 'Unnamed Simulation'
description: Optional[str] = None
group: str = None
dir_path: Optional[str] = None
num_trials: int = 1
max_time: float = 100
max_steps: int = -1
interval: float = 1
seed: str = ""
dry_run: bool = False
model_class: Union[Type, str]
model_parameters: Optiona[Dict[str, Any]] = {}
model_class: Union[Type, str] = environment.Environment
model_params: Optional[Dict[str, Any]] = {}
visualization_params: Optional[Dict[str, Any]] = {}
@classmethod
def from_raw(cls, cfg):
if isinstance(cfg, Config):
return cfg
if cfg.get('version', '1') == '1' and any(k in cfg for k in ['agents', 'agent_class', 'topology', 'environment_class']):
return convert_old(cfg)
return Config(**cfg)
def convert_old(old, strict=True):
@ -132,87 +153,84 @@ def convert_old(old, strict=True):
This is still a work in progress and might not work in many cases.
'''
#TODO: implement actual conversion
print('The old configuration format is no longer supported. \
Update your config files or run Soil==0.20')
raise NotImplementedError()
utils.logger.warning('The old configuration format is deprecated. The converted file MAY NOT yield the right results')
new = {}
general = {}
for k in ['id',
'group',
'dir_path',
'num_trials',
'max_time',
'interval',
'seed']:
if k in old:
general[k] = old[k]
if 'name' in old:
general['id'] = old['name']
new = old.copy()
network = {}
if 'topology' in old:
del new['topology']
network['topology'] = old['topology']
if 'network_params' in old and old['network_params']:
del new['network_params']
for (k, v) in old['network_params'].items():
if k == 'path':
network['path'] = v
else:
network.setdefault('params', {})[k] = v
if 'topology' in old:
network['topology'] = old['topology']
topologies = {}
if network:
topologies['default'] = network
agents = {
'network': {},
'default': {},
}
if 'agent_class' in old:
agents['default']['agent_class'] = old['agent_class']
if 'default_state' in old:
agents['default']['state'] = old['default_state']
agents = {'fixed': [], 'distribution': []}
def updated_agent(agent):
'''Convert an agent definition'''
newagent = dict(agent)
newagent['agent_class'] = newagent['agent_class']
del newagent['agent_class']
return newagent
for agent in old.get('environment_agents', []):
agents['environment'] = {'distribution': [], 'fixed': []}
if 'agent_id' in agent:
agent['name'] = agent['agent_id']
del agent['agent_id']
agents['environment']['fixed'].append(updated_agent(agent))
by_weight = []
fixed = []
override = []
if 'network_agents' in old:
agents['network']['topology'] = 'default'
if 'environment_agents' in new:
for agent in old['network_agents']:
for agent in new['environment_agents']:
agent.setdefault('state', {})['group'] = 'environment'
if 'agent_id' in agent:
agent['state']['name'] = agent['agent_id']
del agent['agent_id']
agent['hidden'] = True
agent['topology'] = None
fixed.append(updated_agent(agent))
del new['environment_agents']
if 'agent_class' in old:
del new['agent_class']
agents['agent_class'] = old['agent_class']
if 'default_state' in old:
del new['default_state']
agents['state'] = old['default_state']
if 'network_agents' in old:
agents['topology'] = 'default'
agents.setdefault('state', {})['group'] = 'network'
for agent in new['network_agents']:
agent = updated_agent(agent)
if 'agent_id' in agent:
agent['state']['name'] = agent['agent_id']
del agent['agent_id']
fixed.append(agent)
else:
by_weight.append(agent)
del new['network_agents']
if 'agent_class' in old and (not fixed and not by_weight):
agents['network']['topology'] = 'default'
by_weight = [{'agent_class': old['agent_class']}]
agents['topology'] = 'default'
by_weight = [{'agent_class': old['agent_class'], 'weight': 1}]
# TODO: translate states properly
if 'states' in old:
del new['states']
states = old['states']
if isinstance(states, dict):
states = states.items()
@ -220,22 +238,29 @@ def convert_old(old, strict=True):
states = enumerate(states)
for (k, v) in states:
override.append({'filter': {'node_id': k},
'state': v
})
'state': v})
agents['network']['override'] = override
agents['network']['fixed'] = fixed
agents['network']['distribution'] = by_weight
agents['override'] = override
agents['fixed'] = fixed
agents['distribution'] = by_weight
model_params = {}
if 'environment_params' in new:
del new['environment_params']
model_params = dict(old['environment_params'])
environment = {'params': {}}
if 'environment_class' in old:
environment['environment_class'] = old['environment_class']
del new['environment_class']
new['model_class'] = old['environment_class']
for (k, v) in old.get('environment_params', {}).items():
environment['params'][k] = v
if 'dump' in old:
del new['dump']
new['dry_run'] = not old['dump']
model_params['topologies'] = topologies
model_params['agents'] = agents
return Config(version='2',
general=general,
topologies={'default': network},
environment=environment,
agents=agents)
model_params=model_params,
**new)

151
soil/debugging.py Normal file
View File

@ -0,0 +1,151 @@
from __future__ import annotations
import pdb
import sys
import os
from textwrap import indent
from functools import wraps
from .agents import FSM, MetaFSM
def wrapcmd(func):
@wraps(func)
def wrapper(self, arg: str, temporary=False):
sys.settrace(self.trace_dispatch)
known = globals()
known.update(self.curframe.f_globals)
known.update(self.curframe.f_locals)
known['agent'] = known.get('self', None)
known['model'] = known.get('self', {}).get('model')
known['attrs'] = arg.strip().split()
exec(func.__code__, known, known)
return wrapper
class Debug(pdb.Pdb):
def __init__(self, *args, skip_soil=False, **kwargs):
skip = kwargs.get('skip', [])
if skip_soil:
skip.append('soil.*')
skip.append('mesa.*')
super(Debug, self).__init__(*args, skip=skip, **kwargs)
self.prompt = "[soil-pdb] "
@staticmethod
def _soil_agents(model, attrs=None, pretty=True, **kwargs):
for agent in model.agents(**kwargs):
d = agent
print(' - ' + indent(agent.to_str(keys=attrs, pretty=pretty), ' '))
@wrapcmd
def do_soil_agents():
return Debug._soil_agents(model, attrs=attrs or None)
do_sa = do_soil_agents
@wrapcmd
def do_soil_list():
return Debug._soil_agents(model, attrs=['state_id'], pretty=False)
do_sl = do_soil_list
@wrapcmd
def do_soil_self():
if not agent:
print('No agent available')
return
keys = None
if attrs:
keys = []
for k in attrs:
for key in agent.keys():
if key.startswith(k):
keys.append(key)
print(agent.to_str(pretty=True, keys=keys))
do_ss = do_soil_self
def do_break_state(self, arg: str, temporary=False):
'''
Break before a specified state is stepped into.
'''
klass = None
state = arg.strip()
if not state:
self.error("Specify at least a state name")
return
comma = arg.find(':')
if comma > 0:
state = arg[comma+1:].lstrip()
klass = arg[:comma].rstrip()
klass = eval(klass,
self.curframe.f_globals,
self.curframe_locals)
if klass:
klasses = [klass]
else:
klasses = [k for k in self.curframe.f_globals.values() if isinstance(k, type) and issubclass(k, FSM)]
print(klasses)
if not klasses:
self.error('No agent classes found')
for klass in klasses:
try:
func = getattr(klass, state)
except AttributeError:
continue
if hasattr(func, '__func__'):
func = func.__func__
code = func.__code__
#use co_name to identify the bkpt (function names
#could be aliased, but co_name is invariant)
funcname = code.co_name
lineno = code.co_firstlineno
filename = code.co_filename
# Check for reasonable breakpoint
line = self.checkline(filename, lineno)
if not line:
raise ValueError('no line found')
# now set the break point
cond = None
existing = self.get_breaks(filename, line)
if existing:
self.message("Breakpoint already exists at %s:%d" %
(filename, line))
continue
err = self.set_break(filename, line, temporary, cond, funcname)
if err:
self.error(err)
else:
bp = self.get_breaks(filename, line)[-1]
self.message("Breakpoint %d at %s:%d" %
(bp.number, bp.file, bp.line))
do_bs = do_break_state
def setup(frame=None):
debugger = Debug()
frame = frame or sys._getframe().f_back
debugger.set_trace(frame)
def debug_env():
if os.environ.get('SOIL_DEBUG'):
return setup(frame=sys._getframe().f_back)
def post_mortem(traceback=None):
p = Debug()
t = sys.exc_info()[2]
p.reset()
p.interaction(None, t)

View File

@ -1,4 +1,5 @@
from __future__ import annotations
import os
import sqlite3
import math
@ -17,9 +18,7 @@ import networkx as nx
from mesa import Model
from mesa.datacollection import DataCollector
from . import serialization, analysis, utils, time, network
from .agents import AgentView, BaseAgent, NetworkAgent, from_config as agents_from_config
from . import agents as agentmod, config, serialization, utils, time, network
Record = namedtuple('Record', 'dict_id t_step key value')
@ -39,12 +38,12 @@ class BaseEnvironment(Model):
"""
def __init__(self,
env_id='unnamed_env',
id='unnamed_env',
seed='default',
schedule=None,
dir_path=None,
interval=1,
agent_class=BaseAgent,
agent_class=None,
agents: [tuple[type, Dict[str, Any]]] = {},
agent_reporters: Optional[Any] = None,
model_reporters: Optional[Any] = None,
@ -54,7 +53,7 @@ class BaseEnvironment(Model):
super().__init__(seed=seed)
self.current_id = -1
self.id = env_id
self.id = id
self.dir_path = dir_path or os.getcwd()
@ -62,7 +61,7 @@ class BaseEnvironment(Model):
schedule = time.TimedActivation(self)
self.schedule = schedule
self.agent_class = agent_class
self.agent_class = agent_class or agentmod.BaseAgent
self.init_agents(agents)
@ -78,25 +77,51 @@ class BaseEnvironment(Model):
tables=tables,
)
def __read_agent_tuple(self, tup):
cls = self.agent_class
args = tup
if isinstance(tup, tuple):
cls = tup[0]
args = tup[1]
return serialization.deserialize(cls)(unique_id=self.next_id(),
model=self, **args)
def _read_single_agent(self, agent):
agent = dict(**agent)
cls = agent.pop('agent_class', None) or self.agent_class
unique_id = agent.pop('unique_id', None)
if unique_id is None:
unique_id = self.next_id()
return serialization.deserialize(cls)(unique_id=unique_id,
model=self, **agent)
def init_agents(self, agents: Union[config.AgentConfig, [Dict[str, Any]]] = {}):
if not agents:
return
lst = agents
override = []
if not isinstance(lst, list):
if not isinstance(agents, config.AgentConfig):
lst = config.AgentConfig(**agents)
if lst.override:
override = lst.override
lst = agentmod.from_config(lst,
topologies=getattr(self, 'topologies', None),
random=self.random)
#TODO: check override is working again. It cannot (easily) be part of agents.from_config anymore,
# because it needs attribute such as unique_id, which are only present after init
new_agents = [self._read_single_agent(agent) for agent in lst]
for a in new_agents:
self.schedule.add(a)
for rule in override:
for agent in agentmod.filter_agents(self.schedule._agents, **rule.filter):
for attr, value in rule.state.items():
setattr(agent, attr, value)
def init_agents(self, agents: [tuple[type, Dict[str, Any]]] = {}):
agents = [self.__read_agent_tuple(tup) for tup in agents]
self._agents = {'default': {agent.id: agent for agent in agents}}
@property
def agents(self):
return AgentView(self._agents)
return agentmod.AgentView(self.schedule._agents)
def find_one(self, *args, **kwargs):
return AgentView(self._agents).one(*args, **kwargs)
return agentmod.AgentView(self.schedule._agents).one(*args, **kwargs)
def count_agents(self, *args, **kwargs):
return sum(1 for i in self.agents(*args, **kwargs))
@ -108,38 +133,12 @@ class BaseEnvironment(Model):
raise Exception('The environment has not been scheduled, so it has no sense of time')
# def init_agent(self, agent_id, agent_definitions, state=None):
# state = state or {}
# agent_class = None
# if 'agent_class' in self.states.get(agent_id, {}):
# agent_class = self.states[agent_id]['agent_class']
# elif 'agent_class' in self.default_state:
# agent_class = self.default_state['agent_class']
# if agent_class:
# agent_class = agents.deserialize_type(agent_class)
# elif agent_definitions:
# agent_class, state = agents._agent_from_definition(agent_definitions, unique_id=agent_id)
# else:
# serialization.logger.debug('Skipping agent {}'.format(agent_id))
# return
# return self.add_agent(agent_id, agent_class, state)
def add_agent(self, agent_id, agent_class, state=None, graph='default'):
defstate = deepcopy(self.default_state) or {}
defstate.update(self.states.get(agent_id, {}))
if state:
defstate.update(state)
def add_agent(self, agent_id, agent_class, **kwargs):
a = None
if agent_class:
state = defstate
a = agent_class(model=self,
unique_id=agent_id)
for (k, v) in state.items():
setattr(a, k, v)
unique_id=agent_id,
**kwargs)
self.schedule.add(a)
return a
@ -153,7 +152,7 @@ class BaseEnvironment(Model):
message += " {k}={v} ".format(k, v)
extra = {}
extra['now'] = self.now
extra['unique_id'] = self.id
extra['id'] = self.id
return self.logger.log(level, message, extra=extra)
def step(self):
@ -161,6 +160,7 @@ class BaseEnvironment(Model):
Advance one step in the simulation, and update the data collection and scheduler appropriately
'''
super().step()
self.logger.info(f'--- Step {self.now:^5} ---')
self.schedule.step()
self.datacollector.collect(self)
@ -207,34 +207,41 @@ class BaseEnvironment(Model):
yield from self._agent_to_tuples(agent, now)
class AgentConfigEnvironment(BaseEnvironment):
class NetworkEnvironment(BaseEnvironment):
def __init__(self, *args,
agents: Dict[str, config.AgentConfig] = {},
**kwargs):
return super().__init__(*args, agents=agents, **kwargs)
def init_agents(self, agents: Union[Dict[str, config.AgentConfig], [tuple[type, Dict[str, Any]]]] = {}):
if not isinstance(agents, dict):
return BaseEnvironment.init_agents(self, agents)
self._agents = agents_from_config(agents,
env=self,
random=self.random)
for d in self._agents.values():
for a in d.values():
self.schedule.add(a)
class NetworkConfigEnvironment(BaseEnvironment):
def __init__(self, *args, topologies: Dict[str, config.NetConfig] = {}, **kwargs):
super().__init__(*args, **kwargs)
self.topologies = {}
def __init__(self, *args, topology: nx.Graph = None, topologies: Dict[str, config.NetConfig] = {}, **kwargs):
agents = kwargs.pop('agents', None)
super().__init__(*args, agents=None, **kwargs)
self._node_ids = {}
assert not hasattr(self, 'topologies')
if topology is not None:
if topologies:
raise ValueError('Please, provide either a single topology or a dictionary of them')
topologies = {'default': topology}
self.topologies = {}
for (name, cfg) in topologies.items():
self.set_topology(cfg=cfg, graph=name)
self.init_agents(agents)
def _read_single_agent(self, agent, unique_id=None):
agent = dict(agent)
if agent.get('topology', None) is not None:
topology = agent.get('topology')
if unique_id is None:
unique_id = self.next_id()
if topology:
node_id = self.agent_to_node(unique_id, graph_name=topology, node_id=agent.get('node_id'))
agent['node_id'] = node_id
agent['topology'] = topology
agent['unique_id'] = unique_id
return super()._read_single_agent(agent)
@property
def topology(self):
return self.topologies['default']
@ -246,51 +253,50 @@ class NetworkConfigEnvironment(BaseEnvironment):
self.topologies[graph] = topology
def topology_for(self, agent_id):
return self.topologies[self._node_ids[agent_id][0]]
def topology_for(self, unique_id):
return self.topologies[self._node_ids[unique_id][0]]
@property
def network_agents(self):
yield from self.agents(agent_class=NetworkAgent)
yield from self.agents(agent_class=agentmod.NetworkAgent)
def agent_to_node(self, agent_id, graph_name='default', node_id=None, shuffle=False):
node_id = network.agent_to_node(G=self.topologies[graph_name], agent_id=agent_id,
node_id=node_id, shuffle=shuffle,
def agent_to_node(self, unique_id, graph_name='default',
node_id=None, shuffle=False):
node_id = network.agent_to_node(G=self.topologies[graph_name],
agent_id=unique_id,
node_id=node_id,
shuffle=shuffle,
random=self.random)
self._node_ids[agent_id] = (graph_name, node_id)
self._node_ids[unique_id] = (graph_name, node_id)
return node_id
def add_node(self, agent_class, topology, **kwargs):
unique_id = self.next_id()
self.topologies[topology].add_node(unique_id)
node_id = self.agent_to_node(unique_id=unique_id, node_id=unique_id, graph_name=topology)
def add_node(self, agent_class, state=None, graph='default'):
agent_id = int(len(self.topologies[graph].nodes()))
self.topologies[graph].add_node(agent_id)
a = self.add_agent(agent_id, agent_class, state, graph=graph)
a = self.add_agent(unique_id=unique_id, agent_class=agent_class, node_id=node_id, topology=topology, **kwargs)
a['visible'] = True
return a
def add_edge(self, agent1, agent2, start=None, graph='default', **attrs):
if hasattr(agent1, 'id'):
agent1 = agent1.id
if hasattr(agent2, 'id'):
agent2 = agent2.id
start = start or self.now
return self.topologies[graph].add_edge(agent1, agent2, **attrs)
agent1 = agent1.node_id
agent2 = agent2.node_id
return self.topologies[graph].add_edge(agent1, agent2, start=start)
def add_agent(self, *args, state=None, graph='default', **kwargs):
node = self.topologies[graph].nodes[agent_id]
def add_agent(self, unique_id, state=None, graph='default', **kwargs):
node = self.topologies[graph].nodes[unique_id]
node_state = node.get('state', {})
if node_state:
node_state.update(state or {})
state = node_state
a = super().add_agent(*args, state=state, **kwargs)
a = super().add_agent(unique_id, state=state, **kwargs)
node['agent'] = a
return a
def node_id_for(self, agent_id):
return self._node_ids[agent_id][1]
class Environment(AgentConfigEnvironment, NetworkConfigEnvironment):
def __init__(self, *args, **kwargs):
agents = kwargs.pop('agents', {})
NetworkConfigEnvironment.__init__(self, *args, **kwargs)
AgentConfigEnvironment.__init__(self, *args, agents=agents, **kwargs)
Environment = NetworkEnvironment

View File

@ -12,7 +12,7 @@ from .serialization import deserialize
from .utils import open_or_reuse, logger, timer
from . import utils
from . import utils, network
class DryRunner(BytesIO):
@ -85,38 +85,28 @@ class Exporter:
class default(Exporter):
'''Default exporter. Writes sqlite results, as well as the simulation YAML'''
# def sim_start(self):
# if not self.dry_run:
# logger.info('Dumping results to %s', self.outdir)
# self.simulation.dump_yaml(outdir=self.outdir)
# else:
# logger.info('NOT dumping results')
def sim_start(self):
if not self.dry_run:
logger.info('Dumping results to %s', self.outdir)
with self.output(self.simulation.name + '.dumped.yml') as f:
f.write(self.simulation.to_yaml())
else:
logger.info('NOT dumping results')
# def trial_start(self, env, stats):
# if not self.dry_run:
# with timer('Dumping simulation {} trial {}'.format(self.simulation.name,
# env.name)):
# engine = create_engine('sqlite:///{}.sqlite'.format(env.name), echo=False)
def trial_end(self, env):
if not self.dry_run:
with timer('Dumping simulation {} trial {}'.format(self.simulation.name,
env.id)):
engine = create_engine('sqlite:///{}.sqlite'.format(env.id), echo=False)
# dc = env.datacollector
# tables = {'env': dc.get_model_vars_dataframe(),
# 'agents': dc.get_agent_vars_dataframe(),
# 'agents': dc.get_agent_vars_dataframe()}
# for table in dc.tables:
# tables[table] = dc.get_table_dataframe(table)
# for (t, df) in tables.items():
# df.to_sql(t, con=engine)
# def sim_end(self, stats):
# with timer('Dumping simulation {}\'s stats'.format(self.simulation.name)):
# engine = create_engine('sqlite:///{}.sqlite'.format(self.simulation.name), echo=False)
# with self.output('{}.sqlite'.format(self.simulation.name), mode='wb') as f:
# self.simulation.dump_sqlite(f)
dc = env.datacollector
for (t, df) in get_dc_dfs(dc):
df.to_sql(t, con=engine, if_exists='append')
def get_dc_dfs(dc):
dfs = {'env': dc.get_model_vars_dataframe(),
'agents': dc.get_agent_vars_dataframe }
'agents': dc.get_agent_vars_dataframe() }
for table_name in dc.tables:
dfs[table_name] = dc.get_table_dataframe(table_name)
yield from dfs.items()
@ -130,10 +120,11 @@ class csv(Exporter):
env.id,
self.outdir)):
for (df_name, df) in get_dc_dfs(env.datacollector):
with self.output('{}.stats.{}.csv'.format(env.id, df_name)) as f:
with self.output('{}.{}.csv'.format(env.id, df_name)) as f:
df.to_csv(f)
#TODO: reimplement GEXF exporting without history
class gexf(Exporter):
def trial_end(self, env):
if self.dry_run:
@ -143,18 +134,9 @@ class gexf(Exporter):
with timer('[GEXF] Dumping simulation {} trial {}'.format(self.simulation.name,
env.id)):
with self.output('{}.gexf'.format(env.id), mode='wb') as f:
network.dump_gexf(env.history_to_graph(), f)
self.dump_gexf(env, f)
def dump_gexf(self, env, f):
G = env.history_to_graph()
# Workaround for geometric models
# See soil/soil#4
for node in G.nodes():
if 'pos' in G.nodes[node]:
G.nodes[node]['viz'] = {"position": {"x": G.nodes[node]['pos'][0], "y": G.nodes[node]['pos'][1], "z": 0.0}}
del (G.nodes[node]['pos'])
nx.write_gexf(G, f, version="1.2draft")
class dummy(Exporter):

View File

@ -1,3 +1,5 @@
from __future__ import annotations
from typing import Dict
import os
import sys
@ -37,8 +39,10 @@ def from_config(cfg: config.NetConfig, dir_path: str = None):
known_modules=['networkx.generators',])
return method(**net_args)
if isinstance(cfg.topology, basestring) or isinstance(cfg.topology, dict):
return nx.json_graph.node_link_graph(cfg.topology)
if isinstance(cfg.topology, config.Topology):
cfg = cfg.topology.dict()
if isinstance(cfg, str) or isinstance(cfg, dict):
return nx.json_graph.node_link_graph(cfg)
return nx.Graph()
@ -57,9 +61,18 @@ def agent_to_node(G, agent_id, node_id=None, shuffle=False, random=random):
for next_id, data in candidates:
if data.get('agent_id', None) is None:
node_id = next_id
data['agent_id'] = agent_id
break
if node_id is None:
raise ValueError(f"Not enough nodes in topology to assign one to agent {agent_id}")
G.nodes[node_id]['agent_id'] = agent_id
return node_id
def dump_gexf(G, f):
for node in G.nodes():
if 'pos' in G.nodes[node]:
G.nodes[node]['viz'] = {"position": {"x": G.nodes[node]['pos'][0], "y": G.nodes[node]['pos'][1], "z": 0.0}}
del (G.nodes[node]['pos'])
nx.write_gexf(G, f, version="1.2draft")

View File

@ -7,6 +7,8 @@ import importlib
from glob import glob
from itertools import product, chain
from .config import Config
import yaml
import networkx as nx
@ -120,22 +122,25 @@ def params_for_template(config):
def load_files(*patterns, **kwargs):
for pattern in patterns:
for i in glob(pattern, **kwargs):
for config in load_file(i):
for cfg in load_file(i):
path = os.path.abspath(i)
yield config, path
yield Config.from_raw(cfg), path
def load_config(config):
if isinstance(config, dict):
yield config, os.getcwd()
def load_config(cfg):
if isinstance(cfg, Config):
yield cfg, os.getcwd()
elif isinstance(cfg, dict):
yield Config.from_raw(cfg), os.getcwd()
else:
yield from load_files(config)
yield from load_files(cfg)
builtins = importlib.import_module('builtins')
KNOWN_MODULES = ['soil', ]
def name(value, known_modules=KNOWN_MODULES):
'''Return a name that can be imported, to serialize/deserialize an object'''
if value is None:
@ -172,8 +177,22 @@ def serialize(v, known_modules=KNOWN_MODULES):
return func(v), tname
def serialize_dict(d, known_modules=KNOWN_MODULES):
d = dict(d)
for (k, v) in d.items():
if isinstance(v, dict):
d[k] = serialize_dict(v, known_modules=known_modules)
elif isinstance(v, list):
for ix in range(len(v)):
v[ix] = serialize_dict(v[ix], known_modules=known_modules)
elif isinstance(v, type):
d[k] = serialize(v, known_modules=known_modules)[1]
return d
IS_CLASS = re.compile(r"<class '(.*)'>")
def deserializer(type_, known_modules=KNOWN_MODULES):
if type(type_) != str: # Already deserialized
return type_

View File

@ -4,15 +4,17 @@ import importlib
import sys
import yaml
import traceback
import inspect
import logging
import networkx as nx
from textwrap import dedent
from dataclasses import dataclass, field, asdict
from typing import Union
from typing import Any, Dict, Union, Optional
from networkx.readwrite import json_graph
from multiprocessing import Pool
from functools import partial
import pickle
@ -21,7 +23,6 @@ from .environment import Environment
from .utils import logger, run_and_return_exceptions
from .exporters import default
from .time import INFINITY
from .config import Config, convert_old
@ -36,7 +37,9 @@ class Simulation:
kwargs: parameters to use to initialize a new configuration, if one has not been provided.
"""
version: str = '2'
name: str = 'Unnamed simulation'
description: Optional[str] = ''
group: str = None
model_class: Union[str, type] = 'soil.Environment'
model_params: dict = field(default_factory=dict)
@ -44,30 +47,37 @@ class Simulation:
dir_path: str = field(default_factory=lambda: os.getcwd())
max_time: float = float('inf')
max_steps: int = -1
interval: int = 1
num_trials: int = 3
dry_run: bool = False
extra: Dict[str, Any] = field(default_factory=dict)
@classmethod
def from_dict(cls, env):
ignored = {k: v for k, v in env.items()
if k not in inspect.signature(cls).parameters}
kwargs = {k:v for k, v in env.items() if k not in ignored}
if ignored:
kwargs.setdefault('extra', {}).update(ignored)
if ignored:
print(f'Warning: Ignoring these parameters (added to "extra"): { ignored }')
return cls(**kwargs)
def run_simulation(self, *args, **kwargs):
return self.run(*args, **kwargs)
def run(self, *args, **kwargs):
'''Run the simulation and return the list of resulting environments'''
logger.info(dedent('''
Simulation:
---
''') +
self.to_yaml())
return list(self.run_gen(*args, **kwargs))
def _run_sync_or_async(self, parallel=False, **kwargs):
if parallel and not os.environ.get('SENPY_DEBUG', None):
p = Pool()
func = partial(run_and_return_exceptions, self.run_trial, **kwargs)
for i in p.imap_unordered(func, self.num_trials):
if isinstance(i, Exception):
logger.error('Trial failed:\n\t%s', i.message)
continue
yield i
else:
for i in range(self.num_trials):
yield self.run_trial(trial_id=i,
**kwargs)
def run_gen(self, parallel=False, dry_run=False,
exporters=[default, ], outdir=None, exporter_params={},
log_level=None,
@ -88,7 +98,9 @@ class Simulation:
for exporter in exporters:
exporter.sim_start()
for env in self._run_sync_or_async(parallel=parallel,
for env in utils.run_parallel(func=self.run_trial,
iterable=range(int(self.num_trials)),
parallel=parallel,
log_level=log_level,
**kwargs):
@ -103,14 +115,6 @@ class Simulation:
for exporter in exporters:
exporter.sim_end()
def run_model(self, until=None, *args, **kwargs):
until = until or float('inf')
while self.schedule.next_time < until:
self.step()
utils.logger.debug(f'Simulation step {self.schedule.time}/{until}. Next: {self.schedule.next_time}')
self.schedule.time = until
def get_env(self, trial_id=0, **kwargs):
'''Create an environment for a trial of the simulation'''
def deserialize_reporters(reporters):
@ -132,29 +136,50 @@ class Simulation:
model_reporters=model_reporters,
**model_params)
def run_trial(self, trial_id=None, until=None, log_level=logging.INFO, **opts):
def run_trial(self, trial_id=None, until=None, log_file=False, log_level=logging.INFO, **opts):
"""
Run a single trial of the simulation
"""
model = self.get_env(trial_id, **opts)
return self.run_model(model, trial_id=trial_id, until=until, log_level=log_level)
def run_model(self, model, trial_id=None, until=None, log_level=logging.INFO, **opts):
trial_id = trial_id if trial_id is not None else current_time()
if log_level:
logger.setLevel(log_level)
model = self.get_env(trial_id, **opts)
trial_id = trial_id if trial_id is not None else current_time()
with utils.timer('Simulation {} trial {}'.format(self.name, trial_id)):
return self.run_model(model=model, trial_id=trial_id, until=until, log_level=log_level)
def run_model(self, model, until=None, **opts):
# Set-up trial environment and graph
until = until or self.max_time
until = float(until or self.max_time or 'inf')
# Set up agents on nodes
is_done = lambda: False
if self.max_time and hasattr(self.schedule, 'time'):
is_done = lambda x: is_done() or self.schedule.time >= self.max_time
if self.max_steps and hasattr(self.schedule, 'time'):
is_done = lambda: is_done() or self.schedule.steps >= self.max_steps
def is_done():
return False
if until and hasattr(model.schedule, 'time'):
prev = is_done
def is_done():
return prev() or model.schedule.time >= until
if self.max_steps and self.max_steps > 0 and hasattr(model.schedule, 'steps'):
prev_steps = is_done
def is_done():
return prev_steps() or model.schedule.steps >= self.max_steps
newline = '\n'
logger.info(dedent(f'''
Model stats:
Agents (total: { model.schedule.get_agent_count() }):
- { (newline + ' - ').join(str(a) for a in model.schedule.agents) }'''
f'''
Topologies (size):
- { dict( (k, len(v)) for (k, v) in model.topologies.items()) }
''' if getattr(model, "topologies", None) else ''
))
with utils.timer('Simulation {} trial {}'.format(self.name, trial_id)):
while not is_done():
utils.logger.debug(f'Simulation time {model.schedule.time}/{until}. Next: {getattr(model.schedule, "next_time", model.schedule.time + self.interval)}')
model.step()
@ -162,26 +187,25 @@ class Simulation:
def to_dict(self):
d = asdict(self)
d['model_class'] = serialization.serialize(d['model_class'])[0]
d['model_params'] = serialization.serialize(d['model_params'])[0]
if not isinstance(d['model_class'], str):
d['model_class'] = serialization.name(d['model_class'])
d['model_params'] = serialization.serialize_dict(d['model_params'])
d['dir_path'] = str(d['dir_path'])
d['version'] = '2'
return d
def to_yaml(self):
return yaml.dump(self.asdict())
return yaml.dump(self.to_dict())
def iter_from_config(config):
def iter_from_config(*cfgs):
for config in cfgs:
configs = list(serialization.load_config(config))
for config, path in configs:
d = dict(config)
if 'dir_path' not in d:
d['dir_path'] = os.path.dirname(path)
if d.get('version', '2') == '1' or 'agents' in d or 'network_agents' in d or 'environment_agents' in d:
d = convert_old(d)
d.pop('version', None)
yield Simulation(**d)
yield Simulation.from_dict(d)
def from_config(conf_or_path):
@ -192,6 +216,6 @@ def from_config(conf_or_path):
def run_from_config(*configs, **kwargs):
for sim in iter_from_config(configs):
logger.info(f"Using config(s): {sim.id}")
for sim in iter_from_config(*configs):
logger.info(f"Using config(s): {sim.name}")
sim.run_simulation(**kwargs)

View File

@ -1,6 +1,6 @@
from mesa.time import BaseScheduler
from queue import Empty
from heapq import heappush, heappop
from heapq import heappush, heappop, heapify
import math
from .utils import logger
from mesa import Agent as MesaAgent
@ -17,6 +17,7 @@ class When:
def abs(self, time):
return self._time
NEVER = When(INFINITY)
@ -38,13 +39,21 @@ class TimedActivation(BaseScheduler):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._next = {}
self._queue = []
self.next_time = 0
self.logger = logger.getChild(f'time_{ self.model }')
def add(self, agent: MesaAgent):
if agent.unique_id not in self._agents:
heappush(self._queue, (self.time, agent.unique_id))
def add(self, agent: MesaAgent, when=None):
if when is None:
when = self.time
if agent.unique_id in self._agents:
self._queue.remove((self._next[agent.unique_id], agent.unique_id))
del self._agents[agent.unique_id]
heapify(self._queue)
heappush(self._queue, (when, agent.unique_id))
self._next[agent.unique_id] = when
super().add(agent)
def step(self) -> None:
@ -64,11 +73,18 @@ class TimedActivation(BaseScheduler):
(when, agent_id) = heappop(self._queue)
self.logger.debug(f'Stepping agent {agent_id}')
returned = self._agents[agent_id].step()
agent = self._agents[agent_id]
returned = agent.step()
if not agent.alive:
self.remove(agent)
continue
when = (returned or Delta(1)).abs(self.time)
if when < self.time:
raise Exception("Cannot schedule an agent for a time in the past ({} < {})".format(when, self.time))
self._next[agent_id] = when
heappush(self._queue, (when, agent_id))
self.steps += 1
@ -77,7 +93,7 @@ class TimedActivation(BaseScheduler):
self.time = INFINITY
self.next_time = INFINITY
self.model.running = False
return
return self.time
self.next_time = self._queue[0][0]
self.logger.debug(f'Next step: {self.next_time}')

View File

@ -3,13 +3,27 @@ from time import time as current_time, strftime, gmtime, localtime
import os
import traceback
from functools import partial
from shutil import copyfile
from multiprocessing import Pool
from contextlib import contextmanager
logger = logging.getLogger('soil')
# logging.basicConfig()
# logger.setLevel(logging.INFO)
logger.setLevel(logging.INFO)
timeformat = "%H:%M:%S"
if os.environ.get('SOIL_VERBOSE', ''):
logformat = "[%(levelname)-5.5s][%(asctime)s][%(name)s]: %(message)s"
else:
logformat = "[%(levelname)-5.5s][%(asctime)s] %(message)s"
logFormatter = logging.Formatter(logformat, timeformat)
consoleHandler = logging.StreamHandler()
consoleHandler.setFormatter(logFormatter)
logger.addHandler(consoleHandler)
@contextmanager
@ -27,8 +41,6 @@ def timer(name='task', pre="", function=logger.info, to_object=None):
to_object.end = end
def safe_open(path, mode='r', backup=True, **kwargs):
outdir = os.path.dirname(path)
if outdir and not os.path.exists(outdir):
@ -92,7 +104,7 @@ def unflatten_dict(d):
return out
def run_and_return_exceptions(self, func, *args, **kwargs):
def run_and_return_exceptions(func, *args, **kwargs):
'''
A wrapper for run_trial that catches exceptions and returns them.
It is meant for async simulations.
@ -104,3 +116,18 @@ def run_and_return_exceptions(self, func, *args, **kwargs):
ex = ex.__cause__
ex.message = ''.join(traceback.format_exception(type(ex), ex, ex.__traceback__)[:])
return ex
def run_parallel(func, iterable, parallel=False, **kwargs):
if parallel and not os.environ.get('SOIL_DEBUG', None):
p = Pool()
wrapped_func = partial(run_and_return_exceptions,
func, **kwargs)
for i in p.imap_unordered(wrapped_func, iterable):
if isinstance(i, Exception):
logger.error('Trial failed:\n\t%s', i.message)
continue
yield i
else:
for i in iterable:
yield func(i, **kwargs)

View File

@ -1,49 +1,50 @@
---
version: '2'
general:
id: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
seed: "CompleteSeed!"
topologies:
name: simple
group: tests
dir_path: "/tmp/"
num_trials: 3
max_time: 100
interval: 1
seed: "CompleteSeed!"
model_class: Environment
model_params:
topologies:
default:
params:
generator: complete_graph
n: 10
agents:
default:
n: 4
agents:
agent_class: CounterModel
state:
group: network
times: 1
network:
topology: 'default'
distribution:
- agent_class: CounterModel
weight: 0.4
weight: 0.25
state:
state_id: 0
times: 1
- agent_class: AggregatedCounter
weight: 0.6
override:
- filter:
node_id: 0
weight: 0.5
state:
name: 'The first node'
times: 2
override:
- filter:
node_id: 1
state:
name: 'The second node'
environment:
fixed:
- name: 'Environment Agent 1'
agent_class: CounterModel
name: 'Node 1'
- filter:
node_id: 2
state:
name: 'Node 2'
fixed:
- agent_class: BaseAgent
hidden: true
topology: null
state:
name: 'Environment Agent 1'
times: 10
environment:
environment_class: Environment
params:
group: environment
am_i_complete: true

View File

@ -8,17 +8,20 @@ interval: 1
seed: "CompleteSeed!"
network_params:
generator: complete_graph
n: 10
n: 4
network_agents:
- agent_class: CounterModel
weight: 0.4
weight: 0.25
state:
state_id: 0
times: 1
- agent_class: AggregatedCounter
weight: 0.6
weight: 0.5
state:
times: 2
environment_agents:
- agent_id: 'Environment Agent 1'
agent_class: CounterModel
agent_class: BaseAgent
state:
times: 10
environment_class: Environment
@ -28,5 +31,7 @@ agent_class: CounterModel
default_state:
times: 1
states:
- name: 'The first node'
- name: 'The second node'
1:
name: 'Node 1'
2:
name: 'Node 2'

View File

@ -8,7 +8,7 @@ class Dead(agents.FSM):
@agents.default_state
@agents.state
def only(self):
self.die()
return self.die()
class TestMain(TestCase):
def test_die_raises_exception(self):
@ -19,4 +19,6 @@ class TestMain(TestCase):
def test_die_returns_infinity(self):
d = Dead(unique_id=0, model=environment.Environment())
assert d.step().abs(0) == stime.INFINITY
ret = d.step().abs(0)
print(ret, 'next')
assert ret == stime.INFINITY

View File

@ -1,91 +0,0 @@
from unittest import TestCase
import os
import pandas as pd
import yaml
from functools import partial
from os.path import join
from soil import simulation, analysis, agents
ROOT = os.path.abspath(os.path.dirname(__file__))
class Ping(agents.FSM):
defaults = {
'count': 0,
}
@agents.default_state
@agents.state
def even(self):
self.debug(f'Even {self["count"]}')
self['count'] += 1
return self.odd
@agents.state
def odd(self):
self.debug(f'Odd {self["count"]}')
self['count'] += 1
return self.even
class TestAnalysis(TestCase):
# Code to generate a simple sqlite history
def setUp(self):
"""
The initial states should be applied to the agent and the
agent should be able to update its state."""
config = {
'name': 'analysis',
'seed': 'seed',
'network_params': {
'generator': 'complete_graph',
'n': 2
},
'agent_class': Ping,
'states': [{'interval': 1}, {'interval': 2}],
'max_time': 30,
'num_trials': 1,
'history': True,
'environment_params': {
}
}
s = simulation.from_config(config)
self.env = s.run_simulation(dry_run=True)[0]
def test_saved(self):
env = self.env
assert env.get_agent(0)['count', 0] == 1
assert env.get_agent(0)['count', 29] == 30
assert env.get_agent(1)['count', 0] == 1
assert env.get_agent(1)['count', 29] == 15
assert env['env', 29, None]['SEED'] == env['env', 29, 'SEED']
def test_count(self):
env = self.env
df = analysis.read_sql(env._history.db_path)
res = analysis.get_count(df, 'SEED', 'state_id')
assert res['SEED'][self.env['SEED']].iloc[0] == 1
assert res['SEED'][self.env['SEED']].iloc[-1] == 1
assert res['state_id']['odd'].iloc[0] == 2
assert res['state_id']['even'].iloc[0] == 0
assert res['state_id']['odd'].iloc[-1] == 1
assert res['state_id']['even'].iloc[-1] == 1
def test_value(self):
env = self.env
df = analysis.read_sql(env._history.db_path)
res_sum = analysis.get_value(df, 'count')
assert res_sum['count'].iloc[0] == 2
import numpy as np
res_mean = analysis.get_value(df, 'count', aggfunc=np.mean)
assert res_mean['count'].iloc[15] == (16+8)/2
res_total = analysis.get_majority(df)
res_total['SEED'].iloc[0] == self.env['SEED']

View File

@ -29,7 +29,7 @@ class TestConfig(TestCase):
expected = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
old = serialization.load_file(join(ROOT, "old_complete.yml"))[0]
converted_defaults = config.convert_old(old, strict=False)
converted = converted_defaults.dict(skip_defaults=True)
converted = converted_defaults.dict(exclude_unset=True)
isequal(converted, expected)
@ -40,10 +40,10 @@ class TestConfig(TestCase):
"""
config = serialization.load_file(join(EXAMPLES, 'complete.yml'))[0]
s = simulation.from_config(config)
init_config = copy.copy(s.config)
init_config = copy.copy(s.to_dict())
s.run_simulation(dry_run=True)
nconfig = s.config
nconfig = s.to_dict()
# del nconfig['to
isequal(init_config, nconfig)
@ -61,7 +61,7 @@ class TestConfig(TestCase):
Simple configuration that tests that the graph is loaded, and that
network agents are initialized properly.
"""
config = {
cfg = {
'name': 'CounterAgent',
'network_params': {
'path': join(ROOT, 'test.gexf')
@ -74,12 +74,14 @@ class TestConfig(TestCase):
'environment_params': {
}
}
s = simulation.from_old_config(config)
conf = config.convert_old(cfg)
s = simulation.from_config(conf)
env = s.get_env()
assert len(env.topologies['default'].nodes) == 2
assert len(env.topologies['default'].edges) == 1
assert len(env.agents) == 2
assert env.agents[0].topology == env.topologies['default']
assert env.agents[0].G == env.topologies['default']
def test_agents_from_config(self):
'''We test that the known complete configuration produces
@ -87,13 +89,10 @@ class TestConfig(TestCase):
cfg = serialization.load_file(join(ROOT, "complete_converted.yml"))[0]
s = simulation.from_config(cfg)
env = s.get_env()
assert len(env.topologies['default'].nodes) == 10
assert len(env.agents(group='network')) == 10
assert len(env.topologies['default'].nodes) == 4
assert len(env.agents(group='network')) == 4
assert len(env.agents(group='environment')) == 1
assert sum(1 for a in env.agents(group='network', agent_class=agents.CounterModel)) == 4
assert sum(1 for a in env.agents(group='network', agent_class=agents.AggregatedCounter)) == 6
def test_yaml(self):
"""
The YAML version of a newly created configuration should be equivalent

View File

@ -2,7 +2,7 @@ from unittest import TestCase
import os
from os.path import join
from soil import serialization, simulation
from soil import serialization, simulation, config
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
@ -14,36 +14,37 @@ class TestExamples(TestCase):
pass
def make_example_test(path, config):
def make_example_test(path, cfg):
def wrapped(self):
root = os.getcwd()
for s in simulation.all_from_config(path):
iterations = s.config.general.max_time * s.config.general.num_trials
if iterations > 1000:
s.config.general.max_time = 100
s.config.general.num_trials = 1
if config.get('skip_test', False) and not FORCE_TESTS:
for s in simulation.iter_from_config(cfg):
iterations = s.max_steps * s.num_trials
if iterations < 0 or iterations > 1000:
s.max_steps = 100
s.num_trials = 1
assert isinstance(cfg, config.Config)
if getattr(cfg, 'skip_test', False) and not FORCE_TESTS:
self.skipTest('Example ignored.')
envs = s.run_simulation(dry_run=True)
assert envs
for env in envs:
assert env
try:
n = config['network_params']['n']
n = cfg.model_params['network_params']['n']
assert len(list(env.network_agents)) == n
assert env.now > 0 # It has run
assert env.now <= config['max_time'] # But not further than allowed
except KeyError:
pass
assert env.schedule.steps > 0 # It has run
assert env.schedule.steps <= s.max_steps # But not further than allowed
return wrapped
def add_example_tests():
for config, path in serialization.load_files(
for cfg, path in serialization.load_files(
join(EXAMPLES, '*', '*.yml'),
join(EXAMPLES, '*.yml'),
):
p = make_example_test(path=path, config=config)
p = make_example_test(path=path, cfg=config.Config.from_raw(cfg))
fname = os.path.basename(path)
p.__name__ = 'test_example_file_%s' % fname
p.__doc__ = '%s should be a valid configuration' % fname

View File

@ -6,6 +6,8 @@ import shutil
from unittest import TestCase
from soil import exporters
from soil import simulation
from soil import agents
class Dummy(exporters.Exporter):
started = False
@ -33,28 +35,36 @@ class Dummy(exporters.Exporter):
class Exporters(TestCase):
def test_basic(self):
# We need to add at least one agent to make sure the scheduler
# ticks every step
num_trials = 5
max_time = 2
config = {
'name': 'exporter_sim',
'network_params': {},
'agent_class': 'CounterModel',
'max_time': 2,
'num_trials': 5,
'environment_params': {}
'model_params': {
'agents': [{
'agent_class': agents.BaseAgent
}]
},
'max_time': max_time,
'num_trials': num_trials,
}
s = simulation.from_config(config)
for env in s.run_simulation(exporters=[Dummy], dry_run=True):
assert env.now <= 2
assert len(env.agents) == 1
assert env.now == max_time
assert Dummy.started
assert Dummy.ended
assert Dummy.called_start == 1
assert Dummy.called_end == 1
assert Dummy.called_trial == 5
assert Dummy.trials == 5
assert Dummy.total_time == 2*5
assert Dummy.called_trial == num_trials
assert Dummy.trials == num_trials
assert Dummy.total_time == max_time * num_trials
def test_writing(self):
'''Try to write CSV, GEXF, sqlite and YAML (without dry_run)'''
'''Try to write CSV, sqlite and YAML (without dry_run)'''
n_trials = 5
config = {
'name': 'exporter_sim',
@ -74,7 +84,6 @@ class Exporters(TestCase):
envs = s.run_simulation(exporters=[
exporters.default,
exporters.csv,
exporters.gexf,
],
dry_run=False,
outdir=tmpdir,
@ -88,11 +97,7 @@ class Exporters(TestCase):
try:
for e in envs:
with open(os.path.join(simdir, '{}.gexf'.format(e.name))) as f:
result = f.read()
assert result
with open(os.path.join(simdir, '{}.csv'.format(e.name))) as f:
with open(os.path.join(simdir, '{}.env.csv'.format(e.id))) as f:
result = f.read()
assert result
finally:

View File

@ -1,128 +0,0 @@
from unittest import TestCase
import os
import io
import yaml
import copy
import pickle
import networkx as nx
from functools import partial
from os.path import join
from soil import (simulation, Environment, agents, serialization,
utils)
from soil.time import Delta
from tsih import NoHistory, History
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
class CustomAgent(agents.FSM):
@agents.default_state
@agents.state
def normal(self):
self.neighbors = self.count_agents(state_id='normal',
limit_neighbors=True)
@agents.state
def unreachable(self):
return
class TestHistory(TestCase):
def test_counter_agent_history(self):
"""
The evolution of the state should be recorded in the logging agent
"""
config = {
'name': 'CounterAgent',
'network_params': {
'path': join(ROOT, 'test.gexf')
},
'network_agents': [{
'agent_class': 'AggregatedCounter',
'weight': 1,
'state': {'state_id': 0}
}],
'max_time': 10,
'environment_params': {
}
}
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
for agent in env.network_agents:
last = 0
assert len(agent[None, None]) == 11
for step, total in sorted(agent['total', None]):
assert total == last + 2
last = total
def test_row_conversion(self):
env = Environment(history=True)
env['test'] = 'test_value'
res = list(env.history_to_tuples())
assert len(res) == len(env.environment_params)
env.schedule.time = 1
env['test'] = 'second_value'
res = list(env.history_to_tuples())
assert env['env', 0, 'test' ] == 'test_value'
assert env['env', 1, 'test' ] == 'second_value'
def test_nohistory(self):
'''
Make sure that no history(/sqlite) is used by default
'''
env = Environment(topology=nx.Graph(), network_agents=[])
assert isinstance(env._history, NoHistory)
def test_save_graph_history(self):
'''
The history_to_graph method should return a valid networkx graph.
The state of the agent should be encoded as intervals in the nx graph.
'''
G = nx.cycle_graph(5)
distribution = agents.calculate_distribution(None, agents.BaseAgent)
env = Environment(topology=G, network_agents=distribution, history=True)
env[0, 0, 'testvalue'] = 'start'
env[0, 10, 'testvalue'] = 'finish'
nG = env.history_to_graph()
values = nG.nodes[0]['attr_testvalue']
assert ('start', 0, 10) in values
assert ('finish', 10, None) in values
def test_save_graph_nohistory(self):
'''
The history_to_graph method should return a valid networkx graph.
When NoHistory is used, only the last known value is known
'''
G = nx.cycle_graph(5)
distribution = agents.calculate_distribution(None, agents.BaseAgent)
env = Environment(topology=G, network_agents=distribution, history=False)
env.get_agent(0)['testvalue'] = 'start'
env.schedule.time = 10
env.get_agent(0)['testvalue'] = 'finish'
nG = env.history_to_graph()
values = nG.nodes[0]['attr_testvalue']
assert ('start', 0, None) not in values
assert ('finish', 10, None) in values
def test_pickle_agent_environment(self):
env = Environment(name='Test', history=True)
a = agents.BaseAgent(model=env, unique_id=25)
a['key'] = 'test'
pickled = pickle.dumps(a)
recovered = pickle.loads(pickled)
assert recovered.env.name == 'Test'
assert list(recovered.env._history.to_tuples())
assert recovered['key', 0] == 'test'
assert recovered['key'] == 'test'

View File

@ -24,6 +24,7 @@ class CustomAgent(agents.FSM, agents.NetworkAgent):
def unreachable(self):
return
class TestMain(TestCase):
def test_empty_simulation(self):
@ -79,20 +80,16 @@ class TestMain(TestCase):
}
},
'agents': {
'default': {
'agent_class': 'CounterModel',
},
'counters': {
'topology': 'default',
'fixed': [{'state': {'times': 10}}, {'state': {'times': 20}}],
}
}
}
}
s = simulation.from_config(config)
env = s.get_env()
assert isinstance(env.agents[0], agents.CounterModel)
assert env.agents[0].topology == env.topologies['default']
assert env.agents[0].G == env.topologies['default']
assert env.agents[0]['times'] == 10
assert env.agents[0]['times'] == 10
env.step()
@ -105,8 +102,8 @@ class TestMain(TestCase):
config = {
'max_time': 10,
'model_params': {
'agents': [(CustomAgent, {'weight': 1}),
(CustomAgent, {'weight': 3}),
'agents': [{'agent_class': CustomAgent, 'weight': 1, 'topology': 'default'},
{'agent_class': CustomAgent, 'weight': 3, 'topology': 'default'},
],
'topologies': {
'default': {
@ -128,7 +125,7 @@ class TestMain(TestCase):
"""A complete example from a documentation should work."""
config = serialization.load_file(join(EXAMPLES, 'torvalds.yml'))[0]
config['model_params']['network_params']['path'] = join(EXAMPLES,
config['network_params']['path'])
config['model_params']['network_params']['path'])
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
for a in env.network_agents:
@ -208,24 +205,6 @@ class TestMain(TestCase):
assert converted[1]['agent_class'] == 'test_main.CustomAgent'
pickle.dumps(converted)
def test_subgraph(self):
'''An agent should be able to subgraph the global topology'''
G = nx.Graph()
G.add_node(3)
G.add_edge(1, 2)
distro = agents.calculate_distribution(agent_class=agents.NetworkAgent)
distro[0]['topology'] = 'default'
aconfig = config.AgentConfig(distribution=distro, topology='default')
env = Environment(name='Test', topologies={'default': G}, agents={'network': aconfig})
lst = list(env.network_agents)
a2 = env.find_one(node_id=2)
a3 = env.find_one(node_id=3)
assert len(a2.subgraph(limit_neighbors=True)) == 2
assert len(a3.subgraph(limit_neighbors=True)) == 1
assert len(a3.subgraph(limit_neighbors=True, center=False)) == 0
assert len(a3.subgraph(agent_class=agents.NetworkAgent)) == 3
def test_templates(self):
'''Loading a template should result in several configs'''
configs = serialization.load_file(join(EXAMPLES, 'template.yml'))
@ -236,14 +215,18 @@ class TestMain(TestCase):
'name': 'until_sim',
'model_params': {
'network_params': {},
'agent_class': 'CounterModel',
'agents': {
'fixed': [{
'agent_class': agents.BaseAgent,
}]
},
},
'max_time': 2,
'num_trials': 50,
}
s = simulation.from_config(config)
runs = list(s.run_simulation(dry_run=True))
over = list(x.now for x in runs if x.now>2)
over = list(x.now for x in runs if x.now > 2)
assert len(runs) == config['num_trials']
assert len(over) == 0

View File

@ -6,7 +6,8 @@ import networkx as nx
from os.path import join
from soil import network, environment
from soil import config, network, environment, agents, simulation
from test_main import CustomAgent
ROOT = os.path.abspath(os.path.dirname(__file__))
EXAMPLES = join(ROOT, '..', 'examples')
@ -60,22 +61,53 @@ class TestNetwork(TestCase):
G = nx.random_geometric_graph(20, 0.1)
env = environment.NetworkEnvironment(topology=G)
f = io.BytesIO()
env.dump_gexf(f)
assert env.topologies['default']
network.dump_gexf(env.topologies['default'], f)
def test_networkenvironment_creation(self):
"""Networkenvironment should accept netconfig as parameters"""
model_params = {
'topologies': {
'default': {
'path': join(ROOT, 'test.gexf')
}
},
'agents': {
'topology': 'default',
'distribution': [{
'agent_class': CustomAgent,
}]
}
}
env = environment.Environment(**model_params)
assert env.topologies
env.step()
assert len(env.topologies['default']) == 2
assert len(env.agents) == 2
assert env.agents[1].count_agents(state_id='normal') == 2
assert env.agents[1].count_agents(state_id='normal', limit_neighbors=True) == 1
assert env.agents[0].neighbors == 1
def test_custom_agent_neighbors(self):
"""Allow for search of neighbors with a certain state_id"""
config = {
'network_params': {
'model_params': {
'topologies': {
'default': {
'path': join(ROOT, 'test.gexf')
},
'network_agents': [{
'agent_class': CustomAgent,
'weight': 1
}],
'max_time': 10,
'environment_params': {
}
},
'agents': {
'topology': 'default',
'distribution': [
{
'weight': 1,
'agent_class': CustomAgent
}
]
}
},
'max_time': 10,
}
s = simulation.from_config(config)
env = s.run_simulation(dry_run=True)[0]
@ -83,3 +115,19 @@ class TestNetwork(TestCase):
assert env.agents[1].count_agents(state_id='normal', limit_neighbors=True) == 1
assert env.agents[0].neighbors == 1
def test_subgraph(self):
'''An agent should be able to subgraph the global topology'''
G = nx.Graph()
G.add_node(3)
G.add_edge(1, 2)
distro = agents.calculate_distribution(agent_class=agents.NetworkAgent)
aconfig = config.AgentConfig(distribution=distro, topology='default')
env = environment.Environment(name='Test', topologies={'default': G}, agents=aconfig)
lst = list(env.network_agents)
a2 = env.find_one(node_id=2)
a3 = env.find_one(node_id=3)
assert len(a2.subgraph(limit_neighbors=True)) == 2
assert len(a3.subgraph(limit_neighbors=True)) == 1
assert len(a3.subgraph(limit_neighbors=True, center=False)) == 0
assert len(a3.subgraph(agent_class=agents.NetworkAgent)) == 3