1
0
mirror of https://github.com/gsi-upm/soil synced 2025-01-07 07:11:27 +00:00

v0.20.8 fix bugs

This commit is contained in:
J. Fernando Sánchez 2023-03-23 14:49:09 +01:00
parent a40aa55b6a
commit bf481f0f88
68 changed files with 5398 additions and 85840 deletions

View File

@ -1,5 +1,7 @@
**/soil_output **/soil_output
.* .*
**/.*
**/__pycache__ **/__pycache__
__pycache__ __pycache__
*.pyc *.pyc
**/backup

3
.gitignore vendored
View File

@ -8,4 +8,5 @@ soil_output
docs/_build* docs/_build*
build/* build/*
dist/* dist/*
prof prof
backup

View File

@ -4,6 +4,14 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html). The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [UNRELEASED] ## [UNRELEASED]
## [0.20.8]
### Changed
* Tsih bumped to version 0.1.8
### Fixed
* Mentions to `id` in docs. It should be `state_id` now.
* Fixed bug: environment agents were not being added to the simulation
## [0.20.7] ## [0.20.7]
### Changed ### Changed
* Creating a `time.When` from another `time.When` does not nest them anymore (it returns the argument) * Creating a `time.When` from another `time.When` does not nest them anymore (it returns the argument)

Binary file not shown.

Before

(image error) Size: 7.0 KiB

After

(image error) Size: 8.3 KiB

Binary file not shown.

Before

(image error) Size: 14 KiB

Binary file not shown.

Before

(image error) Size: 14 KiB

Binary file not shown.

Before

(image error) Size: 14 KiB

After

(image error) Size: 29 KiB

Binary file not shown.

Before

(image error) Size: 14 KiB

Binary file not shown.

Before

(image error) Size: 16 KiB

Binary file not shown.

Before

(image error) Size: 16 KiB

Binary file not shown.

Before

(image error) Size: 15 KiB

Binary file not shown.

Before

(image error) Size: 15 KiB

Binary file not shown.

Before

(image error) Size: 16 KiB

Binary file not shown.

Before

(image error) Size: 16 KiB

Binary file not shown.

Before

(image error) Size: 16 KiB

Binary file not shown.

Before

(image error) Size: 16 KiB

Binary file not shown.

Before

(image error) Size: 13 KiB

After

(image error) Size: 33 KiB

Binary file not shown.

Before

(image error) Size: 13 KiB

Binary file not shown.

Before

(image error) Size: 13 KiB

Binary file not shown.

Before

(image error) Size: 13 KiB

Binary file not shown.

Before

(image error) Size: 13 KiB

Binary file not shown.

Before

(image error) Size: 13 KiB

Binary file not shown.

Before

(image error) Size: 13 KiB

Binary file not shown.

Before

(image error) Size: 13 KiB

Binary file not shown.

Before

(image error) Size: 13 KiB

Binary file not shown.

Before

(image error) Size: 13 KiB

BIN
docs/output_58_0.png Normal file

Binary file not shown.

After

(image error) Size: 33 KiB

BIN
docs/output_58_1.png Normal file

Binary file not shown.

After

(image error) Size: 32 KiB

BIN
docs/output_58_2.png Normal file

Binary file not shown.

After

(image error) Size: 29 KiB

BIN
docs/output_58_3.png Normal file

Binary file not shown.

After

(image error) Size: 33 KiB

BIN
docs/output_58_4.png Normal file

Binary file not shown.

After

(image error) Size: 35 KiB

BIN
docs/output_60_0.png Normal file

Binary file not shown.

After

(image error) Size: 28 KiB

BIN
docs/output_60_1.png Normal file

Binary file not shown.

After

(image error) Size: 37 KiB

BIN
docs/output_60_2.png Normal file

Binary file not shown.

After

(image error) Size: 34 KiB

BIN
docs/output_60_3.png Normal file

Binary file not shown.

After

(image error) Size: 33 KiB

BIN
docs/output_60_4.png Normal file

Binary file not shown.

After

(image error) Size: 37 KiB

Binary file not shown.

Before

(image error) Size: 15 KiB

BIN
docs/output_62_0.png Normal file

Binary file not shown.

After

(image error) Size: 28 KiB

BIN
docs/output_62_1.png Normal file

Binary file not shown.

After

(image error) Size: 28 KiB

BIN
docs/output_62_2.png Normal file

Binary file not shown.

After

(image error) Size: 28 KiB

BIN
docs/output_62_3.png Normal file

Binary file not shown.

After

(image error) Size: 28 KiB

BIN
docs/output_62_4.png Normal file

Binary file not shown.

After

(image error) Size: 28 KiB

Binary file not shown.

Before

(image error) Size: 14 KiB

Binary file not shown.

Before

(image error) Size: 14 KiB

Binary file not shown.

Before

(image error) Size: 5.3 KiB

BIN
docs/output_68_1.png Normal file

Binary file not shown.

After

(image error) Size: 952 KiB

BIN
docs/output_70_1.png Normal file

Binary file not shown.

After

(image error) Size: 29 KiB

Binary file not shown.

Before

(image error) Size: 17 KiB

After

(image error) Size: 23 KiB

Binary file not shown.

Before

(image error) Size: 17 KiB

Binary file not shown.

Before

(image error) Size: 16 KiB

Binary file not shown.

Before

(image error) Size: 11 KiB

Binary file not shown.

Before

(image error) Size: 19 KiB

BIN
docs/output_77_0.png Normal file

Binary file not shown.

After

(image error) Size: 45 KiB

BIN
docs/output_81_0.png Normal file

Binary file not shown.

After

(image error) Size: 42 KiB

BIN
docs/output_82_1.png Normal file

Binary file not shown.

After

(image error) Size: 25 KiB

BIN
docs/output_83_0.png Normal file

Binary file not shown.

After

(image error) Size: 53 KiB

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

View File

@ -2,13 +2,12 @@
"cells": [ "cells": [
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 4, "execution_count": 1,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2017-11-08T16:22:30.732107Z", "end_time": "2017-11-08T16:22:30.732107Z",
"start_time": "2017-11-08T17:22:30.059855+01:00" "start_time": "2017-11-08T17:22:30.059855+01:00"
}, }
"collapsed": true
}, },
"outputs": [], "outputs": [],
"source": [ "source": [
@ -28,24 +27,16 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 5, "execution_count": 2,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2017-11-08T16:22:35.580593Z", "end_time": "2017-11-08T16:22:35.580593Z",
"start_time": "2017-11-08T17:22:35.542745+01:00" "start_time": "2017-11-08T17:22:35.542745+01:00"
} }
}, },
"outputs": [ "outputs": [],
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"source": [ "source": [
"%pylab inline\n", "%matplotlib inline\n",
"\n", "\n",
"from soil import *" "from soil import *"
] ]
@ -66,7 +57,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 6, "execution_count": 3,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2017-11-08T16:22:37.242327Z", "end_time": "2017-11-08T16:22:37.242327Z",
@ -86,7 +77,7 @@
" prob_neighbor_spread: 0.0\r\n", " prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n", " prob_tv_spread: 0.01\r\n",
"interval: 1\r\n", "interval: 1\r\n",
"max_time: 30\r\n", "max_time: 300\r\n",
"name: Sim_all_dumb\r\n", "name: Sim_all_dumb\r\n",
"network_agents:\r\n", "network_agents:\r\n",
"- agent_type: DumbViewer\r\n", "- agent_type: DumbViewer\r\n",
@ -110,7 +101,7 @@
" prob_neighbor_spread: 0.0\r\n", " prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n", " prob_tv_spread: 0.01\r\n",
"interval: 1\r\n", "interval: 1\r\n",
"max_time: 30\r\n", "max_time: 300\r\n",
"name: Sim_half_herd\r\n", "name: Sim_half_herd\r\n",
"network_agents:\r\n", "network_agents:\r\n",
"- agent_type: DumbViewer\r\n", "- agent_type: DumbViewer\r\n",
@ -142,18 +133,18 @@
" prob_neighbor_spread: 0.0\r\n", " prob_neighbor_spread: 0.0\r\n",
" prob_tv_spread: 0.01\r\n", " prob_tv_spread: 0.01\r\n",
"interval: 1\r\n", "interval: 1\r\n",
"max_time: 30\r\n", "max_time: 300\r\n",
"name: Sim_all_herd\r\n", "name: Sim_all_herd\r\n",
"network_agents:\r\n", "network_agents:\r\n",
"- agent_type: HerdViewer\r\n", "- agent_type: HerdViewer\r\n",
" state:\r\n", " state:\r\n",
" has_tv: true\r\n", " has_tv: true\r\n",
" id: neutral\r\n", " state_id: neutral\r\n",
" weight: 1\r\n", " weight: 1\r\n",
"- agent_type: HerdViewer\r\n", "- agent_type: HerdViewer\r\n",
" state:\r\n", " state:\r\n",
" has_tv: true\r\n", " has_tv: true\r\n",
" id: neutral\r\n", " state_id: neutral\r\n",
" weight: 1\r\n", " weight: 1\r\n",
"network_params:\r\n", "network_params:\r\n",
" generator: barabasi_albert_graph\r\n", " generator: barabasi_albert_graph\r\n",
@ -169,13 +160,13 @@
" prob_tv_spread: 0.01\r\n", " prob_tv_spread: 0.01\r\n",
" prob_neighbor_cure: 0.1\r\n", " prob_neighbor_cure: 0.1\r\n",
"interval: 1\r\n", "interval: 1\r\n",
"max_time: 30\r\n", "max_time: 300\r\n",
"name: Sim_wise_herd\r\n", "name: Sim_wise_herd\r\n",
"network_agents:\r\n", "network_agents:\r\n",
"- agent_type: HerdViewer\r\n", "- agent_type: HerdViewer\r\n",
" state:\r\n", " state:\r\n",
" has_tv: true\r\n", " has_tv: true\r\n",
" id: neutral\r\n", " state_id: neutral\r\n",
" weight: 1\r\n", " weight: 1\r\n",
"- agent_type: WiseViewer\r\n", "- agent_type: WiseViewer\r\n",
" state:\r\n", " state:\r\n",
@ -195,13 +186,13 @@
" prob_tv_spread: 0.01\r\n", " prob_tv_spread: 0.01\r\n",
" prob_neighbor_cure: 0.1\r\n", " prob_neighbor_cure: 0.1\r\n",
"interval: 1\r\n", "interval: 1\r\n",
"max_time: 30\r\n", "max_time: 300\r\n",
"name: Sim_all_wise\r\n", "name: Sim_all_wise\r\n",
"network_agents:\r\n", "network_agents:\r\n",
"- agent_type: WiseViewer\r\n", "- agent_type: WiseViewer\r\n",
" state:\r\n", " state:\r\n",
" has_tv: true\r\n", " has_tv: true\r\n",
" id: neutral\r\n", " state_id: neutral\r\n",
" weight: 1\r\n", " weight: 1\r\n",
"- agent_type: WiseViewer\r\n", "- agent_type: WiseViewer\r\n",
" state:\r\n", " state:\r\n",
@ -225,7 +216,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 22, "execution_count": 4,
"metadata": { "metadata": {
"ExecuteTime": { "ExecuteTime": {
"end_time": "2017-11-08T18:07:46.781745Z", "end_time": "2017-11-08T18:07:46.781745Z",
@ -233,7 +224,24 @@
}, },
"scrolled": true "scrolled": true
}, },
"outputs": [], "outputs": [
{
"ename": "ValueError",
"evalue": "No objects to concatenate",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m evodumb \u001b[38;5;241m=\u001b[39m \u001b[43manalysis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_data\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msoil_output/Sim_all_dumb/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprocess\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43manalysis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_count\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mid\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m;\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/soil/analysis.py:14\u001b[0m, in \u001b[0;36mread_data\u001b[0;34m(group, *args, **kwargs)\u001b[0m\n\u001b[1;32m 12\u001b[0m iterable \u001b[38;5;241m=\u001b[39m _read_data(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m group:\n\u001b[0;32m---> 14\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgroup_trials\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterable\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlist\u001b[39m(iterable)\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/soil/analysis.py:201\u001b[0m, in \u001b[0;36mgroup_trials\u001b[0;34m(trials, aggfunc)\u001b[0m\n\u001b[1;32m 199\u001b[0m trials \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(trials)\n\u001b[1;32m 200\u001b[0m trials \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mmap\u001b[39m(\u001b[38;5;28;01mlambda\u001b[39;00m x: x[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mtuple\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m x, trials))\n\u001b[0;32m--> 201\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconcat\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrials\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mgroupby(level\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\u001b[38;5;241m.\u001b[39magg(aggfunc)\u001b[38;5;241m.\u001b[39mreorder_levels([\u001b[38;5;241m2\u001b[39m, \u001b[38;5;241m0\u001b[39m,\u001b[38;5;241m1\u001b[39m] ,axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/util/_decorators.py:331\u001b[0m, in \u001b[0;36mdeprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m>\u001b[39m num_allow_args:\n\u001b[1;32m 326\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m 327\u001b[0m msg\u001b[38;5;241m.\u001b[39mformat(arguments\u001b[38;5;241m=\u001b[39m_format_argument_list(allow_args)),\n\u001b[1;32m 328\u001b[0m \u001b[38;5;167;01mFutureWarning\u001b[39;00m,\n\u001b[1;32m 329\u001b[0m stacklevel\u001b[38;5;241m=\u001b[39mfind_stack_level(),\n\u001b[1;32m 330\u001b[0m )\n\u001b[0;32m--> 331\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/core/reshape/concat.py:368\u001b[0m, in \u001b[0;36mconcat\u001b[0;34m(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)\u001b[0m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;129m@deprecate_nonkeyword_arguments\u001b[39m(version\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, allowed_args\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mobjs\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 147\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mconcat\u001b[39m(\n\u001b[1;32m 148\u001b[0m objs: Iterable[NDFrame] \u001b[38;5;241m|\u001b[39m Mapping[HashableT, NDFrame],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 157\u001b[0m copy: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 158\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame \u001b[38;5;241m|\u001b[39m Series:\n\u001b[1;32m 159\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;124;03m Concatenate pandas objects along a particular axis.\u001b[39;00m\n\u001b[1;32m 161\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 366\u001b[0m \u001b[38;5;124;03m 1 3 4\u001b[39;00m\n\u001b[1;32m 367\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 368\u001b[0m op \u001b[38;5;241m=\u001b[39m \u001b[43m_Concatenator\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 369\u001b[0m \u001b[43m \u001b[49m\u001b[43mobjs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 370\u001b[0m \u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 371\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_index\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_index\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mjoin\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkeys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[43mlevels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m \u001b[49m\u001b[43mnames\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnames\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 376\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify_integrity\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify_integrity\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 378\u001b[0m \u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msort\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m op\u001b[38;5;241m.\u001b[39mget_result()\n",
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/core/reshape/concat.py:425\u001b[0m, in \u001b[0;36m_Concatenator.__init__\u001b[0;34m(self, objs, axis, join, keys, levels, names, ignore_index, verify_integrity, copy, sort)\u001b[0m\n\u001b[1;32m 422\u001b[0m objs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(objs)\n\u001b[1;32m 424\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(objs) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 425\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo objects to concatenate\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 427\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m keys \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 428\u001b[0m objs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(com\u001b[38;5;241m.\u001b[39mnot_none(\u001b[38;5;241m*\u001b[39mobjs))\n",
"\u001b[0;31mValueError\u001b[0m: No objects to concatenate"
]
}
],
"source": [ "source": [
"evodumb = analysis.read_data('soil_output/Sim_all_dumb/', process=analysis.get_count, group=True, keys=['id']);" "evodumb = analysis.read_data('soil_output/Sim_all_dumb/', process=analysis.get_count, group=True, keys=['id']);"
] ]
@ -721,9 +729,9 @@
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "venv-soil",
"language": "python", "language": "python",
"name": "python3" "name": "venv-soil"
}, },
"language_info": { "language_info": {
"codemirror_mode": { "codemirror_mode": {
@ -735,7 +743,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.2" "version": "3.8.10"
}, },
"toc": { "toc": {
"colors": { "colors": {

View File

@ -1,7 +1,7 @@
--- ---
load_module: rabbit_agents load_module: rabbit_agents
name: rabbits_example name: rabbits_example
max_time: 100 max_time: 1000
interval: 1 interval: 1
seed: MySeed seed: MySeed
agent_type: rabbit_agents.RabbitModel agent_type: rabbit_agents.RabbitModel

File diff suppressed because one or more lines are too long

View File

@ -6,4 +6,4 @@ pandas>=0.23
SALib>=1.3 SALib>=1.3
Jinja2 Jinja2
Mesa>=0.8 Mesa>=0.8
tsih>=0.1.5 tsih>=0.1.9

View File

@ -1 +1 @@
0.20.7 0.20.8

View File

@ -281,7 +281,7 @@ def default_state(func):
class MetaFSM(type): class MetaFSM(type):
def __init__(cls, name, bases, nmspc): def __init__(cls, name, bases, nmspc):
super(MetaFSM, cls).__init__(name, bases, nmspc) super().__init__(name, bases, nmspc)
states = {} states = {}
# Re-use states from inherited classes # Re-use states from inherited classes
default_state = None default_state = None
@ -482,6 +482,7 @@ def _definition_to_dict(definition, size=None, default_state=None):
distro = sorted([item for item in definition if 'weight' in item]) distro = sorted([item for item in definition if 'weight' in item])
ix = 0 ix = 0
def init_agent(item, id=ix): def init_agent(item, id=ix):
while id in agents: while id in agents:
id += 1 id += 1

View File

@ -112,7 +112,7 @@ def get_types(df):
Get the value type for every key stored in a raw history dataframe. Get the value type for every key stored in a raw history dataframe.
''' '''
dtypes = df.groupby(by=['key'])['value_type'].unique() dtypes = df.groupby(by=['key'])['value_type'].unique()
return {k:v[0] for k,v in dtypes.iteritems()} return {k:v[0] for k,v in dtypes.items()}
def process_one(df, *keys, columns=['key', 'agent_id'], values='value', def process_one(df, *keys, columns=['key', 'agent_id'], values='value',
@ -146,7 +146,7 @@ def get_count(df, *keys):
counts = pd.DataFrame() counts = pd.DataFrame()
for key in df.columns.levels[0]: for key in df.columns.levels[0]:
g = df[[key]].apply(pd.Series.value_counts, axis=1).fillna(0) g = df[[key]].apply(pd.Series.value_counts, axis=1).fillna(0)
for value, series in g.iteritems(): for value, series in g.items():
counts[key, value] = series counts[key, value] = series
counts.columns = pd.MultiIndex.from_tuples(counts.columns) counts.columns = pd.MultiIndex.from_tuples(counts.columns)
return counts return counts

View File

@ -124,7 +124,8 @@ class Environment(Model):
def environment_agents(self, environment_agents): def environment_agents(self, environment_agents):
self._environment_agents = environment_agents self._environment_agents = environment_agents
self._env_agents = agents._definition_to_dict(definition=environment_agents) for (ix, agent) in enumerate(self._environment_agents):
self.init_agent(len(self.G) + ix, agent_definitions=environment_agents, with_node=False)
@property @property
def network_agents(self): def network_agents(self):
@ -139,15 +140,19 @@ class Environment(Model):
for ix in self.G.nodes(): for ix in self.G.nodes():
self.init_agent(ix, agent_definitions=network_agents) self.init_agent(ix, agent_definitions=network_agents)
def init_agent(self, agent_id, agent_definitions): def init_agent(self, agent_id, agent_definitions, with_node=True):
node = self.G.nodes[agent_id]
init = False init = False
state = dict(node)
state = {}
if with_node:
node = self.G.nodes[agent_id]
state = dict(node)
state.update(self.states.get(agent_id, {}))
agent_type = None agent_type = None
if 'agent_type' in self.states.get(agent_id, {}): if 'agent_type' in state:
agent_type = self.states[agent_id]['agent_type'] agent_type = state['agent_type']
elif 'agent_type' in node: elif with_node and 'agent_type' in node:
agent_type = node['agent_type'] agent_type = node['agent_type']
elif 'agent_type' in self.default_state: elif 'agent_type' in self.default_state:
agent_type = self.default_state['agent_type'] agent_type = self.default_state['agent_type']
@ -157,15 +162,16 @@ class Environment(Model):
elif agent_definitions: elif agent_definitions:
agent_type, state = agents._agent_from_definition(agent_definitions, unique_id=agent_id) agent_type, state = agents._agent_from_definition(agent_definitions, unique_id=agent_id)
else: else:
serialization.logger.debug('Skipping node {}'.format(agent_id)) serialization.logger.debug('Skipping agent {}'.format(agent_id))
return return
return self.set_agent(agent_id, agent_type, state) return self.set_agent(agent_id, agent_type, state, with_node=with_node)
def set_agent(self, agent_id, agent_type, state=None): def set_agent(self, agent_id, agent_type, state=None, with_node=True):
node = self.G.nodes[agent_id]
defstate = deepcopy(self.default_state) or {} defstate = deepcopy(self.default_state) or {}
defstate.update(self.states.get(agent_id, {})) defstate.update(self.states.get(agent_id, {}))
defstate.update(node.get('state', {})) if with_node:
node = self.G.nodes[agent_id]
defstate.update(node.get('state', {}))
if state: if state:
defstate.update(state) defstate.update(state)
a = None a = None
@ -178,7 +184,8 @@ class Environment(Model):
for (k, v) in state.items(): for (k, v) in state.items():
setattr(a, k, v) setattr(a, k, v)
node['agent'] = a if with_node:
node['agent'] = a
self.schedule.add(a) self.schedule.add(a)
return a return a

View File

@ -52,7 +52,7 @@ class distribution(Stats):
except TypeError: except TypeError:
pass pass
for name, count in t.value_counts().iteritems(): for name, count in t.value_counts().items():
if a not in stats['count']: if a not in stats['count']:
stats['count'][a] = {} stats['count'][a] = {}
stats['count'][a][name] = count stats['count'][a][name] = count
@ -68,10 +68,10 @@ class distribution(Stats):
mean = {} mean = {}
if self.means: if self.means:
res = dfm.groupby(by=['key']).agg(['mean', 'std', 'count', 'median', 'max', 'min']) res = dfm.drop('metric', axis=1).groupby(by=['key']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
mean = res['value'].to_dict() mean = res['value'].to_dict()
if self.counts: if self.counts:
res = dfc.groupby(by=['key', 'value']).agg(['mean', 'std', 'count', 'median', 'max', 'min']) res = dfc.drop('metric', axis=1).groupby(by=['key', 'value']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
for k,v in res['count'].to_dict().items(): for k,v in res['count'].to_dict().items():
if k not in count: if k not in count:
count[k] = {} count[k] = {}