v0.20.8 fix bugs
@ -1,5 +1,7 @@
|
|||||||
**/soil_output
|
**/soil_output
|
||||||
.*
|
.*
|
||||||
|
**/.*
|
||||||
**/__pycache__
|
**/__pycache__
|
||||||
__pycache__
|
__pycache__
|
||||||
*.pyc
|
*.pyc
|
||||||
|
**/backup
|
||||||
|
1
.gitignore
vendored
@ -9,3 +9,4 @@ docs/_build*
|
|||||||
build/*
|
build/*
|
||||||
dist/*
|
dist/*
|
||||||
prof
|
prof
|
||||||
|
backup
|
@ -4,6 +4,14 @@ All notable changes to this project will be documented in this file.
|
|||||||
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
||||||
|
|
||||||
## [UNRELEASED]
|
## [UNRELEASED]
|
||||||
|
|
||||||
|
## [0.20.8]
|
||||||
|
### Changed
|
||||||
|
* Tsih bumped to version 0.1.8
|
||||||
|
### Fixed
|
||||||
|
* Mentions to `id` in docs. It should be `state_id` now.
|
||||||
|
* Fixed bug: environment agents were not being added to the simulation
|
||||||
|
|
||||||
## [0.20.7]
|
## [0.20.7]
|
||||||
### Changed
|
### Changed
|
||||||
* Creating a `time.When` from another `time.When` does not nest them anymore (it returns the argument)
|
* Creating a `time.When` from another `time.When` does not nest them anymore (it returns the argument)
|
||||||
|
Before Width: | Height: | Size: 7.0 KiB After Width: | Height: | Size: 8.3 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 14 KiB After Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 13 KiB After Width: | Height: | Size: 33 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 13 KiB |
BIN
docs/output_58_0.png
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
docs/output_58_1.png
Normal file
After Width: | Height: | Size: 32 KiB |
BIN
docs/output_58_2.png
Normal file
After Width: | Height: | Size: 29 KiB |
BIN
docs/output_58_3.png
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
docs/output_58_4.png
Normal file
After Width: | Height: | Size: 35 KiB |
BIN
docs/output_60_0.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
docs/output_60_1.png
Normal file
After Width: | Height: | Size: 37 KiB |
BIN
docs/output_60_2.png
Normal file
After Width: | Height: | Size: 34 KiB |
BIN
docs/output_60_3.png
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
docs/output_60_4.png
Normal file
After Width: | Height: | Size: 37 KiB |
Before Width: | Height: | Size: 15 KiB |
BIN
docs/output_62_0.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
docs/output_62_1.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
docs/output_62_2.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
docs/output_62_3.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
docs/output_62_4.png
Normal file
After Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 5.3 KiB |
BIN
docs/output_68_1.png
Normal file
After Width: | Height: | Size: 952 KiB |
BIN
docs/output_70_1.png
Normal file
After Width: | Height: | Size: 29 KiB |
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 19 KiB |
BIN
docs/output_77_0.png
Normal file
After Width: | Height: | Size: 45 KiB |
BIN
docs/output_81_0.png
Normal file
After Width: | Height: | Size: 42 KiB |
BIN
docs/output_82_1.png
Normal file
After Width: | Height: | Size: 25 KiB |
BIN
docs/output_83_0.png
Normal file
After Width: | Height: | Size: 53 KiB |
80808
examples/Untitled.ipynb
@ -2,13 +2,12 @@
|
|||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 1,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"ExecuteTime": {
|
"ExecuteTime": {
|
||||||
"end_time": "2017-11-08T16:22:30.732107Z",
|
"end_time": "2017-11-08T16:22:30.732107Z",
|
||||||
"start_time": "2017-11-08T17:22:30.059855+01:00"
|
"start_time": "2017-11-08T17:22:30.059855+01:00"
|
||||||
},
|
}
|
||||||
"collapsed": true
|
|
||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
@ -28,24 +27,16 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 5,
|
"execution_count": 2,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"ExecuteTime": {
|
"ExecuteTime": {
|
||||||
"end_time": "2017-11-08T16:22:35.580593Z",
|
"end_time": "2017-11-08T16:22:35.580593Z",
|
||||||
"start_time": "2017-11-08T17:22:35.542745+01:00"
|
"start_time": "2017-11-08T17:22:35.542745+01:00"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Populating the interactive namespace from numpy and matplotlib\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"%pylab inline\n",
|
"%matplotlib inline\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from soil import *"
|
"from soil import *"
|
||||||
]
|
]
|
||||||
@ -66,7 +57,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 6,
|
"execution_count": 3,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"ExecuteTime": {
|
"ExecuteTime": {
|
||||||
"end_time": "2017-11-08T16:22:37.242327Z",
|
"end_time": "2017-11-08T16:22:37.242327Z",
|
||||||
@ -86,7 +77,7 @@
|
|||||||
" prob_neighbor_spread: 0.0\r\n",
|
" prob_neighbor_spread: 0.0\r\n",
|
||||||
" prob_tv_spread: 0.01\r\n",
|
" prob_tv_spread: 0.01\r\n",
|
||||||
"interval: 1\r\n",
|
"interval: 1\r\n",
|
||||||
"max_time: 30\r\n",
|
"max_time: 300\r\n",
|
||||||
"name: Sim_all_dumb\r\n",
|
"name: Sim_all_dumb\r\n",
|
||||||
"network_agents:\r\n",
|
"network_agents:\r\n",
|
||||||
"- agent_type: DumbViewer\r\n",
|
"- agent_type: DumbViewer\r\n",
|
||||||
@ -110,7 +101,7 @@
|
|||||||
" prob_neighbor_spread: 0.0\r\n",
|
" prob_neighbor_spread: 0.0\r\n",
|
||||||
" prob_tv_spread: 0.01\r\n",
|
" prob_tv_spread: 0.01\r\n",
|
||||||
"interval: 1\r\n",
|
"interval: 1\r\n",
|
||||||
"max_time: 30\r\n",
|
"max_time: 300\r\n",
|
||||||
"name: Sim_half_herd\r\n",
|
"name: Sim_half_herd\r\n",
|
||||||
"network_agents:\r\n",
|
"network_agents:\r\n",
|
||||||
"- agent_type: DumbViewer\r\n",
|
"- agent_type: DumbViewer\r\n",
|
||||||
@ -142,18 +133,18 @@
|
|||||||
" prob_neighbor_spread: 0.0\r\n",
|
" prob_neighbor_spread: 0.0\r\n",
|
||||||
" prob_tv_spread: 0.01\r\n",
|
" prob_tv_spread: 0.01\r\n",
|
||||||
"interval: 1\r\n",
|
"interval: 1\r\n",
|
||||||
"max_time: 30\r\n",
|
"max_time: 300\r\n",
|
||||||
"name: Sim_all_herd\r\n",
|
"name: Sim_all_herd\r\n",
|
||||||
"network_agents:\r\n",
|
"network_agents:\r\n",
|
||||||
"- agent_type: HerdViewer\r\n",
|
"- agent_type: HerdViewer\r\n",
|
||||||
" state:\r\n",
|
" state:\r\n",
|
||||||
" has_tv: true\r\n",
|
" has_tv: true\r\n",
|
||||||
" id: neutral\r\n",
|
" state_id: neutral\r\n",
|
||||||
" weight: 1\r\n",
|
" weight: 1\r\n",
|
||||||
"- agent_type: HerdViewer\r\n",
|
"- agent_type: HerdViewer\r\n",
|
||||||
" state:\r\n",
|
" state:\r\n",
|
||||||
" has_tv: true\r\n",
|
" has_tv: true\r\n",
|
||||||
" id: neutral\r\n",
|
" state_id: neutral\r\n",
|
||||||
" weight: 1\r\n",
|
" weight: 1\r\n",
|
||||||
"network_params:\r\n",
|
"network_params:\r\n",
|
||||||
" generator: barabasi_albert_graph\r\n",
|
" generator: barabasi_albert_graph\r\n",
|
||||||
@ -169,13 +160,13 @@
|
|||||||
" prob_tv_spread: 0.01\r\n",
|
" prob_tv_spread: 0.01\r\n",
|
||||||
" prob_neighbor_cure: 0.1\r\n",
|
" prob_neighbor_cure: 0.1\r\n",
|
||||||
"interval: 1\r\n",
|
"interval: 1\r\n",
|
||||||
"max_time: 30\r\n",
|
"max_time: 300\r\n",
|
||||||
"name: Sim_wise_herd\r\n",
|
"name: Sim_wise_herd\r\n",
|
||||||
"network_agents:\r\n",
|
"network_agents:\r\n",
|
||||||
"- agent_type: HerdViewer\r\n",
|
"- agent_type: HerdViewer\r\n",
|
||||||
" state:\r\n",
|
" state:\r\n",
|
||||||
" has_tv: true\r\n",
|
" has_tv: true\r\n",
|
||||||
" id: neutral\r\n",
|
" state_id: neutral\r\n",
|
||||||
" weight: 1\r\n",
|
" weight: 1\r\n",
|
||||||
"- agent_type: WiseViewer\r\n",
|
"- agent_type: WiseViewer\r\n",
|
||||||
" state:\r\n",
|
" state:\r\n",
|
||||||
@ -195,13 +186,13 @@
|
|||||||
" prob_tv_spread: 0.01\r\n",
|
" prob_tv_spread: 0.01\r\n",
|
||||||
" prob_neighbor_cure: 0.1\r\n",
|
" prob_neighbor_cure: 0.1\r\n",
|
||||||
"interval: 1\r\n",
|
"interval: 1\r\n",
|
||||||
"max_time: 30\r\n",
|
"max_time: 300\r\n",
|
||||||
"name: Sim_all_wise\r\n",
|
"name: Sim_all_wise\r\n",
|
||||||
"network_agents:\r\n",
|
"network_agents:\r\n",
|
||||||
"- agent_type: WiseViewer\r\n",
|
"- agent_type: WiseViewer\r\n",
|
||||||
" state:\r\n",
|
" state:\r\n",
|
||||||
" has_tv: true\r\n",
|
" has_tv: true\r\n",
|
||||||
" id: neutral\r\n",
|
" state_id: neutral\r\n",
|
||||||
" weight: 1\r\n",
|
" weight: 1\r\n",
|
||||||
"- agent_type: WiseViewer\r\n",
|
"- agent_type: WiseViewer\r\n",
|
||||||
" state:\r\n",
|
" state:\r\n",
|
||||||
@ -225,7 +216,7 @@
|
|||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 22,
|
"execution_count": 4,
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"ExecuteTime": {
|
"ExecuteTime": {
|
||||||
"end_time": "2017-11-08T18:07:46.781745Z",
|
"end_time": "2017-11-08T18:07:46.781745Z",
|
||||||
@ -233,7 +224,24 @@
|
|||||||
},
|
},
|
||||||
"scrolled": true
|
"scrolled": true
|
||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [
|
||||||
|
{
|
||||||
|
"ename": "ValueError",
|
||||||
|
"evalue": "No objects to concatenate",
|
||||||
|
"output_type": "error",
|
||||||
|
"traceback": [
|
||||||
|
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||||
|
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
||||||
|
"Cell \u001b[0;32mIn[4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m evodumb \u001b[38;5;241m=\u001b[39m \u001b[43manalysis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_data\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43msoil_output/Sim_all_dumb/\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprocess\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43manalysis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_count\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mid\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m;\n",
|
||||||
|
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/soil/analysis.py:14\u001b[0m, in \u001b[0;36mread_data\u001b[0;34m(group, *args, **kwargs)\u001b[0m\n\u001b[1;32m 12\u001b[0m iterable \u001b[38;5;241m=\u001b[39m _read_data(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m group:\n\u001b[0;32m---> 14\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mgroup_trials\u001b[49m\u001b[43m(\u001b[49m\u001b[43miterable\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 15\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 16\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlist\u001b[39m(iterable)\n",
|
||||||
|
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/soil/analysis.py:201\u001b[0m, in \u001b[0;36mgroup_trials\u001b[0;34m(trials, aggfunc)\u001b[0m\n\u001b[1;32m 199\u001b[0m trials \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(trials)\n\u001b[1;32m 200\u001b[0m trials \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mmap\u001b[39m(\u001b[38;5;28;01mlambda\u001b[39;00m x: x[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(x, \u001b[38;5;28mtuple\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m x, trials))\n\u001b[0;32m--> 201\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconcat\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrials\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mgroupby(level\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\u001b[38;5;241m.\u001b[39magg(aggfunc)\u001b[38;5;241m.\u001b[39mreorder_levels([\u001b[38;5;241m2\u001b[39m, \u001b[38;5;241m0\u001b[39m,\u001b[38;5;241m1\u001b[39m] ,axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n",
|
||||||
|
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/util/_decorators.py:331\u001b[0m, in \u001b[0;36mdeprecate_nonkeyword_arguments.<locals>.decorate.<locals>.wrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m>\u001b[39m num_allow_args:\n\u001b[1;32m 326\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[1;32m 327\u001b[0m msg\u001b[38;5;241m.\u001b[39mformat(arguments\u001b[38;5;241m=\u001b[39m_format_argument_list(allow_args)),\n\u001b[1;32m 328\u001b[0m \u001b[38;5;167;01mFutureWarning\u001b[39;00m,\n\u001b[1;32m 329\u001b[0m stacklevel\u001b[38;5;241m=\u001b[39mfind_stack_level(),\n\u001b[1;32m 330\u001b[0m )\n\u001b[0;32m--> 331\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
|
||||||
|
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/core/reshape/concat.py:368\u001b[0m, in \u001b[0;36mconcat\u001b[0;34m(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)\u001b[0m\n\u001b[1;32m 146\u001b[0m \u001b[38;5;129m@deprecate_nonkeyword_arguments\u001b[39m(version\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, allowed_args\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mobjs\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n\u001b[1;32m 147\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mconcat\u001b[39m(\n\u001b[1;32m 148\u001b[0m objs: Iterable[NDFrame] \u001b[38;5;241m|\u001b[39m Mapping[HashableT, NDFrame],\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 157\u001b[0m copy: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 158\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame \u001b[38;5;241m|\u001b[39m Series:\n\u001b[1;32m 159\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;124;03m Concatenate pandas objects along a particular axis.\u001b[39;00m\n\u001b[1;32m 161\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 366\u001b[0m \u001b[38;5;124;03m 1 3 4\u001b[39;00m\n\u001b[1;32m 367\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 368\u001b[0m op \u001b[38;5;241m=\u001b[39m \u001b[43m_Concatenator\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 369\u001b[0m \u001b[43m \u001b[49m\u001b[43mobjs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 370\u001b[0m \u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 371\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_index\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_index\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 372\u001b[0m \u001b[43m \u001b[49m\u001b[43mjoin\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 373\u001b[0m \u001b[43m \u001b[49m\u001b[43mkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkeys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 374\u001b[0m \u001b[43m \u001b[49m\u001b[43mlevels\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlevels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 375\u001b[0m \u001b[43m \u001b[49m\u001b[43mnames\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnames\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 376\u001b[0m \u001b[43m \u001b[49m\u001b[43mverify_integrity\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mverify_integrity\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 377\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 378\u001b[0m \u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msort\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 379\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 381\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m op\u001b[38;5;241m.\u001b[39mget_result()\n",
|
||||||
|
"File \u001b[0;32m/mnt/data/home/j/git/lab.gsi/soil/soil/.env-v0.20/lib/python3.8/site-packages/pandas/core/reshape/concat.py:425\u001b[0m, in \u001b[0;36m_Concatenator.__init__\u001b[0;34m(self, objs, axis, join, keys, levels, names, ignore_index, verify_integrity, copy, sort)\u001b[0m\n\u001b[1;32m 422\u001b[0m objs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(objs)\n\u001b[1;32m 424\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(objs) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m--> 425\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo objects to concatenate\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 427\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m keys \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 428\u001b[0m objs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(com\u001b[38;5;241m.\u001b[39mnot_none(\u001b[38;5;241m*\u001b[39mobjs))\n",
|
||||||
|
"\u001b[0;31mValueError\u001b[0m: No objects to concatenate"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
"source": [
|
"source": [
|
||||||
"evodumb = analysis.read_data('soil_output/Sim_all_dumb/', process=analysis.get_count, group=True, keys=['id']);"
|
"evodumb = analysis.read_data('soil_output/Sim_all_dumb/', process=analysis.get_count, group=True, keys=['id']);"
|
||||||
]
|
]
|
||||||
@ -721,9 +729,9 @@
|
|||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3",
|
"display_name": "venv-soil",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "venv-soil"
|
||||||
},
|
},
|
||||||
"language_info": {
|
"language_info": {
|
||||||
"codemirror_mode": {
|
"codemirror_mode": {
|
||||||
@ -735,7 +743,7 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.6.2"
|
"version": "3.8.10"
|
||||||
},
|
},
|
||||||
"toc": {
|
"toc": {
|
||||||
"colors": {
|
"colors": {
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
---
|
---
|
||||||
load_module: rabbit_agents
|
load_module: rabbit_agents
|
||||||
name: rabbits_example
|
name: rabbits_example
|
||||||
max_time: 100
|
max_time: 1000
|
||||||
interval: 1
|
interval: 1
|
||||||
seed: MySeed
|
seed: MySeed
|
||||||
agent_type: rabbit_agents.RabbitModel
|
agent_type: rabbit_agents.RabbitModel
|
||||||
|
@ -6,4 +6,4 @@ pandas>=0.23
|
|||||||
SALib>=1.3
|
SALib>=1.3
|
||||||
Jinja2
|
Jinja2
|
||||||
Mesa>=0.8
|
Mesa>=0.8
|
||||||
tsih>=0.1.5
|
tsih>=0.1.9
|
||||||
|
@ -1 +1 @@
|
|||||||
0.20.7
|
0.20.8
|
@ -281,7 +281,7 @@ def default_state(func):
|
|||||||
|
|
||||||
class MetaFSM(type):
|
class MetaFSM(type):
|
||||||
def __init__(cls, name, bases, nmspc):
|
def __init__(cls, name, bases, nmspc):
|
||||||
super(MetaFSM, cls).__init__(name, bases, nmspc)
|
super().__init__(name, bases, nmspc)
|
||||||
states = {}
|
states = {}
|
||||||
# Re-use states from inherited classes
|
# Re-use states from inherited classes
|
||||||
default_state = None
|
default_state = None
|
||||||
@ -482,6 +482,7 @@ def _definition_to_dict(definition, size=None, default_state=None):
|
|||||||
distro = sorted([item for item in definition if 'weight' in item])
|
distro = sorted([item for item in definition if 'weight' in item])
|
||||||
|
|
||||||
ix = 0
|
ix = 0
|
||||||
|
|
||||||
def init_agent(item, id=ix):
|
def init_agent(item, id=ix):
|
||||||
while id in agents:
|
while id in agents:
|
||||||
id += 1
|
id += 1
|
||||||
|
@ -112,7 +112,7 @@ def get_types(df):
|
|||||||
Get the value type for every key stored in a raw history dataframe.
|
Get the value type for every key stored in a raw history dataframe.
|
||||||
'''
|
'''
|
||||||
dtypes = df.groupby(by=['key'])['value_type'].unique()
|
dtypes = df.groupby(by=['key'])['value_type'].unique()
|
||||||
return {k:v[0] for k,v in dtypes.iteritems()}
|
return {k:v[0] for k,v in dtypes.items()}
|
||||||
|
|
||||||
|
|
||||||
def process_one(df, *keys, columns=['key', 'agent_id'], values='value',
|
def process_one(df, *keys, columns=['key', 'agent_id'], values='value',
|
||||||
@ -146,7 +146,7 @@ def get_count(df, *keys):
|
|||||||
counts = pd.DataFrame()
|
counts = pd.DataFrame()
|
||||||
for key in df.columns.levels[0]:
|
for key in df.columns.levels[0]:
|
||||||
g = df[[key]].apply(pd.Series.value_counts, axis=1).fillna(0)
|
g = df[[key]].apply(pd.Series.value_counts, axis=1).fillna(0)
|
||||||
for value, series in g.iteritems():
|
for value, series in g.items():
|
||||||
counts[key, value] = series
|
counts[key, value] = series
|
||||||
counts.columns = pd.MultiIndex.from_tuples(counts.columns)
|
counts.columns = pd.MultiIndex.from_tuples(counts.columns)
|
||||||
return counts
|
return counts
|
||||||
|
@ -124,7 +124,8 @@ class Environment(Model):
|
|||||||
def environment_agents(self, environment_agents):
|
def environment_agents(self, environment_agents):
|
||||||
self._environment_agents = environment_agents
|
self._environment_agents = environment_agents
|
||||||
|
|
||||||
self._env_agents = agents._definition_to_dict(definition=environment_agents)
|
for (ix, agent) in enumerate(self._environment_agents):
|
||||||
|
self.init_agent(len(self.G) + ix, agent_definitions=environment_agents, with_node=False)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def network_agents(self):
|
def network_agents(self):
|
||||||
@ -139,15 +140,19 @@ class Environment(Model):
|
|||||||
for ix in self.G.nodes():
|
for ix in self.G.nodes():
|
||||||
self.init_agent(ix, agent_definitions=network_agents)
|
self.init_agent(ix, agent_definitions=network_agents)
|
||||||
|
|
||||||
def init_agent(self, agent_id, agent_definitions):
|
def init_agent(self, agent_id, agent_definitions, with_node=True):
|
||||||
node = self.G.nodes[agent_id]
|
|
||||||
init = False
|
init = False
|
||||||
|
|
||||||
|
state = {}
|
||||||
|
if with_node:
|
||||||
|
node = self.G.nodes[agent_id]
|
||||||
state = dict(node)
|
state = dict(node)
|
||||||
|
state.update(self.states.get(agent_id, {}))
|
||||||
|
|
||||||
agent_type = None
|
agent_type = None
|
||||||
if 'agent_type' in self.states.get(agent_id, {}):
|
if 'agent_type' in state:
|
||||||
agent_type = self.states[agent_id]['agent_type']
|
agent_type = state['agent_type']
|
||||||
elif 'agent_type' in node:
|
elif with_node and 'agent_type' in node:
|
||||||
agent_type = node['agent_type']
|
agent_type = node['agent_type']
|
||||||
elif 'agent_type' in self.default_state:
|
elif 'agent_type' in self.default_state:
|
||||||
agent_type = self.default_state['agent_type']
|
agent_type = self.default_state['agent_type']
|
||||||
@ -157,14 +162,15 @@ class Environment(Model):
|
|||||||
elif agent_definitions:
|
elif agent_definitions:
|
||||||
agent_type, state = agents._agent_from_definition(agent_definitions, unique_id=agent_id)
|
agent_type, state = agents._agent_from_definition(agent_definitions, unique_id=agent_id)
|
||||||
else:
|
else:
|
||||||
serialization.logger.debug('Skipping node {}'.format(agent_id))
|
serialization.logger.debug('Skipping agent {}'.format(agent_id))
|
||||||
return
|
return
|
||||||
return self.set_agent(agent_id, agent_type, state)
|
return self.set_agent(agent_id, agent_type, state, with_node=with_node)
|
||||||
|
|
||||||
def set_agent(self, agent_id, agent_type, state=None):
|
def set_agent(self, agent_id, agent_type, state=None, with_node=True):
|
||||||
node = self.G.nodes[agent_id]
|
|
||||||
defstate = deepcopy(self.default_state) or {}
|
defstate = deepcopy(self.default_state) or {}
|
||||||
defstate.update(self.states.get(agent_id, {}))
|
defstate.update(self.states.get(agent_id, {}))
|
||||||
|
if with_node:
|
||||||
|
node = self.G.nodes[agent_id]
|
||||||
defstate.update(node.get('state', {}))
|
defstate.update(node.get('state', {}))
|
||||||
if state:
|
if state:
|
||||||
defstate.update(state)
|
defstate.update(state)
|
||||||
@ -178,6 +184,7 @@ class Environment(Model):
|
|||||||
for (k, v) in state.items():
|
for (k, v) in state.items():
|
||||||
setattr(a, k, v)
|
setattr(a, k, v)
|
||||||
|
|
||||||
|
if with_node:
|
||||||
node['agent'] = a
|
node['agent'] = a
|
||||||
self.schedule.add(a)
|
self.schedule.add(a)
|
||||||
return a
|
return a
|
||||||
|
@ -52,7 +52,7 @@ class distribution(Stats):
|
|||||||
except TypeError:
|
except TypeError:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
for name, count in t.value_counts().iteritems():
|
for name, count in t.value_counts().items():
|
||||||
if a not in stats['count']:
|
if a not in stats['count']:
|
||||||
stats['count'][a] = {}
|
stats['count'][a] = {}
|
||||||
stats['count'][a][name] = count
|
stats['count'][a][name] = count
|
||||||
@ -68,10 +68,10 @@ class distribution(Stats):
|
|||||||
mean = {}
|
mean = {}
|
||||||
|
|
||||||
if self.means:
|
if self.means:
|
||||||
res = dfm.groupby(by=['key']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
|
res = dfm.drop('metric', axis=1).groupby(by=['key']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
|
||||||
mean = res['value'].to_dict()
|
mean = res['value'].to_dict()
|
||||||
if self.counts:
|
if self.counts:
|
||||||
res = dfc.groupby(by=['key', 'value']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
|
res = dfc.drop('metric', axis=1).groupby(by=['key', 'value']).agg(['mean', 'std', 'count', 'median', 'max', 'min'])
|
||||||
for k,v in res['count'].to_dict().items():
|
for k,v in res['count'].to_dict().items():
|
||||||
if k not in count:
|
if k not in count:
|
||||||
count[k] = {}
|
count[k] = {}
|
||||||
|